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Motivation

Speedup of the Galois GPU compiler on 7 graph algorithms1
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1S. Pai and K. Pingali, ``A compiler for throughput optimization of graph
algorithms on GPUs'', in OOPSLA 2016.



Performance of Graph Programs

• Algorithm
• BFS is O(|V+ E|), but many implementations are O(n2)
• δ-stepping SSSP is an order of magnitude faster than naive

• Graph Input
• Road networks are uniform, high-diameter, and exhibit
locality

• Social network graphs are non-uniform, low-diameter and
have little locality

• Software (Runtime)
• Data structure memory layout
• Data structure implementation

• Hardware
• Memory bandwidth (?)
• Atomic instruction performance



The Problem

• No performance model exists for graph programs on GPUs
• Must manually tease out performance effects

• No sound methodology exists to guide effort
• Ad hoc techniques lead to incorrect generalizations

• No useful characterization to drive algorithms, runtimes,
architecture

• Can we ever achieve peak performance?
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Breadth-First Search

Level-by-Level Breadth-First Search (BFS)

Kernel BFS(graph, LEVEL)
ForAll(N in Worklist)

ForAll(e in graph.edges(N))
If(e.dst.level == INF)

e.dst.level = LEVEL
Worklist.push(e.dst)

• Worklist contains source node initially
• Worklists are bulk-synchronous



BFS as a Queuing Model

ForAll(N in Worklist)
    ForAll(e in graph.edges(N))
        If(e.dst.level == INF)
            e.dst.level = LEVEL
            Worklist.push(e.dst)

WLInput

Expand

Operator

WLOutput

Except for Operator, all other stages are independent of BFS



The Operator Machine

The Operator Machine is a multistage queuing network model
for graph programs:

• Input
• WLInput, AllNodesInput, AllEdgesInput

• Expansion (optional)
• XSerial, XThreadBlock, XWarp, ...

• Operator
• NodeOp, EdgeOp

• Output (optional)
• WLOutput



Measuring Peak Throughput of an Operator Machine

• "Cumulative" benchmarks
for each stage

• Requires checkpoints from
full executions

• Compiler-assisted

• Yields peak throughputs

WLInput

Expand

Operator

WLOutput

+wlinput

+expand

+operator

+wloutput

Measure
Throughput
(Workitems/s)
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Initial Results: Peak Throughputs
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Input Performance

• WLInput - Read a worklist
• Peaks out at 56GByte/s
• Depends on:

• Size of worklist
• Number of concurrent reads / thread

• Worklists are large for Social Network Graphs
• Worklists are usually small for Road Networks

• In BFS and SSSP
• Not in PageRank, Minimum Spanning Tree, Connected
Components



Expansion Performance

Assuming graph data-structure uses CSR layout

N = Worklist[tid]

// indirect memory accesses
start = graph.row_offset[N];
end = graph.row_offset[N+1];

// irregular loop
for(i = start; i < end; i++) {

// empty
}



Microbenchmark Performance for Expansion
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After sorting the worklist
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Expansion Characterization

• Indirect Memory Access performance is dictated by:
• Number of 32-byte lines spanned per GPU warp
• TLB hit rate

• Loop performance is dictated by:
• Maximum number of edges
• Branch performance
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Conclusions and Future Work

• Operator Machine is a queuing network model for graph
programs on GPUs

• Allows us to drill down into performance
• Generalizes well
• Yields sound conclusions

• TLB Miss Throughput is critical for random graphs
• Compiler integration in progress to guide profile-based
optimizations
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