
A Critique of Performance Metrics

Adolfy Hoisie



Why the Great Interest in Performance Metrics?

Reliance on performance metrics is tempting because:

Metrics appear to allow performance to be distilled into a single number
System X capable of peak performance of N Pflop/s

Metrics appear to allow rapid comparisons between systems
System X achieves 30% higher performance on LINPACK than System Y

Metrics appear to yield intuitive insight into system performance.

However…

2



The Performance Metrics Road is Fraught With Peril!

There are so many metrics out there.
Some indication of the complexity of parallel application performance

Creating metrics to describe parallel performance is difficult.
Metrics describe only aspects of total performance

Total system peak performance is impacted by many components (compute speed, network performance, memory 
performance, etc.)
Yet, we ultimately are interested in achievable application performance!

Performance metrics are easily abused.
E.g., Flop/s easily manipulated with problem size

To get the full picture, a workload-specific performance model is necessary!

3



micro-kernels

kernels

basic routines

stripped-down app

full app

Understanding IncreasesIntegration (reality) 
Increases

Metrics Trade Realism for Understanding

Micro-kernels: 
Attempt to generalize performance

May represent characteristics of a large number of applications
Are the easiest to understand and discuss

However, this is a poor representation of reality!

4



Direct Measures/Metrics

Absolute time
Difference between start and finish

Measured as maximum dedicated wall-clock time over all processors
However, what constitutes “dedicated?”
Easiest metric to measure

Best performance measure
Used frequently by developers to track performance improvements
For comparisons between systems
For historical comparison

Yet, it tells us little about how well the resources are being used
Cannot be used to predict performance

Due to architectural changes
Due to software changes

Does not give any performance insight!

5



Efficiency as a Metric

Measure of how well resources are being used
Of limited validity by itself

Can be artificially inflated
Biased toward slower systems and unoptimized algorithms

Example 1: Efficiency of applications

Example 2: Efficiency of systems
Code A on System X

(250 MHz, 500 MFLOPS Peak per CPU, 2 FLOPS per CP): 
Time = 522 sec; MFLOPS = 26.1 (5.2% of peak)

Code A on System Y
(900 MHz, 3600 MFLOPS Peak per CPU, 4 FLOPS per CP): 
Time = 91.1 sec; MFLOPS = 113.0 (3.1% of peak)

6

Solver Flops Flops Mflop/s % Peak Time (s)
Original 64 % 29.8 x 109 448.8 5.6 % 66.351

Optimized 25 % 8.2 x 109 257.7 3.2 % 31.905



From Metrics to Models

Application-oriented metrics are affected by algorithmic changes, input deck, software engineering.

System-oriented metrics are affected by various system knobs, optimizations, and transient effects.

Performance does not come from the applications or the system. Instead, it comes from the mapping 
of the algorithms/applications onto the system architectures.

7

A performance model is needed to generate insights!



● Performance within ~10% of the 
expectation

● Without a model, we would not have 
identified—and solved—the performance 
issues!

Achieved vs. Achievable Performance



Insights

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

Processor Count

Ti
m

e 
(%

)
Bandwidth (Pipe)
Bandwidth (Block)
Latency (Pipe)
Latency (Block)
Compute (Pipe)
Compute (Block)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

54
4

10
24

10
88

Processor Count

Ti
m

e 
(%

)

Collectives
Bandwidth
Latency
Compute

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

54
4

10
24

10
88

Processor Count

Ti
m

e 
(%

)

Bandwidth (Pipe)
Bandwidth (Block)
Latency (Pipe)
Latency (Block)
Compute (Pipe)
Compute (Block)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4

32
76
8

Processor Count

Ti
m

e 
(%

)

Collectives
Bandwidth
Latency
Compute

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

36
0

51
2

72
0

10
24

14
40

20
48

28
80

40
96

61
20

Processor Count

Ti
m

e 
(%

)

Collectives
Bandwidth
Latency
Compute

Conventional Cluster Traditional massively parallel 
processor Hybrid accelerated cluster

C
O

D
E 

B
C

O
D

E 
A

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

61
20

Processor Count

Ti
m

e 
(%

)

Compute (Block) Compute (Pipe)
Latency (Block) Latency (Pipe)
Bandwidth (Block) Bandwidth (Pipe)



Simple Metrics Do Not Provide the Whole Story

The problem is not the metrics themselves but how they are used.

It is always dangerous to use a single metric by itself.
This is especially true when examining relative performance

How does System A compare with System B?
Keep in mind that micro-kernels and benchmarks only approximate reality

Application performance may be markedly different

To gain true insight into application performance, a performance model is necessary.

10


