
Modeling Performance of Graph Programs on
GPUs in a Compiler
.

Sreepathi Pai Keshav Pingali
August 11, 2016

The University of Texas at Austin
ModSim 2016

Outline

Motivation

Queuing Models for Graph Programs

Results, Analytical Modelling and Characterization

Conclusions and Future Work

Outline

Motivation

Queuing Models for Graph Programs

Results, Analytical Modelling and Characterization

Conclusions and Future Work

Motivation

Speedup of the Galois GPU compiler on 7 graph algorithms1

bfs cc dmr mis mst pr sssp triangles
Benchmark

0

1

2

3

4

5

6

G
e
o
m

e
a
n
 S

p
e
e
d
u
p

input_category

mesh
other
rmat
road

1S. Pai and K. Pingali, ``A compiler for throughput optimization of graph
algorithms on GPUs'', in OOPSLA 2016.

Performance of Graph Programs

• Algorithm
• BFS is O(|V+ E|), but many implementations are O(n2)
• δ-stepping SSSP is an order of magnitude faster than naive

• Graph Input
• Road networks are uniform, high-diameter, and exhibit
locality

• Social network graphs are non-uniform, low-diameter and
have little locality

• Software (Runtime)
• Data structure memory layout
• Data structure implementation

• Hardware
• Memory bandwidth (?)
• Atomic instruction performance

The Problem

• No performance model exists for graph programs on GPUs
• Must manually tease out performance effects

• No sound methodology exists to guide effort
• Ad hoc techniques lead to incorrect generalizations

• No useful characterization to drive algorithms, runtimes,
architecture

• Can we ever achieve peak performance?

Outline

Motivation

Queuing Models for Graph Programs

Results, Analytical Modelling and Characterization

Conclusions and Future Work

Breadth-First Search

Level-by-Level Breadth-First Search (BFS)

Kernel BFS(graph, LEVEL)
ForAll(N in Worklist)

ForAll(e in graph.edges(N))
If(e.dst.level == INF)

e.dst.level = LEVEL
Worklist.push(e.dst)

• Worklist contains source node initially
• Worklists are bulk-synchronous

BFS as a Queuing Model

ForAll(N in Worklist)
 ForAll(e in graph.edges(N))
 If(e.dst.level == INF)
 e.dst.level = LEVEL
 Worklist.push(e.dst)

WLInput

Expand

Operator

WLOutput

Except for Operator, all other stages are independent of BFS

The Operator Machine

The Operator Machine is a multistage queuing network model
for graph programs:

• Input
• WLInput, AllNodesInput, AllEdgesInput

• Expansion (optional)
• XSerial, XThreadBlock, XWarp, ...

• Operator
• NodeOp, EdgeOp

• Output (optional)
• WLOutput

Measuring Peak Throughput of an Operator Machine

• "Cumulative" benchmarks
for each stage

• Requires checkpoints from
full executions

• Compiler-assisted

• Yields peak throughputs

WLInput

Expand

Operator

WLOutput

+wlinput

+expand

+operator

+wloutput

Measure
Throughput
(Workitems/s)

Outline

Motivation

Queuing Models for Graph Programs

Results, Analytical Modelling and Characterization

Conclusions and Future Work

Initial Results: Peak Throughputs
B

F
S

C
X

 /
rm

at
16

B
F

S
C

X
 /

rm
at

20

B
F

S
C

X
 /

rm
at

22

B
F

S
T

P
 /

rm
at

16

B
F

S
T

P
 /

rm
at

20

B
F

S
T

P
 /

rm
at

22

B
F

S
W

L
/ r

m
at

16

B
F

S
W

L
/ r

m
at

20

B
F

S
W

L
/ r

m
at

22

P
R

W
L

/ r
m

at
16

P
R

W
L

/ r
m

at
20

P
R

W
L

/ r
m

at
22

S
S

S
P

N
F

 /
rm

at
16

S
S

S
P

N
F

 /
rm

at
20

S
S

S
P

N
F

 /
rm

at
22

S
S

S
P

W
L

/ r
m

at
16

S
S

S
P

W
L

/ r
m

at
20

S
S

S
P

W
L

/ r
m

at
22

B
F

S
C

X
 /

N
Y

B
F

S
C

X
 /

C
A

L

B
F

S
C

X
 /

U
S

A

B
F

S
T

P
 /

N
Y

B
F

S
T

P
 /

C
A

L

B
F

S
T

P
 /

U
S

A

B
F

S
W

L
/ N

Y

B
F

S
W

L
/ C

A
L

B
F

S
W

L
/ U

S
A

P
R

W
L

/ N
Y

P
R

W
L

/ C
A

L

P
R

W
L

/ U
S

A

S
S

S
P

N
F

 /
N

Y

S
S

S
P

N
F

 /
C

A
L

S
S

S
P

N
F

 /
U

S
A

S
S

S
P

W
L

/ N
Y

S
S

S
P

W
L

/ C
A

L

S
S

S
P

W
L

/ U
S

A

Benchmark / Input

107

108

109

1010

1011

T
hr

ou
gh

pu
t (

w
or

ki
te

m
s/

s)

+wlinput +expand +operator +wloutput

103

104

105

106

107

108

W
or

kl
is

t S
iz

e

Input Performance

• WLInput - Read a worklist
• Peaks out at 56GByte/s
• Depends on:

• Size of worklist
• Number of concurrent reads / thread

• Worklists are large for Social Network Graphs
• Worklists are usually small for Road Networks

• In BFS and SSSP
• Not in PageRank, Minimum Spanning Tree, Connected
Components

Expansion Performance

Assuming graph data-structure uses CSR layout

N = Worklist[tid]

// indirect memory accesses
start = graph.row_offset[N];
end = graph.row_offset[N+1];

// irregular loop
for(i = start; i < end; i++) {

// empty
}

Microbenchmark Performance for Expansion

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Round

105

106

107

108

109

1010

1011

T
h
ro

u
g
h
p
u
t

(w
o
rk

it
e
m

s/
s)

bfs_kernel/rmat22

ubkernel

memory
loop

100

101

102

103

104

105

106

107

W
o
rk

lis
t

S
iz

e

After sorting the worklist

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Round

105

106

107

108

109

1010

1011

T
h
ro

u
g
h
p
u
t

(w
o
rk

it
e
m

s/
s)

bfs_kernel/rmat22

memory
loop
sorted+memory
sorted+loop

100

101

102

103

104

105

106

107

W
o
rk

lis
t

S
iz

e

Expansion Characterization

• Indirect Memory Access performance is dictated by:
• Number of 32-byte lines spanned per GPU warp
• TLB hit rate

• Loop performance is dictated by:
• Maximum number of edges
• Branch performance

Outline

Motivation

Queuing Models for Graph Programs

Results, Analytical Modelling and Characterization

Conclusions and Future Work

Conclusions and Future Work

• Operator Machine is a queuing network model for graph
programs on GPUs

• Allows us to drill down into performance
• Generalizes well
• Yields sound conclusions

• TLB Miss Throughput is critical for random graphs
• Compiler integration in progress to guide profile-based
optimizations

	Motivation
	Queuing Models for Graph Programs
	Results, Analytical Modelling and Characterization
	Conclusions and Future Work

