

Crosslayer Design and Modeling for Future Optical Interconnects

MODSIM 2017, August 10th, Seattle, WA

Keren Bergman Lightwave Research Lab, Columbia University New York

Trends in extreme HPC

- Evolution of the top10 in the last six years:
 - Average total compute power:
 - 0.86 PFlops → 21 PFlops
 - ~24x increase
 - Average nodal compute power:
 - 31GFlops \rightarrow 600GFlops
 - ~19x increase
 - Average number of nodes
 - 28k → 35k
 - ~1.3x increase

[[]top500.org, S. Rumley, et al. Optical Interconnects for Extreme Scale Computing Systems, Elsevier PARCO 64, 2017]

 \rightarrow Node compute power main contributor to performance growth

Interconnect trends

- Top 10 average node level evolutions:
 - Average node compute power:
 - 31GFlops \rightarrow 600GFlops
 - ~19x increase
 - Average bandwidth available per node
 - 2.7GB/s → 7.8GB/s
 - ~3.2x increase
 - Average byte-per-flop ratio
 - 0.06 B/Flop \rightarrow 0.01 B/Flop
 - ~6x decrease
 - Sunway TaihuLight (#1) shows 0.004 B/Flop

→ Growing gap in interconnect bandwidth

[top500.org, S. Rumley, et al. Optical Interconnects for Extreme Scale Computing Systems, Elsevier PARCO 64, 2017]

Exascale interconnects – power and cost constraints

- Real Exascale goal: reaching performance
 - ...while satisfying constraints (20MW, \$200M)
 - ...with reasonably useful applications
- Assume 15% of \$ budget for interconnect:
 - 15% x \$200M / 500 Pb/s = 6 ¢/Gb/s

1.25 ExaFLOP X 0.01 B/FLOP = 125 Pb/s injection BW X 4 hops = 500 Pb/s installed BW

Bi-directional links must thus be sold for ~10 ¢/Gb/s

 Today: optical 10\$/Gb/s electrical 0.1-1 \$/Gb/s

- Assume 15% of power budget for interconnect:
 - 15% x 20MW / 125 Pb/s = 24 mW/Gb/s = 24 pJ/bit
 = budget for communicating a bit end-to-end

→ 6 pJ/bit per hop	
\rightarrow 4 pJ/bit for switching	today ~20 pJ/bit
\rightarrow 2 pJ/bit for transmission	today ~10 pJ/bit (elec)

Exascale supercomputing node

Silicon Photonics: all the parts

- Silicon as core material
 - High refractive index; high contrast; sub micron cross-section, small bend radius.
- Small footprint devices
 - 10 µm 1 mm scale compared to cm-level scale for telecom
- Low power consumption
 - Can reach <1 pJ/bit per link
- Aggressive WDM platform
 - Bandwidth densities 1-2Tb/s pin IO

- •Silicon wafer-scale CMOS
 - Integration, density scaling
 - CMOS fabrication tools
 - 2.5D and 3D platforms

S. Rumley et al. "Silicon Photonics for Exascale Systems", IEEE JLT 33 (4), 2015.

Optically-Connected Memory Architecture

PhoenixSim: Integrated Multi-Level Modeling and Design Environment

- Integrated design/modeling environment across three layers:
 - Application IO primitives
 - Copy memory array to remote location
 - Send, multicast, broadcast messages
 - Thread synchronization (e.g. barrier)
 - Network architecture and protocols
 - Link locking mechanisms (frame detection)
 - Network topology (routing)
 - Arbitration of shared buses, switches
 - Si Photonic Hardware implementations
 - Silicon photonics modulators, switches
- Complete "toolbox" of models at each layer
 - Ensure interoperability among models
 - Cross-layer co-optimization is Key

Methodology - Abstraction of Physical Devices

Physical - Silicon Photonic Link Design

- Co-existence of <u>Electronics</u> and <u>Photonics</u>
- Energy-Bandwidth optimization

Silicon Photonic Interconnects," IEEE JLT 34 (12), 2015.

Utilization of Optical Power Budget

Considering the electronics

All-Parameter Optimization: Max Bandwidth Design

All-Parameter Optimization: Min Energy Design

Cost per bandwidth – declining but slowly

- Today (2017):
 - 100G (EDR) best\$/Gb/s figure
 - Copper cable have shorter reaches due to higher bit-rate
 - Optics: Not even ½ order of magnitude price drop over 4 years
 - But electrical-optical gap is shrinking

Beyond the Link: Photonic Switching

MEMS-based Switches

[Lucent Technologies' Lambda Router]

- Free-space propagation
- High actuating voltage
- Broadband
- Low loss/low crosstalk
- Bulky
- Slow
- Scalable
- Cost ultimately limit by installation & calibration

SiP-based PIC Switches

[Benjamin Lee, OFC 2013, PDP paper]

- Planar lightwave circuits
- Broadband/Wavelength Selective
- High integration (small footprint)
- Fast (E-O effect)
- Lossy/relatively high crosstalk
- Rather Scalable
- CMOS/PIC monolithic integration
- Cost can be low benefiting from mature CMOS industry

MRR Element Model

- Drop loss: 0.35 dB
- Thru loss: 0.1 dB; Xtalk : -29.3 dB

- Drop loss: 0.17 dB; Xtalk: -32.4 dB
- Thru loss: 0.19 dB; Xtalk : -31.7 dB

Transitioning to Novel Modular Architectures...

- Modular architecture and control plane
- Avoids on chip crossings
- Fully non-blocking

SiP Devices

• Path independent insertion loss

ed integration method

Electrical PCB

Low crosstalk

[Dessislava Nikolova*, David M. Calhoun*, Yang Liu, Sébastien Rumley, Ari Novack, Tom Baehr-Jones, Michael Hochberg, Keren Bergman, Modular architecture for fully non-blocking silicon photonic switch fabric, Nature Microsystems & Nanoengineering **3** (1607) (Jan 2017).]

COLUMBIA UNIVERSITY

Clos-of-Switch-and-Select Architecture

 Offering a suitable balance that keeps the number of stages to the modest value of three while largely reducing the required number of MRRs

Network layer

- Implemented circuit level arbitration
 - Data or packets emitted by application layer delayed while circuit is set up
 - Circuit setup is assumed to take a predefined time Δt
 - Includes prediction mechanism:
 - Keep circuit on if high probability of being reused
 - Prefetch next circuit if next destination highly probable
 - Supposes a fully non-blocking physical layer
 - A circuit can always be established as long as input and output ports are free
- Consider a 5 node example:

Circuit arbitration - visualization

- Arbitration at play under random packet arrivals (30% load)
 - Correlated destinations: packet goes to next index with prob 50%

Photonic Interconnected Memory - ModSim

Optical Devices

Loss

Grating Couplers

Modulators

Fibers

Required Laser Power

Filters

Photodiode

Power Penalties

 SST's event-based simulation allows accurate/tractable system performance.

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

- Efficacy of different interconnect topologies evaluated, user-defined system components
- Performance of memory reads, writes, etc. simulated for performance evaluation
- Simulation results from optically-connected memories evaluated against conventional busses and electrical networks.

STREAM[Read]

4

and the second

Laboratory for Physical Sciences

Link

Bit Rate

#

Aggregation

Total

Efficiency

Total Energy (pJ/bit

Electrical Circuits

Receiver

Thermal Tuning

Amplifier (TIA)

Deserialization

Required Electrical Power

Transmitter

Thermal Tuning

Serialization

Modulator Driver

Receiver Sensitivity

Application layer

Hybrid switching interconnects

- Do NOT use optical switches *in place* of packet routers!
- → Use optical switches in addition to packet routers
 - Coarse bandwidth steering across network clients: optical switching
 - Fine (per packet) bandwidth allocation: packet routing
- Bandwidth steering: equivalent to connectivity "re-wiring"
 - No need for large number of ports R
 - Allow for cheap, (soon) easy to fabricate silicon photonics switches

Flexfly: A Reconfigurable Dragonfly

- Incorporates photonic switching at inter-group level
- Reconfigure topology towards application traffic

COLUMBI UNIVERSIT

Adapting topology for GTC application

Flexfly – simulated performance

COLUMBIA UNIVERSITY

4.2 mm

Implementation: AIM SiP Tapeout Run

Λ	TZ	A My	,
	Loni	7 I. W CS	

	Device	Area
1	4x4x4 λ Space-and- wavelength switch	1.9mm x 2.6mm
2	4x4 Si space switch	1.4mm x 2.3mm
3	4x4 Si/SiN two-layered space switch	1.5mm x 2.3mm
4	2x2 double-gated/single- gated ring switch	0.8mm x 1.4mm
5	Crossing and escalator test structure	0.6mm x 1mm
6	$1x2x8 \lambda$ MUX with rings	1.2mm x 0.2mm
7	1x2x4 λ MUX with micro- disks	0.6mm x 0.2mm
8	2x2 double-gated MZM switch	3mm x 0.4mm

31

Our FPGA-Controlled Switch Test-Bed

Flexfly – testbed implementation

Conclusions

- Ultra-large scale interconnects are in high need for bandwidth
 - Interconnect bandwidth limitations among main HPC scalability threats
- Optics is playing a role and will continue to
 - But beware of costs and power consumption
 - Packaging is particularly important
 - Cost…
- Modeling/design must be cross-layer
- Optical switching in HPC:
 - Photonics switching for bandwidth steering
 - Flexfly: low port-count and cheap silicon photonics switches in HPC interconnects

