

A Critique of Performance Metrics

Adolfy Hoisie

Why the Great Interest in Performance Metrics?

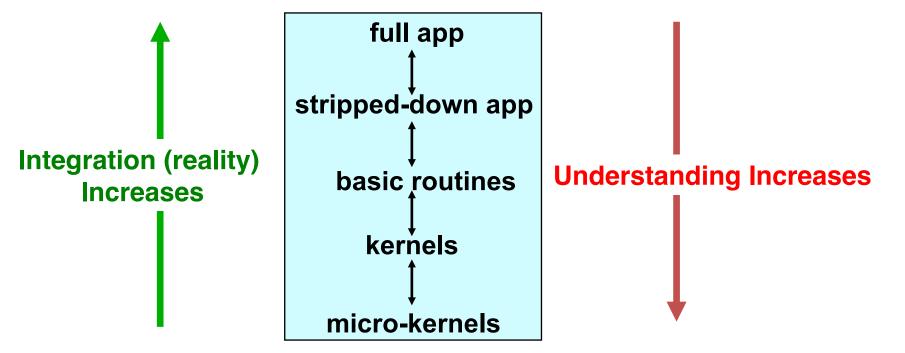
Metrics appear to allow performance to be distilled into a single number
System X capable of peak performance of N Pflop/s

Metrics appear to allow rapid comparisons between systems
System X achieves 30% higher performance on LINPACK than System Y

Metrics appear to yield intuitive insight into system performance.

However...

Proudly Operated by Battelle Since 1965


The Performance Metrics Road is Fraught With Peril!

- There are so many metrics out there.
 - Some indication of the complexity of parallel application performance
- Creating metrics to describe parallel performance is difficult.
 - Metrics describe only *aspects* of total performance
 - Total system peak performance is impacted by many components (compute speed, network performance, memory performance, etc.)
 - Yet, we ultimately are interested in achievable application performance!
- Performance metrics are easily abused.
 - E.g., Flop/s easily manipulated with problem size
- To get the full picture, a workload-specific performance model is necessary!

Metrics Trade Realism for Understanding

Micro-kernels:

- Attempt to generalize performance
 - May represent characteristics of a large number of applications
- Are the easiest to understand and discuss
 - However, this is a poor representation of reality!

Pacific Northwes

Proudly Operated by Battelle Since 1965

I ATIONAL I

Direct Measures/Metrics

Absolute time

- Difference between start and finish
 - Measured as maximum dedicated wall-clock time over all processors
 - However, what constitutes "dedicated?"
 - Easiest metric to measure
- Best performance measure
 - Used frequently by developers to track performance improvements
 - For comparisons between systems
 - For historical comparison
- Yet, it tells us little about how well the resources are being used
 - Cannot be used to predict performance
 - Due to architectural changes
 - Due to software changes
 - Does not give any performance insight!

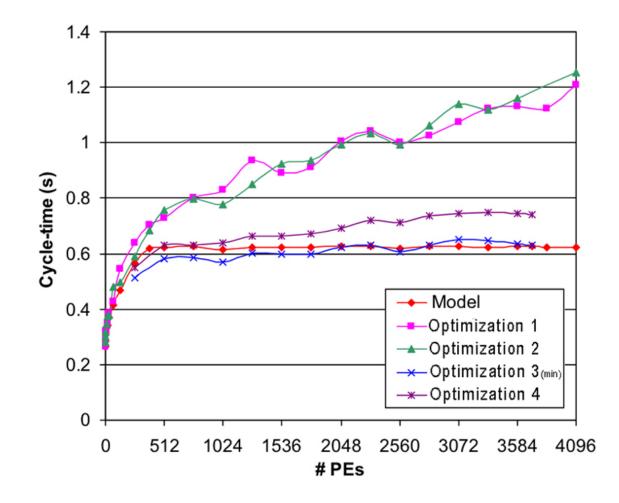
Efficiency as a Metric

- Measure of how well resources are being used
- Of limited validity by itself
 - Can be artificially inflated
 - Biased toward slower systems and unoptimized algorithms
- Example 1: Efficiency of applications

	Solver Flops	Flops	Mflop/s	% Peak	Time (s)
Original	64 %	29.8 x 10 ⁹	448.8	5.6 %	66.351
Optimized	25 %	8.2 x 10 ⁹	257.7	3.2 %	31.905

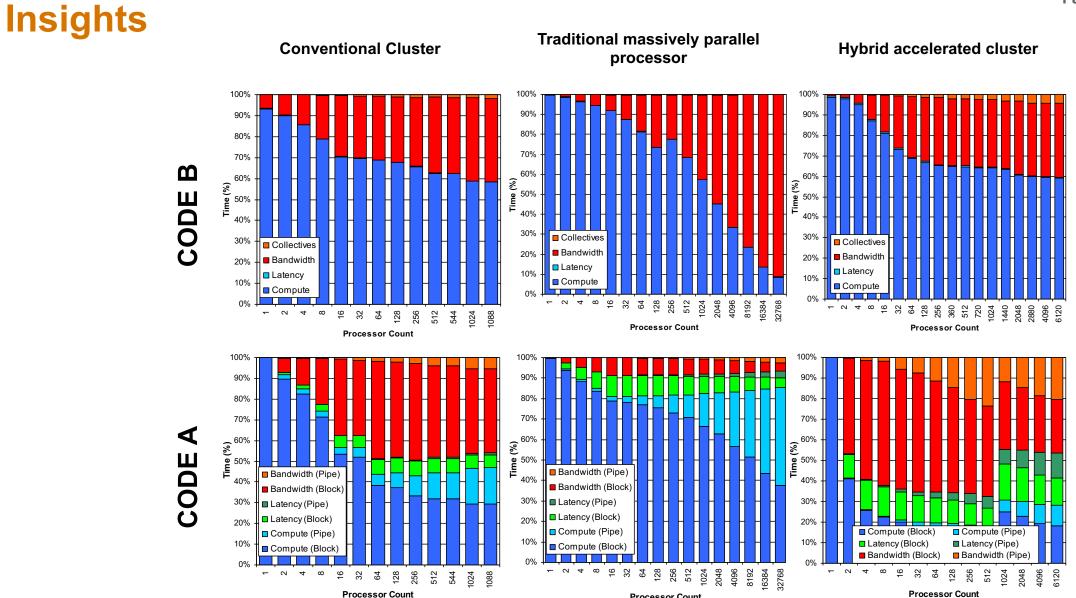
- Example 2: Efficiency of systems
 - Code A on System X
 - (250 MHz, 500 MFLOPS Peak per CPU, 2 FLOPS per CP):
 - Time = 522 sec; MFLOPS = 26.1 (5.2% of peak)
 - Code A on System Y
 - (900 MHz, 3600 MFLOPS Peak per CPU, 4 FLOPS per CP):
 - Time = 91.1 sec; MFLOPS = 113.0 (3.1% of peak)

From Metrics to Models


- Application-oriented metrics are affected by algorithmic changes, input deck, software engineering.
- System-oriented metrics are affected by various system knobs, optimizations, and transient effects.
- Performance does not come from the applications or the system. Instead, it comes from the mapping of the algorithms/applications onto the system architectures.

A performance model is needed to generate insights!

Achieved vs. Achievable Performance



Proudly Operated by Battelle Since 1965

- Performance within ~10% of the expectation
- Without a model, we would not have identified—and solved—the performance issues!

Processor Count

Simple Metrics Do Not Provide the Whole Story

Proudly Operated by **Battelle** Since 1965

- The problem is not the metrics themselves but how they are used.
- It is <u>always</u> dangerous to use a single metric by itself.
 - This is especially true when examining relative performance
 - How does System A compare with System B?
 - Keep in mind that micro-kernels and benchmarks only approximate reality
 - Application performance may be markedly different

To gain true insight into application performance, a performance model is necessary.