Operating System Mechanism for
Continuation-based Fine-grained Threads
on Dedicated & Commodity Processors

Shigeru Kusakabe', Satoshi Yamadat, Mitsuhiro Aonot,
Masaaki lzumif, Satoshi Amamiyar,
Yoshinari Nomura*, Hideo Taniguchi*, and Makoto Amamiya *

T Kyushu University T Okayama University

Outline

Introduction

Thread Model

OS Issues on FUCE

OS Issues on Commodity Processor
Concluding remarks

MTAAP / Mar. 30, 2007

Introduction

Multithreading: available on commodity platforms,
derived from sequential model

Our approach

Model: dataflow
— natural to asynchronous/concurrent execution

Focus: architectures, languages, operating systems

Platform: dedicated & commodity processor

MTAAP / Mar. 30, 2007 3

Introduction - on dedicated platform

Fuce: dedicated to fine-grained multithreading

Benchmarks were user applications,
How about operating systems?

System calls with |/O request

- Multithreading with continuation,

- Handling external events without "interrupt”
- Delivered without controller such as APIC

MTAAP / Mar. 30, 2007 4

Introduction - on commodity platform

Dataflow concept useful on commodity
platforms?

=) flexible scheduling to reduce overhead

Wrapped System Call

- buffer split-phase system call requests
- reduce context (mode) changes

- enhance locality of reference

MTAAP / Mar. 30, 2007

Outline

Introduction

Thread Model

OS Issues on FUCE

OS Issues on Commodity Processor
Concluding Remarks

MTAAP / Mar. 30, 2007

Zero-Wait Thread

* Program graph: nodes / threads, edges / continuation relations.

» Thread: synch. counter & instruction sequence (incl. continuation)

A continuation instruction specifies its succeeding thread code and
context, and decrements the synchronization counter of the target.

« If the counter becomes to zero, the thread becomes ready to run, and runs

to completion without suspension once started.

continue Thread B

continue Thread C

MTAAP / Mar. 30, 2007

Thread D

' Thread B

Thread E
Thread E

Thread C

Thread D

Thread E

—

Sync. Counter :

2

Thread and Instance

Instance frame memory

Instance frame memory

Instruction memory

MTAAP / Mar. 30, 2007

Function instance

Function instance

thread[thread
\A \A
\ /
Execution| | Execution Execution
unit unit unit

Split-phase

zero-wait thread

>
request
Y
thread iwait 0 long-latenc request long-latency
. operation operation
- result
— result 3\

Y4

MTAAP / Mar. 30, 2007

, zero-wait thread

N

Thread with wait Split-phase style

Outline

Introduction

Thread Model

OS Issues on FUCE

OS Issues on Commodity Processor
Concluding Remarks

MTAAP / Mar. 30, 2007

10

CMT (Chip multithreading) being developed at Kyush

Fuce Processor

Main memory

u University

(0)

} T

| | |'I'hread Execution Unit

MTAAP / Mar. 30, 2007

D -Cache
3 | —
4 I
5 I
° _ Load/Store
’ T Unit
Thread 457
Execution _
| Unit Registe 5 %
fil =
s riie Threa_d 9 =
| Pre-load Activation = [E—
Unit K « |Controller S =
@ 7

N

Thread Activation Controller

Base-address: pointer to data area
lock bit : semaphore
sync-count: # waiting continuations

fan-in: value of fan-in to the thread . :
code-entry: pointer to thread code Instancﬁ\scnvatlon Control Memory

Thread ID
Instance ID | Thread entry —

Select ACM entry L Base Address

* \

N\ / lock-bit| sync-count | fan-in|code-entry
<_ ready thread >
Thread

N\ '
t
Ready Thread Queue | entries

U

MTAAP / Mar. 30, 2007

12

Handling External Event

current thread

[device }
iimypt

handleré suspend & resume
(save & restore)

/ .

N

Interrupt-based
sequential approach

MTAAP / Mar. 30, 2007

current thread

(no int

crfd

rence)

[device }

trigger

handler

Continuation-based
zero-wait thread approach

13

Thread Mode

User mode

User thread

||

Kernel interface thread

Supervisqr
mode

| |

Kernel thread

MTAAP / Mar. 30, 2007

Not allowed

14

Critical Thread

Thread B
try to lock thread D
o -1 = » - — a
- g succee o7
/ 4
Thread A \ tr Eyllliiigrgd D
. try to lock thread D ’ '
N\
' ~ ., - n ’.
retry
* , — — ~
/
" Thread D
. unlock myself
\

~, /.

- continuation to another thread
MTAAP/ Mar. 30,2007+ == o = . + : continuation to itself 15

v

Handling System calls with I/O Request

User

sender_threads

“

L]

1-1: try to lock
gate_thread

if (lock)

1-2:continue to the
gate thread

else

1-3:self-continuation

receiver threads

L4

‘e

L]

7-1:receive data \

H

gate thread

2-1:identify the requested

system call ID
2-2:continue to the thread
of the system call ID

—

syscall thread

3-1: execute the body of .
system call
3-2: continue to the ;
semaphore_thread E

handler thread

6-1:receive data

6-2:continue to the receiver
thread with the result

if(queue is not empty)

}\&extract data from queue and
continue to device thread

else

6-4 unlock device thread

: thread ——— :continuation

Kernel

semaphore thread

Device

4-1:try to lock the
device thread
If (lock)
4-2: continue to the
device thread
else

4-3: buffer

ta for I/O

device thread

5-1:receive data

5-2:issue I/O request
5-3:pass the receiver ID
to handler thread

16

Thread Activation

User

gate thread

sender_thread f

MTAAP / Mar. 30, 2007

8y

scall threa

Kernel

~
\

- -~

T

semaphore_thread ,
device thread | !

T

semaphore thread _
device thread | @ i

i

. | semaphore_thread _ P
: device_thread | | i

:executable in parallel

Measurement

»
»

Fuce in VHDL on ModelSim

Measured the number of
system calls with /O request

>
<
measured value \6

ideally completed within = |
. . ﬁ e
a fixed period. 2. [pceptable
‘Jb:b ...‘_,‘%‘lare buffered)
The number of 3
TEUs:1..4, devices: 1..3 E

Expectation: scalability -- ' Livelock
activation of hander thread due | (requests

to continuation mechanism
L.oad

MTAAP / Mar. 30, 2007 18

Throughput

Evaluation Result

RTT: Y micro seconds

Scalability
with # TEUs

Scalability with
v # devices

v # devices

TEUs period : 100micro sechds

Outline

Introduction

Thread Model

OS Issues on FUCE

OS Issues on Commodity Processor
Concluding Remarks

MTAAP / Mar. 30, 2007

20

CEFOS: Process / Threads

Unix-like process, and dataflow-like thread
- dependence graph (partially ordered threads)
- process as thread context (color / tag)

Process unit of resource ——_
management | ———
(@D. |Tenegement |
. ile
1 or Thread N
N\
more |, S address space
threads < _ O~ ~ ~ i
\ Th ~ S unit of processor
read S o -
TN allocation
~
- ~
_Thread

MTAAP / Mar. 30, 2007

21

CEFOS: process / Threads

Process Controls between threads:
in a dataflow-like fashion

|_——

Thread Threaa * synchronization counter

© ©< » serial code

|_* continuation
Thread\

Dataflow concept useful?

w Thread scheduler

MTAAP / Mar. 30, 2007 22

Preliminary experiment

LMbench result for Linux 2.6.14 - Latency benchmark (in clocks)

processor null call |2p/OK |2p/16K |L1 |[L2 |M. Memory
pentium 111 378 ||/1576 | 5044 3| 8 " 164]
pentium4 1090 | || 3298 5798|| 2| 18 261
PowerPC G4 200 788 2167\ 4| 10 127
PowerPC G5 306 |[13698 | 13734 3| 11 113
Intel Core Duo || 464 \1327 282/0 3| 14 LSZ/
System Call Process Memory
Overhead Switch Latency

MTAAP / Mar. 30, 2007

23

CEFOS - wrapped system-call

Partially ordered fine-grain threads
split-phase style system calls

... various choices in scheduling threads/processes

Wrapped System-Call (WSC)

— aggregates multiple system-call requests
— handles them as a single system-call
to reduce overhead of system calls and enhance locality

MTAAP / Mar. 30, 2007 24

CEFOS and WSC mechanism

Process process process

/ external kernel external kernel external kernel| | \US€fr

\ / mode
Display-Requests-and Data
\ \ supervisor
mode

Internal kernel
NG ~/

MTAAP / Mar. 30, 2007 25

DRD

DRD (Display Request & Data)

Intermediate communications between Internal
[External Kernel.

— Each process & kernel share common memory area (CA)

— Each process & kernel display requests and necessary
information on CA

— At appropriate occasions, each process & kernel check
requests and information displayed on CA, and change
the control of execution if necessary.

MTAAP / Mar. 30, 2007 26

Control flows in WSC

Process

syste

m call re

return resylts &
activate wajting

buffer‘system-call requést

External kernel

requests >=
threshold ?

yes

thread
scheduler

AN

/ user mode

Internal kernel

N

«

perform each system-call /

MTAAP / Mar. 30, 2007

supervisor mode

27

Impact on System Call Overhead

Implemented by modifying Linux.
Issuing system calls with thin body: getpid()

1.8

Calawan BO0MH —
16|
nted Core Do 1. B8GHE ——-
1.4 ormal —— -
12 [

1

F: N o

clock cycle ratio

R

-
= -
I]d-- e -
e e

0.2 1
of threshold
MTAAP / Mar. 30, 2007 28

Locality of reference

— chatroom benchmark
« simulate chat rooms (server and clients)

 four threads per client (2 message handler (send /receive)
in client & server)

« parameters: number of clients = 20

Detailed memory events with performance monitoring
counter - hardmeter (limited to focused part only)
clocks L2$% miss (%) | D-TLB miss (%)

normal 60217 1.01 2.78
WSC 48436 0.47 2.55
ratio: WSC/normal 0.80 0.47 0.92

MTAAP / Mar. 30, 2007 29

Concluding remarks

Multithreading based on dataflow model

On Fuce
» event handling without “interrupt”

On commodity platforms

 Wrapped System-Call: aggregates split-phase style
system call requests

Evaluation
— scalability of throughput in handling 1/0O request
— system call overhead and locality of reference

MTAAP / Mar. 30, 2007

30

