
Static and Dynamic Modeling
for Power and Performance

KEVIN J. BARKER, RYAN D. FRIESE, DARREN J. KERBYSON,
AND NATHAN R. TALLENT

HIGH PERFORMANCE COMPUTING GROUP
PACIFIC NORTHWEST NATIONAL LABORATORY

Workshop on Modeling and Simulation of Systems and Applications (ModSim 2017)
August 9-11, 2017

1

Talk Outline

Modeling irregular applications
Methodology: hierarchical critical path analysis
Results on challenging strong-scaling workload

Dynamic modeling for energy optimization
Dynamic Power Steering: using application information to
guide power distribution
Modeling application power consumption
Results on a power-constrained system

2

Talk Outline

Modeling irregular applications
Methodology: hierarchical critical path analysis
Results on challenging strong-scaling workload

Dynamic modeling for energy optimization
Dynamic Power Steering: using application information to
guide power distribution
Modeling application power consumption
Results on a power-constrained system

3

Modeling Irregular Applications is Hard

Good models quantitatively explain
and predict execution time

Diagnose performance-limiting
resources, design machines, etc.

What if the memory system was 20%
faster?

Goal: Algebraic expressions of key
parameters

4

In
sig

ht

Evaluation	Time

Statistical	
/	ML

Analytical

Simulation

Difficult to construct models for irregular applications:
Non-uniform input data (e.g., a physical system)
Input-dependent behavior (e.g., solvers, preconditioners)
Irregular memory accesses (e.g., from sparse matrices or graphs)
Dynamic/unbiased branches (e.g., input tests, dynamic dispatch)
Costs widely dispersed

Performance & Architecture Lab Modeling tool
Modeling methodology based on Hierarchical Critical Path Analysis

Model dependency chains, not operation overlap
Allow time-consuming model building operations to be pushed offline
Make use of low-overhead tools for static and dynamic analysis

Goal: to balance model generation cost, model accuracy, and generality
Techniques employed:

Determine tasks along MPI critical path; parameterize instance counts and
arguments
Model tasks via hot-path analysis capturing data flow, data locality, and
microarchitectural constraints
Capture sub-path overlap

Parameterized, decomposable models
Separate computation and data access costs
Quickly re-targetable to new microarchitecture

Application Modeling with Palm

5

Step 1: MPI Critical Path Analysis

Collect the longest
sequence of tasks
for representative
execution
Simplification: No
overlap among
tasks on critical
path

6

ra
nk
s

time

T1,1 T1,2 T1,3 T1,3 T1,3 T1,4

T4,1 T4,2 T4,4T4,3 T4,3 T4,3

T3,1 T3,2 T3,4T3,3 T3,3 T3,3

T2,1 T2,2 T2,4T2,3 T2,3 path
taskTrank,id

all-to-all	sync

Key: relating task arguments and instance counts to input model parameters.
Human guidance can help

Parameterization	
(requires	human	

guidance)

T1(60,25): 1
T2(25): 1
T3(25): 3
T4(55,15,2): 1

T1(a1(…)): c1(…)
...
T4(a4(…)): c4(…)	

c1 ·	model(T1 , a1)	+	
...	+
c4 ·	model(T4 , a4)

à à

Direct	Observation	of	
dynamic	execution

Outer	model	
structure

Defining	the	outer	model	structure

Step 2: Critical Path Analysis of Hot Paths

Can determine probability of branch paths taken
using dynamic instrumentation (e.g., DynInst)
For straight-line paths, architecture-specific
analysis tool (e.g., IACA) can determine instruction
cost of path

Separate compute from data access costs
Loops can be decomposed into straight-line paths

Key question: what is the level of overlap between
loop iterations?
Analysis becomes trickier for loop nests

Incorporate data access latencies per block
Histogram of hits per level in the memory hierarchy
(obtained through tools such as perf-mem)
Number of memory operations along the critical path

7

225

block	1
calls:	100

block	2
calls:	75

block	4
calls:	250

block	6
calls:	200

block	8
calls:	100

block	7
calls:	250

25

25

25

50

50 200

200

task
exit

block	3
calls:	25

50

25

block	5
calls:	50

75

L1
7ns

L2
20ns

L3
60ns

LFB
100ns

DRAM
200ns

Hi
t	%

Goal: capture dynamic CPU pipelining
Sub-path overlap:

Tunable parameter allows for “what-if” evaluations (e.g., extra functional unit)
Applied to innermost loops with highly biased branches
Provides min and max bounds for loop execution time

Modeling Overlap of Sub-Path Critical Paths

8

Pre-loop	code

Post-loop	code

for	i in	… do

done

…
iteration	code
…

Iter 1 + + + +…Iter 2 Iter 3 Iter n

No	sub-path	overlap:
Evaluate	independently	à Overestimate	of	runtime

Iter 1
Iter 2
Iter 3
Iter n

Full	sub-path	overlap:
Evaluate	continuously	à
Underestimate	of	runtime

Iter 1
Iter 2

Iter 3
Iter n

Partial	sub-path	overlap:
Evaluate	sub-chains	à
Solve	for	“level”	of	overlap

Task Modeling: An Example Model

9

path_1 path_2 path_3

225

block	1
calls:	100

block	2
calls:	75

block	4
calls:	250

block	6
calls:	200

block	8
calls:	100

block	7
calls:	250

25

25

25

50

50 200

200

task
exit

block	3
calls:	25

50

25

block	5
calls:	50

225

block	1
calls:	100

block	2
calls:	75

block	4
calls:	250

block	6
calls:	200

block	8
calls:	100

block	7
calls:	250

25

25

25

50

50 200

200

task
exit

block	3
calls:	25

50

25

block	5
calls:	50

225

block	1
calls:	100

block	2
calls:	75

block	4
calls:	250

block	6
calls:	200

block	8
calls:	100

block	7
calls:	250

25

25

25

50

50 200

200

task
exit

loop
exit

block	3
calls:	25

50

25

block	5
calls:	50

loop	1

path_1 = 0.25*((cp(1).lat+cp(1).mem*base_data_cost)+loop_1+(cp(8).lat + cp(8).mem*base_data_cost)	

def task-T1 (base_data_cost,	loop_1_data_cost,	loop_1_iterations :	10)
metablk_1	= [4,	6,	7,		4,	6,	7,		4,	6,	7]	//	effective	dynamic
metablk_2	= [4,	5,	7,		4,	5,	7,		4,	5,	7]	//	overlap factor	of	3
loop_1_path_1 =	0.8*(cp(metablk_1).lat +	cp(metablk_1).mem*loop_1_data_cost)	
loop_1_path_2	=	0.2*(cp(metablk_2).lat +	cp(metablk_2).mem*loop_1_data_cost)	

return	path_1 +	path_2 +	path_3
end	

path_2 = 0.25*(cp([1,2,3,8]).lat+cp([1,2,3,8]).mem*base_data_cost)
path_3 = 0.5*(cp([1,2,8]).lat+cp([1,2,8]).mem*base_data_cost)

loop_1 = loop_1_iterations/3.0*(loop_1_path_1	+	loop_1_path_2)	
loop_1

path_3path_2path_1

MPI Implementation of PageRank
Two input graphs: Power-law (11M vertices, 1.3B edges) and Uniform
Two CPU micro-architectures and two clock frequencies

Modeling PageRank’s Key Tasks:
A Strong-Scaling Workload

10

Challenges:
Comm. aggregation
Inlined code: C++ map
insert, lookup, iterate
Unbiased branches and
indirect data access

Changing architectures
Regenerate data access
parameter values

Changing input graphs
Regenerate data access
parameter values
Adjust task parameters

Talk Outline

Modeling irregular applications
Methodology: hierarchical critical path analysis
Results on challenging strong-scaling workload

Dynamic modeling for energy optimization
Dynamic Power Steering: using application information
to guide power distribution
Modeling application power consumption
Results on a power-constrained system

11

Dynamic Power Steering

Idea: Route power to those resources that are over-loaded and away
from under-loaded resources to compensate

Optimizes power consumption in two ways:
Leaves data in place – minimizes power lost to data migration
Routing available power to where the work is – Power Balancing

Targeting workloads
In which static calculation of ideal power distribution is not possible (e.g.,
data-dependent execution, variation over time)
In which performance is impacted by changes to node or core p-state
(i.e., by allocated more power, performance may be improved)

Questions: Can we predict the impact Dynamic Power Steering will
have on application performance and energy consumption and can we
use this knowledge to drive decision-making in runtime software?

12

Routing Power to Overloaded Resources

13

CPU Cores

PLow

PMid

PHigh

Power
State

Load
Level

CPU Cores

PLow

PMid

PHigh

Power
State

Load
Level

Individual core load varies over
the course of the simulation,
leading to load imbalance
Systems equipped with multiple
p-states can modify performance
and power consumption
dynamically
Utilizing high-performance
settings on all cores will exceed
global power budget
Limited power needs to be
intelligently routed to where it can
be most beneficial

Emulating a Power-Constrained System

14

Freq.	(GHz) Active	Pwr (W) P-state	Label

2.1 21.1 PHi
1.7 18.0 PMid

1.4 15.6 PLow

We emulate a power-capped system by initially imposing a mid-range
p-state for each processor core

Allow for core p-state to vary up or down using Heuristic
Overall power is constrained to be that of initial operating point
Improve performance along critical path compared to operating point
thereby potentially reducing energy-to-solution

Test-bed platform:
36 nodes of dual-socket, 8-core AMD Interlagos processors
Power measurement capability at outlet level @ 0.3Hz sampling rate

Analytically Modeling Power Steering

Overall system power budget is defined by the constraint

15

PConstrained =CPBaseline ≥ CiPi
i=1

NP−states

∑ C = Ci
i=1

NP−states

∑,	where

Total time is given by the longest executing core over all power states

TTotal =
i∈ P−states{ }
max

C∈ Ci{ }
maxTC i,WC()
#

$
%

&

'
(

Moving some cores to a higher power state must be balanced by moving
some cores to a lower state:

CLow +CHigh()PMid ≥CLowPLow +CHighPHigh

The number of cores that must be moved to the lower power state is defined
to be:

CLow ≥CHigh rHigh −1() 1− rLow()

rLow =
PLow

PMid
≤1 rHigh =

PHigh
PMid

≥1where and

Resulting Power Assignment Heuristic
Start

1. PWRmax = maximum globally available power
2. p-statemax = highest performance p-state
3. Nwork_max = max(Nwork_i) ∀ i ∈ { Pi }
4. twork_max = Nwork_max × twork(p-statemax)
5. ∀ i ∈ {Pi | Pi <> Pwork_max} find slowest p-state such that twork_i < twork_max

6. PWRi = twork_i(p-statei)
7. PWRglobal = SUM (PWR(p-statei))
8. If PWRglobal > PWRmax then reduce p-statemax and go to step 3
9. Assign p-state calculated to each processor-core

End

16

Core along the critical path (i.e., most overloaded) is put in the highest
performing p-state
P-states for other processors is calculated to be the lowest that does not
negatively impact performance
If the global power budget is exceeded, the p-state of the most loaded
processor is reduced and the heuristic is repeated

Modeled Performance Improvement Leads
to Measured Energy Improvement

Charged-field workload emulates particles migrating in a magnetic field

17

10%$
40%$

70%$

100%$

0%$
5%$

10%$

15%$

20%$

25%$

30%$

0%
$

10
%
$

20
%
$

30
%
$

40
%
$

50
%
$

60
%
$

70
%
$

80
%
$

90
%
$

10
0%

$ Lo
ad

%B
al
an

ce
%

Ru
n-

m
e%
Im

pr
ov
em

en
t%

Memory%Intensity%

10%$
40%$

70%$

100%$

'10%$

0%$

10%$

20%$

30%$

0%
$

10
%
$

20
%
$

30
%
$

40
%
$

50
%
$

60
%
$

70
%
$

80
%
$

90
%
$

10
0%

$ Lo
ad

%B
al
an

ce
%

En
er
gy
%Im

pr
ov
em

en
t%

Memory%Intensity%

Modeled	Performance	Improvement Measured	Energy	Efficiency	Improvement

Fixed power budget means performance improvements translate to energy
(Quasi-)Analytical models are able to quantify and predict the amount of
performance and energy efficiency improvement that can be expected given:

Degree of load imbalance across the parallel system
Impact of change in p-state on workload performance

Conclusions

Over the past few years
Analytical modeling methods have moved beyond static, regular
applications
Analytical models have moved beyond modeling only performance

Looking forward
New programming and execution models
Extreme heterogeneity
Introspective runtime software systems
Wide area distribution and data movement/placement

18

Selected Publications
R. D. Friese, N. R. Tallent, A. Vishnu, D. J. Kerbyson, and A. Hoisie, “Generating Performance
Models for Irregular Applications”, IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2017.
N. R. Tallent, K. J. Barker, R. Gioiosa, A. Marquez, G. Kestor, S. Song, D. J. Kerbyson, and A.
Hoisie, “Assessing Advanced Technology in CENATE”, IEEE International Conference on
Networking, Architecture, and Storage (NAS), 2016.
K. J. Barker and D. J. Kerybson, “Modeling the Performance and Energy Empact of Dynamic Power
Steering”, IEEE International Parallel and Distributed Processing Symposium (IPDPS) Workshops:
Workshop on Large-scale Parallel Processing, 2016.
N. R. Tallent and A. Hoisie, “Palm: Easing the Burden of Analytical Performance Modeling”, 28th

International Conference on Supercomputing (ICS), 2014.
K. J. Barker, D. J. Kerbyson, and E. A. Anger, “On the Feasibility of Dynamic Power Steering”, 2nd

International Workshop on Energy-efficient Supercomputing (E2SC), 2014.
D. J. Kerbyson, K. J. Barker, A. Vishnu, and A. Hoisie, “A Performance Comparison of Current HPC
Systems: BlueGene/Q, Cray XE6, and InfiniBand Systems”, Future Generation Computing Systems
(30), 2014
S. Song, N. R. Tallent, and A. Vishnu, “Exploring Machine Learning Techniques for Dynamic
Modeling on Future Exascale Systems”, Workshop on Modeling and Simulation of Exascale
Systems and Applications, 2013.
S. Song, K. J. Barker, and D. J. Kerbyson, “Unified Performance and Power Modeling of Scientific
Workloads”, 1st International Workshop on Energy-efficient Supercomputing (E2SC), 2013.
D. J. Kerbyson, K. J. Barker, D. S. Gallo, D. Chen, J. R. Brunheroto, K. D. Ryu, G. L. Chiu, and A.
Hoisie, “Tracking the Performance Evolution of BlueGene Systems”, 28th International
Supercomputing Conference (ISC), 2013.

19

