
Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Probability Convergence in a Multithreaded
Counting Application

Chad Scherrer1 Nathaniel Beagley1 Jarek Nieplocha1

Andrés Márquez1 John Feo2 Daniel Chavarría-Miranda1

1Pacific Northwest National Laboratory

2Cray, Incorporated

Workshop on Multithreaded Architectures and Applications
March 30, 2007

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Outline

1 Introduction

2 PDtree Data Structure

3 Multithreaded Framework

4 Dealing with Nondeterminism

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Outline

1 Introduction

2 PDtree Data Structure

3 Multithreaded Framework

4 Dealing with Nondeterminism

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

The Problem

We are given data in the form of a sequence of tuples,

[(a1, b1, c1) , . . . , (an, bn, cn)] .

We wish to be able to quickly answer queries of the form

count (A = a2, B = ∗, C = c17) .

Note that some variables may be unspecified.

In many modeling contexts, the queries may take on a
more restricted form, e.g., at most two fixed values. We
wish to take advantage of any such structure.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

The Problem

We are given data in the form of a sequence of tuples,

[(a1, b1, c1) , . . . , (an, bn, cn)] .

We wish to be able to quickly answer queries of the form

count (A = a2, B = ∗, C = c17) .

Note that some variables may be unspecified.

In many modeling contexts, the queries may take on a
more restricted form, e.g., at most two fixed values. We
wish to take advantage of any such structure.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

The Problem

We are given data in the form of a sequence of tuples,

[(a1, b1, c1) , . . . , (an, bn, cn)] .

We wish to be able to quickly answer queries of the form

count (A = a2, B = ∗, C = c17) .

Note that some variables may be unspecified.

In many modeling contexts, the queries may take on a
more restricted form, e.g., at most two fixed values. We
wish to take advantage of any such structure.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

The Problem

We are given data in the form of a sequence of tuples,

[(a1, b1, c1) , . . . , (an, bn, cn)] .

We wish to be able to quickly answer queries of the form

count (A = a2, B = ∗, C = c17) .

Note that some variables may be unspecified.

In many modeling contexts, the queries may take on a
more restricted form, e.g., at most two fixed values. We
wish to take advantage of any such structure.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Our Approach

Design a tree structure for storing multivariate count data,
allowing a user-specified nesting.

Queries can be answered at any time as the tree is
populated. For testing, we assume each new observation
has a corresponding set of queries.

Parallelize by breaking sequence into blocks, possibly
introducing a race condition.

Prove a bound on the effects of the race condition that
shrink as data volume grows.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Our Approach

Design a tree structure for storing multivariate count data,
allowing a user-specified nesting.

Queries can be answered at any time as the tree is
populated. For testing, we assume each new observation
has a corresponding set of queries.

Parallelize by breaking sequence into blocks, possibly
introducing a race condition.

Prove a bound on the effects of the race condition that
shrink as data volume grows.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Our Approach

Design a tree structure for storing multivariate count data,
allowing a user-specified nesting.

Queries can be answered at any time as the tree is
populated. For testing, we assume each new observation
has a corresponding set of queries.

Parallelize by breaking sequence into blocks, possibly
introducing a race condition.

Prove a bound on the effects of the race condition that
shrink as data volume grows.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Our Approach

Design a tree structure for storing multivariate count data,
allowing a user-specified nesting.

Queries can be answered at any time as the tree is
populated. For testing, we assume each new observation
has a corresponding set of queries.

Parallelize by breaking sequence into blocks, possibly
introducing a race condition.

Prove a bound on the effects of the race condition that
shrink as data volume grows.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Outline

1 Introduction

2 PDtree Data Structure

3 Multithreaded Framework

4 Dealing with Nondeterminism

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Introducing PDtrees

An ADtree [Moore and Lee] is a nested data structure that
stores “All Dimensions”, in that counts are stored for every
possible combination of variables.
Storage costs for an ADtree depend on the number of
variables, the number of levels of each variable, and the
dependence structure among the variables.
The time required to populate an ADtree is linear in the
number of observations but exponential in the number of
variables.
If this expense is unacceptable, a PDtree (for “Partial
Dimensions”) might be appropriate.
Nesting structure is specified in an auxilliary data structure
called a guide tree.
Nesting structure can be changed without the need to
recompile.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Introducing PDtrees

An ADtree [Moore and Lee] is a nested data structure that
stores “All Dimensions”, in that counts are stored for every
possible combination of variables.
Storage costs for an ADtree depend on the number of
variables, the number of levels of each variable, and the
dependence structure among the variables.
The time required to populate an ADtree is linear in the
number of observations but exponential in the number of
variables.
If this expense is unacceptable, a PDtree (for “Partial
Dimensions”) might be appropriate.
Nesting structure is specified in an auxilliary data structure
called a guide tree.
Nesting structure can be changed without the need to
recompile.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Introducing PDtrees

An ADtree [Moore and Lee] is a nested data structure that
stores “All Dimensions”, in that counts are stored for every
possible combination of variables.
Storage costs for an ADtree depend on the number of
variables, the number of levels of each variable, and the
dependence structure among the variables.
The time required to populate an ADtree is linear in the
number of observations but exponential in the number of
variables.
If this expense is unacceptable, a PDtree (for “Partial
Dimensions”) might be appropriate.
Nesting structure is specified in an auxilliary data structure
called a guide tree.
Nesting structure can be changed without the need to
recompile.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Introducing PDtrees

An ADtree [Moore and Lee] is a nested data structure that
stores “All Dimensions”, in that counts are stored for every
possible combination of variables.
Storage costs for an ADtree depend on the number of
variables, the number of levels of each variable, and the
dependence structure among the variables.
The time required to populate an ADtree is linear in the
number of observations but exponential in the number of
variables.
If this expense is unacceptable, a PDtree (for “Partial
Dimensions”) might be appropriate.
Nesting structure is specified in an auxilliary data structure
called a guide tree.
Nesting structure can be changed without the need to
recompile.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Introducing PDtrees

An ADtree [Moore and Lee] is a nested data structure that
stores “All Dimensions”, in that counts are stored for every
possible combination of variables.
Storage costs for an ADtree depend on the number of
variables, the number of levels of each variable, and the
dependence structure among the variables.
The time required to populate an ADtree is linear in the
number of observations but exponential in the number of
variables.
If this expense is unacceptable, a PDtree (for “Partial
Dimensions”) might be appropriate.
Nesting structure is specified in an auxilliary data structure
called a guide tree.
Nesting structure can be changed without the need to
recompile.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Introducing PDtrees

An ADtree [Moore and Lee] is a nested data structure that
stores “All Dimensions”, in that counts are stored for every
possible combination of variables.
Storage costs for an ADtree depend on the number of
variables, the number of levels of each variable, and the
dependence structure among the variables.
The time required to populate an ADtree is linear in the
number of observations but exponential in the number of
variables.
If this expense is unacceptable, a PDtree (for “Partial
Dimensions”) might be appropriate.
Nesting structure is specified in an auxilliary data structure
called a guide tree.
Nesting structure can be changed without the need to
recompile.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Building a PDtree from a Guide Tree

Efficiently storing data for a Bayesian network

Start with Bayesian network A → B → C → D.
Only need to store counts for {AB, B, BC , C , CD}.
This is equivalent to storing {B, C , A|B, C |B, D|C}.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Building a PDtree from a Guide Tree

Efficiently storing data for a Bayesian network

Start with Bayesian network A → B → C → D.
Only need to store counts for {AB, B, BC , C , CD}.
This is equivalent to storing {B, C , A|B, C |B, D|C}.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Building a PDtree from a Guide Tree

Efficiently storing data for a Bayesian network

Start with Bayesian network A → B → C → D.
Only need to store counts for {AB, B, BC , C , CD}.
This is equivalent to storing {B, C , A|B, C |B, D|C}.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Outline

1 Introduction

2 PDtree Data Structure

3 Multithreaded Framework

4 Dealing with Nondeterminism

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

An Implementation on the Cray MTA-2

First node for each variable is implemented as an array,
because all possible values will be taken on.

Lower branches are implemented as linked lists, and values
become increasingly sparse.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

An Implementation on the Cray MTA-2

First node for each variable is implemented as an array,
because all possible values will be taken on.

Lower branches are implemented as linked lists, and values
become increasingly sparse.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 1

while true {
ptr = readfe(node.next)
if ptr is null

ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)

end if
} end while

Branches in a PDtree are
currently implemented
using a linked list.
Synchronized read and
write implemented with
readfe and writeef, resp.
This version is overly
serial.
Critical section per link
rather than only at the
end of the list.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 1

while true {
ptr = readfe(node.next)
if ptr is null

ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)

end if
} end while

Branches in a PDtree are
currently implemented
using a linked list.
Synchronized read and
write implemented with
readfe and writeef, resp.
This version is overly
serial.
Critical section per link
rather than only at the
end of the list.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 1

while true {
ptr = readfe(node.next)
if ptr is null

ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)

end if
} end while

Branches in a PDtree are
currently implemented
using a linked list.
Synchronized read and
write implemented with
readfe and writeef, resp.
This version is overly
serial.
Critical section per link
rather than only at the
end of the list.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 1

while true {
ptr = readfe(node.next)
if ptr is null

ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)

end if
} end while

Branches in a PDtree are
currently implemented
using a linked list.
Synchronized read and
write implemented with
readfe and writeef, resp.
This version is overly
serial.
Critical section per link
rather than only at the
end of the list.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 1

while true {
ptr = readfe(node.next)
if ptr is null

ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)

end if
} end while

Branches in a PDtree are
currently implemented
using a linked list.
Synchronized read and
write implemented with
readfe and writeef, resp.
This version is overly
serial.
Critical section per link
rather than only at the
end of the list.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 2

while true {
ptr = node.next
if ptr is null

ptr = readfe(node.next)
if ptr is not null then continue
ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)
node = ptr

end if
} end while

Changes are shown in red.
Test the pointer before
locking it.
Must retest after readfe in
case another threads
grabs the lock to insert a
new node.
This version scales linearly
up to 32 processors.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 2

while true {
ptr = node.next
if ptr is null

ptr = readfe(node.next)
if ptr is not null then continue
ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)
node = ptr

end if
} end while

Changes are shown in red.
Test the pointer before
locking it.
Must retest after readfe in
case another threads
grabs the lock to insert a
new node.
This version scales linearly
up to 32 processors.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 2

while true {
ptr = node.next
if ptr is null

ptr = readfe(node.next)
if ptr is not null then continue
ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)
node = ptr

end if
} end while

Changes are shown in red.
Test the pointer before
locking it.
Must retest after readfe in
case another threads
grabs the lock to insert a
new node.
This version scales linearly
up to 32 processors.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 2

while true {
ptr = node.next
if ptr is null

ptr = readfe(node.next)
if ptr is not null then continue
ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)
node = ptr

end if
} end while

Changes are shown in red.
Test the pointer before
locking it.
Must retest after readfe in
case another threads
grabs the lock to insert a
new node.
This version scales linearly
up to 32 processors.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Multithreaded List Insertion, Take 2

while true {
ptr = node.next
if ptr is null

ptr = readfe(node.next)
if ptr is not null then continue
ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)
node = ptr

end if
} end while

Changes are shown in red.
Test the pointer before
locking it.
Must retest after readfe in
case another threads
grabs the lock to insert a
new node.
This version scales linearly
up to 32 processors.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Outline

1 Introduction

2 PDtree Data Structure

3 Multithreaded Framework

4 Dealing with Nondeterminism

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Sequential Vs. Parallel Counts

n Sequential Parallel, 3 threads
0 − −−−
1 +− −−+−
2 + +− +−+−−
3 + + +− +−+ +−−
4 + + + +− +−+ +−+−

In general, using k threads in the parallel implementation gives
a maximal count deviation of k − 1.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Sequential Vs. Parallel Counts

n Sequential Parallel, 3 threads
0 − −−−
1 +− −−+−
2 + +− +−+−−
3 + + +− +−+ +−−
4 + + + +− +−+ +−+−

In general, using k threads in the parallel implementation gives
a maximal count deviation of k − 1.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Maximal Count Deviation

Lemma

Let cseq (n) and cpar (n) be the number of times a particular
collection of variables takes on a specified configuration, given
the number n of observations so far, for a sequential and
parallel implementation, respectively. If the parallel
implementation uses k threads, then

|cpar (n)− cseq (n)| < k .

Now let p̂par (n) =
cpar (n)

n and p̂seq (n) =
cseq(n)

n be the
estimated probabilities of a given value after n observations.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Maximal Count Deviation

Lemma

Let cseq (n) and cpar (n) be the number of times a particular
collection of variables takes on a specified configuration, given
the number n of observations so far, for a sequential and
parallel implementation, respectively. If the parallel
implementation uses k threads, then

|cpar (n)− cseq (n)| < k .

Now let p̂par (n) =
cpar (n)

n and p̂seq (n) =
cseq(n)

n be the
estimated probabilities of a given value after n observations.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Probability Convergence

Theorem

For a counting application, suppose a sequential implementation
is compared to a parallel implementation using k threads, and
let n be the number of observations. The estimated
probabilities are then related by

p̂par (n) = p̂seq (n) + O
(

k
n

)
.

Proof.

Using the result from the lemma,

|p̂par (n)− p̂seq (n)| =
∣∣∣∣cpar (n)

n
− cseq (n)

n

∣∣∣∣ <
k
n
.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Probability Convergence

Theorem

For a counting application, suppose a sequential implementation
is compared to a parallel implementation using k threads, and
let n be the number of observations. The estimated
probabilities are then related by

p̂par (n) = p̂seq (n) + O
(

k
n

)
.

Proof.

Using the result from the lemma,

|p̂par (n)− p̂seq (n)| =
∣∣∣∣cpar (n)

n
− cseq (n)

n

∣∣∣∣ <
k
n
.

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Summary

A PDtree data structure has similar benefits to an ADtree,
but allows specification of the nesting structure, leading to
mmory savings and speed improvements.

Parallelism is easily achieved on a Cray MTA-2, but a race
condition is introduced.

The numeric effect of this race condition decays as 1
n .

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Summary

A PDtree data structure has similar benefits to an ADtree,
but allows specification of the nesting structure, leading to
mmory savings and speed improvements.

Parallelism is easily achieved on a Cray MTA-2, but a race
condition is introduced.

The numeric effect of this race condition decays as 1
n .

Multithreaded
Counting

Scherrer et
al.

Introduction

PDtree Data
Structure

Multithreaded
Framework

Dealing with
Nondeter-
minism

Summary

Summary

A PDtree data structure has similar benefits to an ADtree,
but allows specification of the nesting structure, leading to
mmory savings and speed improvements.

Parallelism is easily achieved on a Cray MTA-2, but a race
condition is introduced.

The numeric effect of this race condition decays as 1
n .

	Introduction
	PDtree Data Structure
	Multithreaded Framework
	Dealing with Nondeterminism
	Summary

