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Talk Outline

Modeling irregular applications
Methodology:  hierarchical critical path analysis
Results on challenging strong-scaling workload

Dynamic modeling for energy optimization
Dynamic Power Steering:  using application information to 
guide power distribution
Modeling application power consumption
Results on a power-constrained system
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Modeling Irregular Applications is Hard

Good models quantitatively explain 
and predict execution time

Diagnose performance-limiting 
resources, design machines, etc.

What if the memory system was 20% 
faster?

Goal: Algebraic expressions of key 
parameters

4

In
sig

ht

Evaluation	Time

Statistical	
/	ML

Analytical

Simulation

Difficult to construct models for irregular applications:
Non-uniform input data (e.g., a physical system)
Input-dependent behavior (e.g., solvers, preconditioners)
Irregular memory accesses (e.g., from sparse matrices or graphs)
Dynamic/unbiased branches (e.g., input tests, dynamic dispatch)
Costs widely dispersed



Performance & Architecture Lab Modeling tool
Modeling methodology based on Hierarchical Critical Path Analysis

Model dependency chains, not operation overlap
Allow time-consuming model building operations to be pushed offline
Make use of low-overhead tools for static and dynamic analysis

Goal:  to balance model generation cost, model accuracy, and generality
Techniques employed:

Determine tasks along MPI critical path; parameterize instance counts and 
arguments
Model tasks via hot-path analysis capturing data flow, data locality, and 
microarchitectural constraints
Capture sub-path overlap

Parameterized, decomposable models
Separate computation and data access costs
Quickly re-targetable to new microarchitecture

Application Modeling with Palm
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Step 1:  MPI Critical Path Analysis

Collect the longest 
sequence of tasks
for representative 
execution
Simplification:  No 
overlap among 
tasks on critical 
path
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T4,1 T4,2 T4,4T4,3 T4,3 T4,3

T3,1 T3,2 T3,4T3,3 T3,3 T3,3

T2,1 T2,2 T2,4T2,3 T2,3 path
taskTrank,id

all-to-all	sync

Key:  relating task arguments and instance counts to input model parameters.  
Human guidance can help

Parameterization	
(requires	human	

guidance)

T1(	60,25	): 1
T2(	25	): 1
T3(	25	): 3
T4(	55,15,2	): 1

T1(	a1(…)	): c1(…)
...
T4(	a4(…)	): c4(…)	

c1 ·	model(	T1 , a1 )	+	
...	+
c4 ·	model(	T4 , a4 )

à à

Direct	Observation	of	
dynamic	execution

Outer	model	
structure

Defining	the	outer	model	structure



Step 2:  Critical Path Analysis of Hot Paths

Can determine probability of branch paths taken 
using dynamic instrumentation (e.g., DynInst)
For straight-line paths, architecture-specific 
analysis tool (e.g., IACA) can determine instruction 
cost of path

Separate compute from data access costs
Loops can be decomposed into straight-line paths

Key question:  what is the level of overlap between 
loop iterations?
Analysis becomes trickier for loop nests

Incorporate data access latencies per block
Histogram of hits per level in the memory hierarchy 
(obtained through tools such as perf-mem)
Number of memory operations along the critical path

7

225

block	1
calls:	100

block	2
calls:	75

block	4
calls:	250

block	6
calls:	200

block	8
calls:	100

block	7
calls:	250

25

25

25

50

50 200

200

task
exit

block	3
calls:	25

50

25

block	5
calls:	50

75

L1
7ns

L2
20ns

L3
60ns

LFB
100ns

DRAM
200ns

Hi
t	%



Goal:  capture dynamic CPU pipelining
Sub-path overlap:

Tunable parameter allows for “what-if” evaluations (e.g., extra functional unit)
Applied to innermost loops with highly biased branches
Provides min and max bounds for loop execution time

Modeling Overlap of Sub-Path Critical Paths
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Pre-loop	code

Post-loop	code

for	i in	… do

done

…
iteration	code
…

Iter 1 + + + +…Iter 2 Iter 3 Iter n

No	sub-path	overlap:
Evaluate	independently	à Overestimate	of	runtime

Iter 1
Iter 2
Iter 3
Iter n

Full	sub-path	overlap:
Evaluate	continuously	à
Underestimate	of	runtime

Iter 1
Iter 2

Iter 3
Iter n

Partial	sub-path	overlap:
Evaluate	sub-chains	à
Solve	for	“level”	of	overlap



Task Modeling: An Example Model
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loop	1

path_1 = 0.25*((cp(1).lat+cp(1).mem*base_data_cost)+loop_1+(cp(8).lat + cp(8).mem*base_data_cost)	

def task-T1 (base_data_cost,	loop_1_data_cost,	loop_1_iterations :	10)
metablk_1	= [4,	6,	7,		4,	6,	7,		4,	6,	7]	//	effective	dynamic
metablk_2	= [4,	5,	7,		4,	5,	7,		4,	5,	7]	//	overlap factor	of	3
loop_1_path_1 =	0.8*(cp(metablk_1).lat +	cp(metablk_1).mem*loop_1_data_cost)	
loop_1_path_2	=	0.2*(cp(metablk_2).lat +	cp(metablk_2).mem*loop_1_data_cost)	

return	path_1 +	path_2 +	path_3
end	

path_2 = 0.25*(cp([1,2,3,8]).lat+cp([1,2,3,8]).mem*base_data_cost)
path_3 = 0.5*(cp([1,2,8]).lat+cp([1,2,8]).mem*base_data_cost)

loop_1 = loop_1_iterations/3.0*(loop_1_path_1	+	loop_1_path_2)	
loop_1

path_3path_2path_1



MPI Implementation of PageRank
Two input graphs:  Power-law (11M vertices, 1.3B edges) and Uniform
Two CPU micro-architectures and two clock frequencies

Modeling PageRank’s Key Tasks:  
A Strong-Scaling Workload
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Challenges:
Comm. aggregation
Inlined code:  C++ map 
insert, lookup, iterate
Unbiased branches and 
indirect data access

Changing architectures
Regenerate data access 
parameter values

Changing input graphs
Regenerate data access 
parameter values
Adjust task parameters
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Methodology:  hierarchical critical path analysis
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Dynamic modeling for energy optimization
Dynamic Power Steering:  using application information 
to guide power distribution
Modeling application power consumption
Results on a power-constrained system
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Dynamic Power Steering

Idea: Route power to those resources that are over-loaded and away 
from under-loaded resources to compensate

Optimizes power consumption in two ways:
Leaves data in place – minimizes power lost to data migration
Routing available power to where the work is – Power Balancing

Targeting workloads
In which static calculation of ideal power distribution is not possible (e.g., 
data-dependent execution, variation over time)
In which performance is impacted by changes to node or core p-state 
(i.e., by allocated more power, performance may be improved)

Questions: Can we predict the impact Dynamic Power Steering will 
have on application performance and energy consumption and can we 
use this knowledge to drive decision-making in runtime software?
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Routing Power to Overloaded Resources
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Individual core load varies over 
the course of the simulation, 
leading to load imbalance
Systems equipped with multiple 
p-states can modify performance 
and power consumption 
dynamically
Utilizing high-performance 
settings on all cores will exceed 
global power budget
Limited power needs to be 
intelligently routed to where it can 
be most beneficial



Emulating a Power-Constrained System
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Freq.	(GHz) Active	Pwr (W) P-state	Label

2.1 21.1 PHi
1.7 18.0 PMid

1.4 15.6 PLow

We emulate a power-capped system by initially imposing a mid-range 
p-state for each processor core

Allow for core p-state to vary up or down using Heuristic
Overall power is constrained to be that of initial operating point
Improve performance along critical path compared to operating point 
thereby potentially reducing energy-to-solution

Test-bed platform:
36 nodes of dual-socket, 8-core AMD Interlagos processors
Power measurement capability at outlet level @ 0.3Hz sampling rate



Analytically Modeling Power Steering

Overall system power budget is defined by the constraint
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PConstrained =CPBaseline ≥ CiPi
i=1

NP−states

∑ C = Ci
i=1

NP−states
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Total time is given by the longest executing core over all power states

TTotal =
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Moving some cores to a higher power state must be balanced by moving 
some cores to a lower state:

CLow +CHigh( )PMid ≥CLowPLow +CHighPHigh

The number of cores that must be moved to the lower power state is defined 
to be:

CLow ≥CHigh rHigh −1( ) 1− rLow( )

rLow =
PLow

PMid
≤1 rHigh =

PHigh
PMid

≥1where and



Resulting Power Assignment Heuristic
Start

1. PWRmax = maximum globally available power
2. p-statemax = highest performance p-state
3. Nwork_max = max(Nwork_i) ∀ i ∈ { Pi }
4. twork_max = Nwork_max × twork(p-statemax )
5. ∀ i ∈ {Pi | Pi <> Pwork_max} find slowest p-state such that twork_i < twork_max

6. PWRi = twork_i(p-statei )
7. PWRglobal = SUM (PWR(p-statei ))
8. If PWRglobal > PWRmax then reduce p-statemax and go to step 3
9. Assign p-state calculated to each processor-core

End
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Core along the critical path (i.e., most overloaded) is put in the highest 
performing p-state
P-states for other processors is calculated to be the lowest that does not 
negatively impact performance
If the global power budget is exceeded, the p-state of the most loaded 
processor is reduced and the heuristic is repeated



Modeled Performance Improvement Leads 
to Measured Energy Improvement

Charged-field workload emulates particles migrating in a magnetic field
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Modeled	Performance	Improvement Measured	Energy	Efficiency	Improvement

Fixed power budget means performance improvements translate to energy
(Quasi-)Analytical models are able to quantify and predict the amount of 
performance and energy efficiency improvement that can be expected given:

Degree of load imbalance across the parallel system
Impact of change in p-state on workload performance



Conclusions

Over the past few years
Analytical modeling methods have moved beyond static, regular 
applications
Analytical models have moved beyond modeling only performance

Looking forward
New programming and execution models
Extreme heterogeneity
Introspective runtime software systems
Wide area distribution and data movement/placement
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