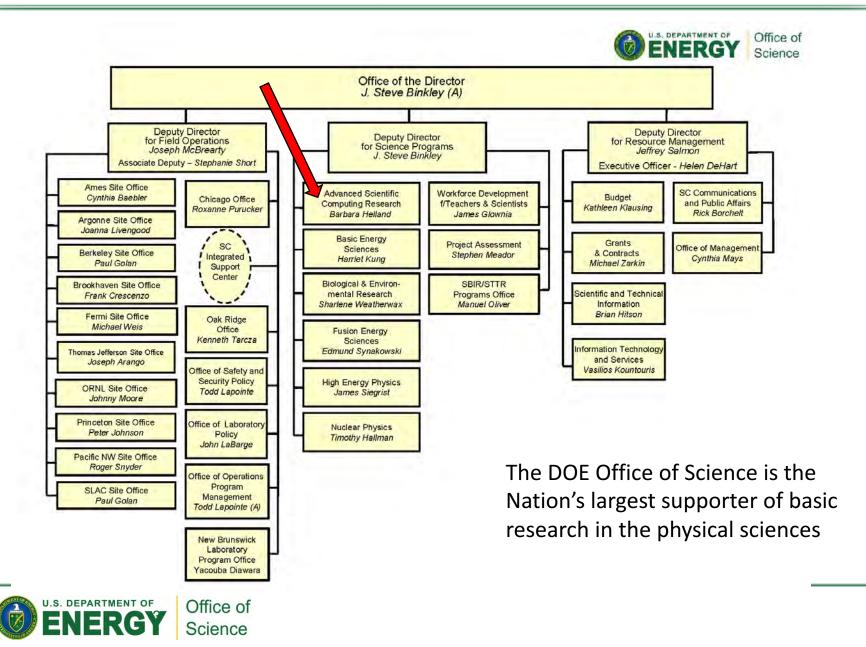


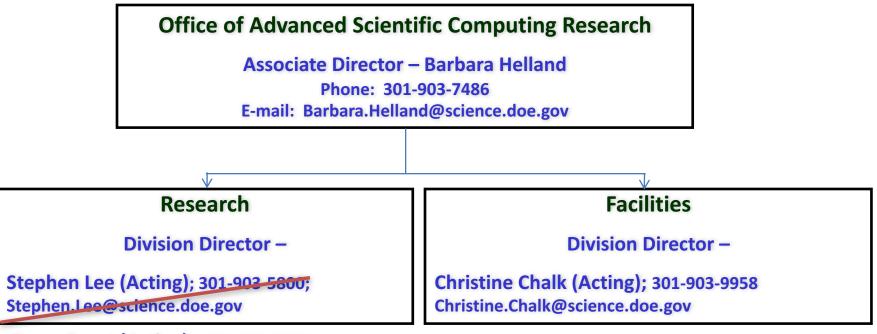
A View From Washington

The Challenges and Opportunities for the Future of Scientific Computing

Richard Carlson <u>Richard.Carlson@science.doe.gov</u> ModSim August 9-11, 2017

'Spoilers'


 The Advanced Scientific Computing Research (ASCR) program office is still developing it's strategic goals for emerging programs and future activities

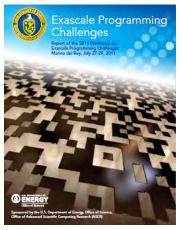

- No decisions have been made on funding levels or specific program directions
- Future programs will cross-cut several ASCR programs and SC program offices
- Budget challenges will continue to exist
- Developing the next generation (Exascale) supercomputer (NSCI) is a strategic goal for ASCR
 - Future programs must align with, and build upon, this goal
 - Computationally intensive and Data intensive workflows are both part of the NSCI computing initiative

DOE/SC - ASCR

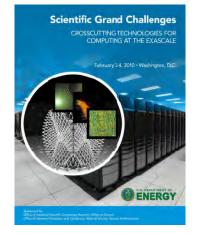
ASCR at a Glance

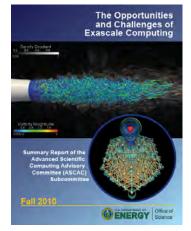
Ceren Susut (Acting); 301-903-5800 Ceren.Susut-Bennett@science.doe.gov

> Research and Evaluation Prototypes Division

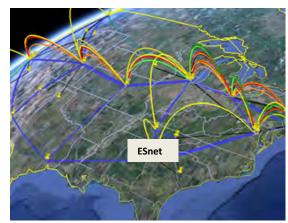

Explore technologies beyond Moore's

Law (Quantum, Neuromorphic, ...)



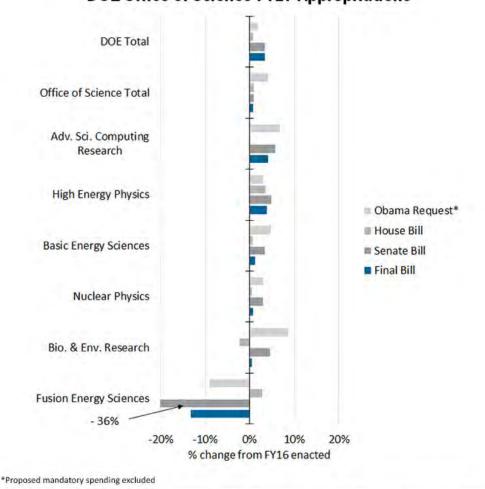

Fundamental Scientific Research

- Applied Mathematics: Algorithms and software to solve complex science problems;
- Computer Science: Advanced Operating Systems, runtime architectures, and analysis methods to achieve exascale based science;
- Computational Partnerships: CoDesign to pioneer the future of scientific applications;
- Next Generation Networks for Science: Enabling the future of collaborative and distributed science



World Class Facilities

- High Performance Production Computing for the Office of Science
 - Characterized by a large number of projects (over 400) and users (over 4800)
- Leadership Computing for Open Science
 - Characterized by a small number of projects (about 50) and users (about 800) with computationally intensive projects
- Linking it together ESnet
- Investing in the future R&E Prototypes



DOE/SC FY17 Budget

DOE Office of Science FY17 Appropriations

American Institute of Physics | aip.org/fyi

ASCR FY17 Budget

- ASCR FY17 Budget details
 - Administration Request \$663M (+\$42M)
 - House Appropriations Bill \$621M (+0)
 - Senate Appropriations Bill \$656M (+\$35M)
 - Final Enacted Bill: \$647 (+\$26M)
- Exascale Computing Budget
 - Final Enacted Bill: \$164M
- Facilities and Research
 - Final Enacted Bill: Facilities: \$327M; Research: \$156M

Most Recent Lab Announcements

2017 Mathematical Multifaceted Integrated Capability Centers (MMICCs)

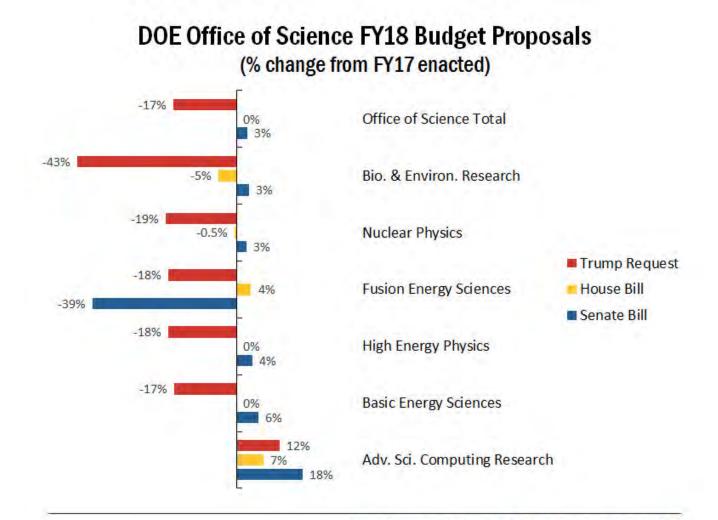
Announcement Number: LAB 17-1766

Post Date: May 5, 2017 **Close Date:** July 11, 2017

Exploratory Research for Extreme-Scale Science: Quantum Algorithm Teams (QATs) 17-EXPRESS

Announcement Number: LAB 17 1758 Post Date: May 9, 2017 Close Date: July 21, 2017

Quantum Testbed Pathfinder


Announcement Number: LAB 17-1774 Post Date: May 22, 2017 Close Date: July 21, 2017

Scientific Discovery Through Advanced Computing (SciDAC) Institutes

Announcement Number: LAB 17-1787 Post Date: June 15, 2017 Close Date: July 26, 2017

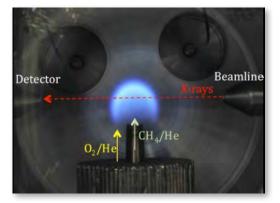
DOE/SC FY18 Proposed Budget

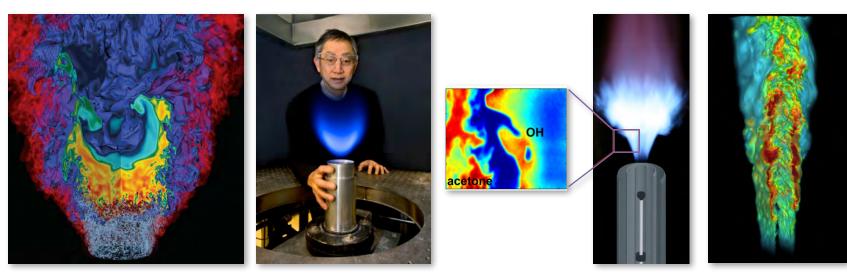
American Institute of Physics | aip.org/fyi

ASCR FY18 Proposed Budget

• ASCR FY18 Budget details

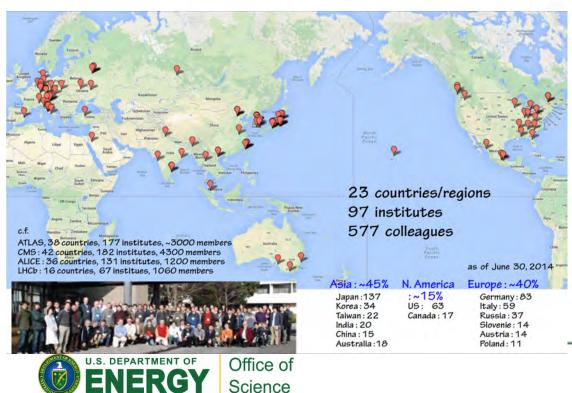
- Administration Request \$722M (+\$75M)
- House Appropriations Bill \$694M (+\$47M)
- Senate Appropriations Bill \$763M (+\$116M)
- Exascale Computing Budget
 - Administration Request \$197M (+\$33M)
 - House Appropriations Bill \$170M (+\$6M)
 - Senate Appropriations Bill \$184M (+\$20M)
- Facilities and Research
 - House Appropriations Bill: Facilities: \$369M; Research: \$155M
 - Senate Appropriations Bill: Facilities: \$423M; Research: \$156M
 - Per Senate: research includes CSGF \$10M; R&E Prototypes \$24.6M

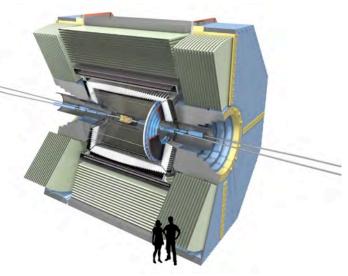

DOE Science Computing Communities

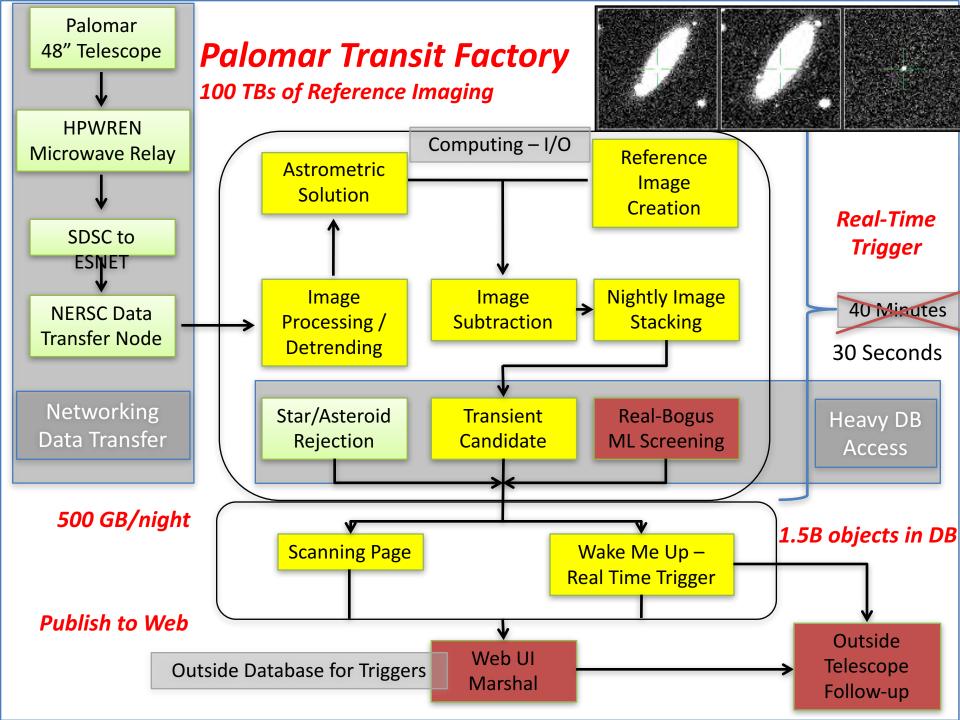

- SciDAC demonstrated that large computationally complex problems are best solved by in-depth collaborative work between ASCR researchers and Domain scientists
 - Requires years of close collaboration to extract good performance out of an application
 - Requires Leadership class computers and staff to operate these facilities
 - Numerous examples of outstanding science discoveries have resulted
- Large coherent Science communities (HEP, FES) can offer compute services to members, doing most things by themselves
- An emerging class of Experimental/Observations scientists are experiencing a dramatic growth in data and they need help to convert this data into knowledge
 - Must allow scientists to use experimental and compute facilities without requiring years of training
 - Must deal with geographically distributed facilities, resources, and scientists
 - Potential for enormous impact on a wide array of science communities

Computationally Intensive - Combustion Simulations

- Goal: 50% improvement in engine efficiency
- Center for Exascale Simulation of Combustion in Turbulence (ExaCT)
 - Combines Modeling, Simulation, and Experimentation
 - Uses new algorithms, programming models, and computer science

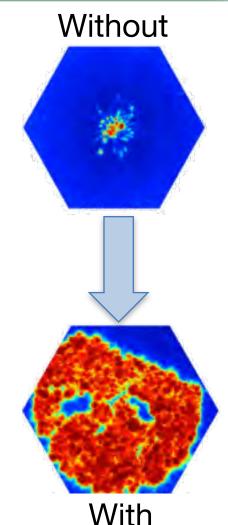






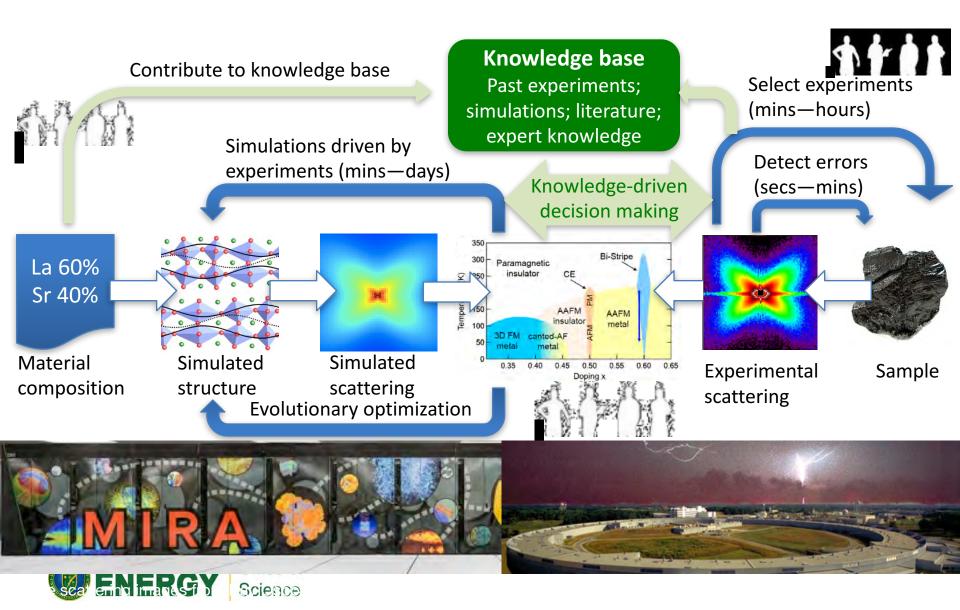
Experimentally Intensive – Belle II

- International effort to improve existing measurements and to search for new physics
- At designed collision rates it will generate ~25PB of raw data per year (90x10⁹ events per year)
- Total data stored is expected to reach ~350PB



Scientific Computing Tomorrow

- Computationally intensive codes generate more data and adopt in-situ analysis methodologies
- Experimental instruments generate more data requiring near-real-time processing
- Single-user scientists collaborating with facility staff requiring fast access to data analysis and visualization services



Impact of using immediate assessment of sample alignment in a near-field, high-energy diffraction microscopy experiment

Collaboratively Intensive – Material Structures

Comparing Software Environments

Data Intensive	Compute Intensive
Programmers are focused on delivering functionality	Programmers are focused on delivering performance
Software responds to elastic resource demands	After allocation, <i>resources static until termination</i>
Data access often <i>fine-grained</i>	Data access is <i>large bulk</i> (aggregated) requests
Services are resilient to fault	Applications restart after fault
Often <i>customized</i> programming models	Widely <i>standardized</i> programming models
Libraries help <i>move computation to storage</i>	Libraries help <i>move data to CPUs</i>
Users routinely deploy their own environments	Users almost never deploy customized environments

August 14, 2017

Bill Harrod – Data Convergence

Comparing Data Environments

Data Intensive	Compute Intensive
Data coordination occurs within a <i>globally distributed environment</i>	Data coordination occurs within a <i>single</i> <i>computer</i>
Data generated at multiple locations and possibly in several different formats and structures	Data generated inside computer with format and structure defined by application developer
Multiple independent data sets share common network path	Multiple coordinated data sets share allocated compute resources
Variations in delay and jitter require data <i>prestaging minutes to days in advance</i>	Variations in delay and jitter require data prefetching msec in advance
Authentication performed by <i>multiple</i> <i>facilities or administrative domains</i>	Authentication performed at <i>single facility</i> or administrative domain
ugust 14, 2017	Bill Harrod – Data Convergence

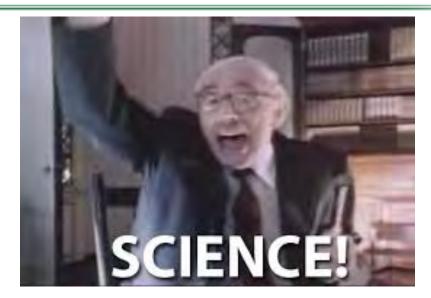
U.S. DEPARTMENT OF Office of Science

ASCR Investment in ModSim

- Long history of Modeling and Simulation activities involving domain science problems
 - Partnerships between ASCR and other DOE/SC program offices
- Long history of Modeling and Simulation of advanced computers
 - Partnership between ASCR and NNSA to understand how applications will perform on new supercomputers
- Expand efforts to explore Modeling and Simulation of complex workflows and distributed science discovery ecosystems
 - Multi-agency activity to identify research challenges that drive future Modeling and Simulation (ModSim) programs

Emerging Areas for Future Study

- Scientific Workflow Systems designed specifically to compose and execute a series of computational or data manipulation steps
 - Identify Scientific Research aspects of Workflows
 - Move beyond Engineering tasks to find/fix problems that occur
 - Develop testable theories, experiments, and simulations that demonstrate a deep understanding of both the workflow and the distributed infrastructure being used
- Streaming Data from detectors and sensors
 - Near Real-Time processing to determine state of experiment
 - Comparison of Experimental Analysis and Simulation Data
 - Simultaneous Real-Time exploration (zoom, pan, subset) of Data by multiple scientists


Emerging Areas for Future Study

- Extreme Heterogeneity
 - New compute paradigms
 - Quantum, Neuromorphic, Probabilistic
 - Specialized accelerators
 - GPU, FPGA, TPU, ASCIs
 - Merged with traditional CPU based computing
- Integrating SMART components and services into Scientific Computing environments
 - Power efficient SMART components
 - Composable services created dynamically by a scientist using SMART components

Conclusions

- Scientific Computing is expanding in multiple directions, including Hardware/Software Heterogeneity and user experience levels
- Scientific Workflows are an enabling technology to support science discovery in the 21st century
- Real-Time and Near Real-Time supercomputing will expand, not replace, traditional batch oriented services

