
STAMP: A Universal Algorithmic Model
for Next-Generation Multithreaded
Machines and Systems

Michel Dubois, Hyunyoung Lee, Lan Lin

Motivations (1)

• The trend in micro-architecture today is
towards multiple cores in shared-memory
configurations

• Each core is itself multithreaded
• So that future microprocessors will execute

many threads in parallel
• In the future, Moore’s law applied to

computing will be maintained by doubling the
number of threads ever other year
• Not by increasing the frequency

Motivations (2)

• Increasing frequency is untenable because of
power issues

• CMPs will then be connected in shared-memory
or message passing configurations

• High-end applications running on high-end
servers such as HPC and database systems have
abundant number of threads and will thrive in
such environment

• We need tools to quickly develop algorithms that
can scale on future desktops (workstations and
PCs) with ever increasing number of threads.

Motivations (3)

• The tool must
• Estimate performance and scalability
• Estimate power
• Model shared memory and message passing
• Be simple enough to be quickly deployed
• Be reasonably accurate at least enough to

estimate scalability
• Capture essential structure and parameters of

parallel applications
• Include new emerging programming paradigms,

such as transactional memory

Multithreaded Machines

Example: Niagara multicore chip

Examples of Traditional Parallel
Computational Models

• PRAM
• QSM (Queued Shared Memory)
• BSP (Bulk Synchronous Parallel)

• All existing models are too restrictive!
• Power is not incorporated!

STAMP

• Synchronous, Transactional, and
Asynchronous Multi-Processing

• Generic algorithmic model (parallel,
distributed & nested processes that
cooperate w/ each other)

• Universal performance & power
complexity model

STAMP Process

• A STAMP process
• An execution: A

sequence of local
computations &
communication operations

• A local computation: Operation that can
be performed in a single processing unit

• A communication operation

T1 TnT2 …::
:
:

::

Distribution of STAMP Processes

• Intra-processor

• Inter-processor

• Trade-offs between execution time
(performance) complexity and
power/energy complexity

T1 T4T2 T3 T1 T4T2 T3

T1 T4T2 T3 T1 T4T2 T3

Synchrony in STAMP

Possible combinations of modes of execution &
communication based on synchrony

Transactional AsynchronousExec
Comm

Synchronous

Asynchronous

[trans_exec]
[synch_comm]

[async_exec]
[synch_comm]

[async_exec]
[async_comm]

[trans_exec]
[async_comm]

Distribution & Synchrony in STAMP

Example using attributes of distribution, execution and
communication – solving a system of linear equations

(Ax=b) using the Jacobi algorithm

Jacobi(A[], b[], x) [intra_proc,async_exec,synch_comm]
bool terminated=false; int t=0
while not terminated

forall i: xi(t+1)=-1/aii[Σj≠i aijxj(t)-bi]
if (termination cond is met) terminated=true

Structure of STAMP

Distributed Jacobi algorithm for process i
bool terminated=false; int t=0
while not terminated

receive x(t) from all other processes
xi(t+1)=-1/aii[Σj≠i aijxj(t)-bi]
send xi(t+1) to all other processes
/* implicit barrier synchronization here*/
if (termination cond is met)

terminated=true

S-unit
(minimal

sequential
process)

S-round

local computation

A STAMP Algorithm

• Consists of any combinations of
• S-units
• Nested STAMPs
• Parallel/Distributed STAMP processes

STAMP Complexity Models
• Performance (execution time) complexity

• In one time unit a local operation can be computed
by a processing component on data available in
memory local to it

• For S-round and S-unit: add the time needed for
local operations, shared memory accesses and
message exchanges

• For parallel/distributed STAMP processes: take
the maximum among the execution times of them

• Power/energy complexity
• Add the energy of each computation, shared

memory access and message exchange

Parameters (1)

• Global parameters: Pa, Pe, n
• For local execution: cfp, cint, wfp, wint, c

(c: time cost for local computations
including fp & int operations)

• For communication
• For shared memory access
• For message passing

Parameters (2)

• For shared memory
• l: upper bound on delay in accessing a shared memory

module due to memory hierarchy
• k: maximum number of accesses to any shared memory

location
• gsh: bandwidth defined as the ratio of the # of local

operations performed by the thread in one time unit
to the total number of memory accesses in the same
time unit

• dr, dw: #s of shared memory read and write op.s
• wdr, wdw: energy per shared memory read and write

Parameters (3)

• For message passing
• L: upper bound on message delay
• gmp: bandwidth defined as the ratio of the #

of local operations performed by the thread
in one time unit to the total number of
messages delivered in the same time unit

• ms, mr: #s of message send and receive op.s
• wms, wmr: energy per message send and receive

Complexity Measures (1)

• For an S-round
• TS-round = c+[shared memory comm]

(k+[Pe≥1]le+[Pa≥1]la+gsh_a(dr_a+dw_a)+gsh_e(dr_e+
dw_e))+[message passing comm]
([Pe≥1]Le+[Pa≥1]La+gmp_a(ms_a+mr_a)+gmp_e(ms_e+
mr_e))

• ES-round = cfpwfp+cintwint
+wdr(dr_a+dr_e)+wdw(dw_a+dw_e)
+wmr(mr_a+mr_e)+wms(ms_a+ms_e)

Complexity Measures (2)

• For an S-unit
• TS-unit = Σall S-rounds T S-round+Tc
• ES-unit = Σall S-rounds E S-round+Ec
• PS-unit = ES-unit/TS-unit

• For a STAMP proc. with more than one
S-unit: sum of all TS-unit or ES-unit

• For parallel/distributed STAMP proc.s:
max execution time, total energy/power

Example (revisited)

Distributed Jacobi algorithm for process i
bool terminated=false; int t=0
while not terminated

receive x(t) from all other processes
xi(t+1)=-1/aii[Σj≠i aijxj(t)-bi]
send xi(t+1) to all other processes
/* implicit barrier synchronization here*/
if (termination cond is met) terminated=true

Bounds on Complexity Measures

• TS-unit ≥ 2n+5+2n{3/(n(n-1))}-2{3/(n(n-1))}+2
= 2n+6/n+7 ≥ 2n

• ES-unit ≤ (2(x+y)wint)n
• PS-unit ≤ {(2(x+y)wint)n}/2n = (x+y)wint

• Assume: every core has the same power limit
of 3(x+y)wint, then the Jacobi algorithm
should not be assigned to more than three
intra-processor threads per core

Conclusions
• Future microarchitectures will be multithreaded
• We need effective tools to design scalable

algorithms quickly
• Here, we proposed a new generic algorithmic model

called STAMP
• Encompasses synchronous, transactional, and

asynchronous computation and communication models
• Equipped with universal performance and power

complexity models
• Illustrated how to design and analyze algorithms

using STAMP, and how to apply the complexity
estimates to better utilize CMP/CMT-based machine
within given constraints such as power

Future Works

• Simulations

• Implementations

• Evaluation & validation

Thank you!

Any Questions?

	STAMP: A Universal Algorithmic Model for Next-Generation Multithreaded Machines and Systems
	Motivations (1)
	Motivations (2)
	Motivations (3)
	Multithreaded Machines
	Examples of Traditional Parallel Computational Models
	STAMP
	STAMP Process
	Distribution of STAMP Processes
	Synchrony in STAMP
	Distribution & Synchrony in STAMP
	Structure of STAMP
	A STAMP Algorithm
	STAMP Complexity Models
	Parameters (1)
	Parameters (2)
	Parameters (3)
	Complexity Measures (1)
	Complexity Measures (2)
	Example (revisited)
	Bounds on Complexity Measures
	Conclusions
	Future Works
	Thank you!��Any Questions?

