A

Software and Algorithms for Graph Queries on
Massively Multithreaded Architectures

Jonathan Berry (Sandia Labs)

Bruce Hendrickson (Sandia Labs)
Simon Kahan (Google)

Petr Konecny (Cray)
March 29, 2007
YR T Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia
TYA for the United States Department of Energy’s National Nuclear Security Administration National

i
i
1

under contract DE-AC04-94AL85000. Laboratories



Outline

* Graph-based informatics

* Massively-multithreaded architectures

« Sandia’s prototype Multithreaded Graph Library (MTGL)

e Algorithmic case studies on the Cray MTA-2

 Current and future directions, opportunities for collaboration

Sandia
National
Laboratories



. i Graph-Based Informatics

Attributed Relational Graph

16 13
15 1 o
17 5
8 19
20

12 4
® 6
S <\
11 8 7
® \
1 23 9

Legend
28 ® Workplace ~ Friends with
25 24 ® Town /" Works at

@® Person " Located in

27 ives i
26 Lives in

Sandia
National
Laboratories



r"'

. ; Massive Multithreading: e.g., The Cray MTA-2

Slow clock rate (220Mhz)

128 “streams” per processor

Global address space

Fine-grain synchronization

Simple, serial-like programming model

Advanced parallelizing compilers

No Data Cache

Latency Tolerant:

important for Graph

Algorithms

Hashed Memory

Sandia
National
Laboratories



2 ; Cray MTA Processor

[ ] T B o oo [ |

e Each thread can have up to 8 memory refs in flight
e Round trip to memory ~150 cycles

Sandia
National
Laboratories



"'; R 4
| The MultiThreaded Graph Library (MTGL)

* Recent work
— Design & implement the Multithreaded Graph Library (MTGL)
* Boost GL-like, but not Boost-based

* In the process of open-sourcing

* Develop, run, debug codes on workstations and/or MTA/XMT
— Design multithreaded algorithms

e Simon Kahan’s connected components algorithm

e “Bully” connected components algorithm

e Subgraph 1somorphism for semantic graphs

 Current work
— Adapt the MTGL to run on SMP’s
— Flesh out the MTGL with community finding, etc.
— Integrate the MTGL with visualization frameworks

)
National
Laboratories



‘i MTGL: C++ Design Levels

Gives Parallelism,

User provides filters,
Gets parallelism Hides Most Concurrency

for free

-\

T

Inspired by Boost GL, but not Boost GL

National
Laboratories



"';,7
Four Modes of MTGL Graph Exploration

for vin V:

Z

visit adj

visit v’s neighbors

~10 memref/edge

. visit_edges
fore in E:

visit €’s endpoints

cece

~10 memref/edge

psearch

recursive parallel search

~40 memref/edge

breadth-first search

~20-40 memref/edge

Sandia
National
Laboratories



. ; Current MTGL Algorithms

 Connected components (psearch, visit _edges, visit _adj)

* Strongly-connected components (psearch)

 Maximal independent set (visit_edges)

 Typed subgraph isomorphism (psearch, visit _edges)

* S-t connectivity (bfs)

e Single-source shortest paths (psearch)

« Betweenness centrality (bfs-like)

 Connection subgraphs (bfs, sparse matrix, mt-quicksort)
« Find triangles (psearch)

* Find assortativity (psearch)

* Find modularity (psearch)

Under development:

* Optimize modularity via simulated annealing (visit_adj, visit edges)
e Count edges in 1, 2 neighborhoods (various)

* more

Sandia
National
Laboratories



f ; MTGL PSearch Primitive: visitors

DefaultVisitor {
sr(v) {} # search root
d(v) {} # discover
vt(v) {} # visit test

te(v,w) {} # tree edge

oe(V,w) other” edge

The search primitives
give the programmer
these opportunities to
react to search events

Pseudocode for this talk
uses these shortened
method names

Abuse of notation: multiple

edges are allowed

Sandia
National
Laboratories



:;"

MTGL Search Primitives (e.g)

PSearch<OR,vis>(v)
d
vis.d(v)
for (v,w) in E(v):
if (v,w) unvisited OR vis.vt(v,v’)
vis.te(v,w)
PSearch<OR,vis>(w)
else

vis.oe(VW)

PSearch<AND,vis>(v)
d
vis.d(v)
for (v,w) in E(v):
if vis.vt(v,v’)
if (v,w) unvisited
vis.te(v,w)
PSearch<AND,vis>(w)
else

vis.oe(VW)

More general, but details omitted here...

Sandia
National
Laboratories



| ; MTGL Synchronization Primitives

Write a, leave full

MTA Primitive Meaning Pseudocode MTGL
b =int fetch add(a,i) | Atomic read, increment of a ifa .| mt_incr(a,1)
b < a,l
b = readfe(&a) Wait for a to be “full,” read q, mt readfe(a)
fe

leave empty b £ a

b = readff(&a) Wait for a to be “full,” o mt readff(a)
Read q, leave full b &

writeef(&a, v Wait for a to be “empty,” f mt write(a,v

(&a, v) pty b S a _write(a,V)

Overloaded for different platforms

)

Sandia
National
Laboratories



. i Case Studies: Algorithm Kernels

* Connected Components

* Subgraph Isomorphism

* S-T Connectivity (i.e., use of BFS)

Sandia
National
Laboratories



A
Kahan’s Algorithm for Connected Components

Phase 1:
concurrent
searches

Phase 2: CRCW
(Shiloach-Vishkin)

Phase 3:
relabel

Sandia
National
Laboratories



A
MTGL Implementation of Kahan’s Algorithm

Kahan’s
Phase 111
visitor

(Trivial)

visitor
l B

Kahan’s
Phase 11

/'

Sandia
National
Laboratories



"'

’ﬂ MTGL Implementation of Kahan’s Algorithm

Phase I visitor:

V=1
C <« user array of | V' (G) | 1nts
T' < hash table of (int, int) pairs

ew<«L—C[w];

T<«——TU{(cv,cw)}

b

/

sr(v) {C[v] «Z }
to(v,w)  {C[w]d— C[v]}/
oe(v,w) {cveL—C[v];

g

“component”
values were
defined by user to
start “empty”

Wait until both
full

e

Thread-safe

— Add to hash

table

)
National
Laboratories



"'P' \
More General Filtering: The “Bully” Algorithm

Sandia

Laboratories



"';,'
. MTGL Implementation of the Bully Algorithm

vt(v,w) {cveL—C[v]; ewe«L—C[w];
return (cv < cw);
h
te(v,w) {cv<ZL—C[v]; ew«L—C[w];
if wunvisited OR (cv < cw)
Cw]<«<L—C[v]
else

Clw]«L—cw

National
Laboratories




"'p' \
Parallelized Shiloach-Vishkin (Bader, Feo, Cong’06)

edge **edges = g->edges.getStore();
while (graft) {
numiter++;
graft = 0;
#pragma mta assert parallel
for (int i=0; i<m; i++) {
int u = edges[i]->vert]->id;

“Qraft”

66H00k99

Sandia
Laboratories



\

Connected Components Performance (1)

Time in Seconds

100 |

=
o

'Fancy Graph’ of 234M Edges

"C-KAHAN" —+—

"MTGL-KAHAN" ---x---
"MTGL-BULLY" ------
SV g

Ghz, 64Gb Opteron Workstation: 5 minutes

Estimate possible 3x speedup of C-KAHAN

~2.9s

~40 memref/edge

10
Number of Processors

Sandia
National
Laboratories



Time in Seconds

}'

Connected Components Performance (2)

Power Law Out-Degree (PLOD) of 14M Edges

Recursive Matrix (RMAT) of 16M Edges

 MTGL-KAHAN" —
"MTGL-BULLY" —--x-— ]
||SV|| . 7%777 |

~175
X\
200
X
N\
N\
\
\
N
N

! . .
| Z'lme in Seconds
1

(2 -9
A |
S

- Bug in MTGL-Kahan impl (crash) sti

127

 MTGL-BULLY" —+—
AV

N
N\
N
N\
N
N
\
\
N
N23 \\\

130

Number of Processors

1

10
Number of Processors

Sandia
National
Laboratories



"';,7
Case Study: Subgraph Isomorphism Kernel

* Objective: find exact or inexact matches of a small pattern

graph within a large semantic graph

Sandia
National
Laboratories



";,’ \
Instance-Specific Type Filtering for Subgraph Iso.

Pattern graph—
& ©
@ @
@ O
L @

For each edge e in Big Graph:

Do the 4 types associated with
e match those of any of the
target graph edges?

Sandia
Laboratories



. i Subgraph Isomorphism: Input

The Target Graph:

Table of Type and Auxiliary Information:

dl R CEEC L E 0 EIE
2 3 1 3

V|2 3 2

Ideal: Euler Tour Our Experiments: Random Walk

Sandia
National
Laboratories



"';,7
Subgraph Isomorphism: Creating a Bipartite Graph

k times:
Visit each

edge of SFG

Logical placeholders for vertices in the SFG.

Sandia
National
Laboratories



A
Subgraph Isomorphism: Creating a Bipartite Graph

S-T shortest paths

\ 4 4 \ 4

(top to bottom) correspond

to candidate
matches.

Branch and bound to
Find better matches.

7

Visitor object tailors
Search so that it never
goes up (similar to
“‘Bully” algorithm).

Sandia
National
Laboratories



Computational Results: Subgraph Isomorphism

Subgraph Isomorphism Heuristic: 234M Edges (Target of 20 Edges)

1000 "Subgraphlsomorphism" —+—

3Ghz, 64Gb Opteron Workstation: ~15 minutes

Time in Seconds

100

1 10 Sandia
National
Number of Processors Laboratories




"';,7
Computational Results: Subgraph Isomorphism

Type & topological 1somorphism exists between green vertices

Target

Actual graphs from
a 234M edge
Instance

Found

Sandia
National
Laboratories



"';,'
Can try harder if we want a closer match

Type & topological 1somorphism exists between green vertices

98

17 14/86

Actual graphs from

a 234M edge |

instance Notionel
Laboratories




Traceview Output for Subgraph Isomorphism

2% traceview (trace.out)

Preprocessing: 97% utilization

Not fully utilized since filtered
graph is tiny (10k) and we don’t

branch & bound 1n this example.




A \
Future

* Massively-multithreaded Graph Algorithm R&D

* Open-Sourcing of the MTGL

* Run on SMP

* Query system with shared, mmapped graphs

Sandia
National
Laboratories



}

* Bruce Hendrickson (Graph Informatics lead)

Acknowledgements

* Keith Underwood (Eldorado performance prediction)

* Simon Kahan, Petr Konecny (Cray): help in all aspects of this project
* Wayne Wong (Cray): Eldorado simulations

* Curt Janssen (usage model)

 Bob Heaphy (matrix-vector kernel)

* David Bader, Kamesh Madduri (Ga. Tech) (s-t connectivity)

« Cindy Phillips (help with algorithms)

* John Cieslewicz (Columbia) (database operations)

* Joe Crobak (Lafayette) (single-source shortest paths)

 Andrew Lumsdaine (Indiana U.) (Parallel Boost Graph Library)
* Douglas Gregor (Indiana U.) (Parallel Boost Graph Library)

e Others!

)
National
Laboratories



