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Motivations (1)

The trend in micro-architecture today is
towards multiple cores in shared-memory
configurations

Each core is itself multithreaded

So that future microprocessors will execute
many threads in parallel

In the future, Moore's law applied to
computing will be maintained by doubling the
number of threads ever other year

Not by increasing the frequency



Motivations (2)

Increasing frequency is untenable because of
power issues

CMPs will then be connected in shared-memory
or message passing configurations

High-end applications running on high-end
servers such as HPC and database systems have
abundant number of threads and will thrive in
such environment

We need tools to quickly develop algorithms that
can scale on future desktops (workstations and
PCs) with ever increasing number of threads.



Motivations (3)

The tool must
Estimate performance and scalability
Estimate power
Model shared memory and message passing
Be simple enough to be quickly deployed

Be reasonably accurate at least enough to
estimate scalability

Capture essential structure and parameters of
parallel applications

Include new emerging programming paradigms,
such as transactional memory



Multithreaded Machines
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Examples of Traditional Parallel
Computational Models

PRAM
QSM (Queued Shared Memory)
BSP (Bulk Synchronous Parallel)

All existing models are too restrictivel
Power is not incorporated!



STAMP

Synchronous, Transactional, and
Asynchronous Multi-Processing

Generic algorithmic model (parallel,
distributed & nested processes that
cooperate w/ each other)

Universal performance & power
complexity model



STAMP Process

A STAMP process T11[T2 Tn
An execution: A e ]
sequence of local Tl

computations &
communication operations

A local computation: Operation that can
be performed in a single processing unit

A communication operation



Distribution of STAMP Processes

Intra-processor
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Trade-offs between execution time
(performance) complexity and
power/energy complexity




Synchrony in STAMP

comEXec | Transactional | Asynchronous

[frans_exec] [async_exec]
[synch_comm] | [synch_comm]

Synchronous

[Trans_exec] [async_exec]
[async_comm] | [async_comm]

Asynchronous

Possible combinations of modes of execution &
communication based on synchrony




Distribution & Synchrony in STAMP

Jacobi(A[], b[], x) [intra_proc,async_exec,synch_comm]
bool terminated=false; int t=0
while not terminated
forall it x,(t+1)=-1/a;[Z,; a;x;(1)-b;]
if (fermination cond is met) terminated=true

Example using attributes of distribution, execution and
communication - solving a system of linear equations
(Ax=b) using the Jacobi algorithm



Structure of STAMP

Distributed Jacobi algorithm for process i
local computation bool terminated=false; int =0
e while not terminated
S_unit [ receive x(t) from all other processes
S-roind

(minimal
sequential
process)

Xi(t+1)=-1/a;[Z;,; a;x;(1)-b;]

send x;(t+1) to all other processes

/* implicit barrier synchronization here*/
if (termination cond is met)

~ terminated=true




A STAMP Algorithm

Consists of any combinations of
S-units
Nested STAMPs
Parallel/Distributed STAMP processes



STAMP Complexity Models

Performance (execution time) complexity

In one time unit a local operation can be computed
by a processing component on data available in
memory local to it

For S-round and S-unit: add the time needed for
local operations, shared memory accesses and
message exchanges

For parallel/distributed STAMP processes: take
the maximum among the execution times of them

Power/energy complexity

Add the energy of each computation, shared
memory access and message exchange



Parameters (1)

Global parameters: P_, P,, n

For local execution: Ctpr Cintr Weps Wint, C
(c: time cost for local computations
including fp & int operations)
For communication

For shared memory access

For message passing



Parameters (2)

For shared memory

|: upper bound on delay in accessing a shared memory
module due to memory hierarchy

ki maximum number of accesses to any shared memory
location

gsn- bandwidth defined as the ratio of the # of local
operations performed by the thread in one time unit
to the total humber of memory accesses in the same
time unit

d., d,: #s of shared memory read and write op.s
Wy., Wy,  energy per shared memory read and write



Parameters (3)

For message passing

L: upper bound on message delay

9rp+ Dandwidth defined as the ratio of the #
of local operations performed by the thread
in one time unit to the total number of
messages delivered in the same time unit

m,, m.: #s of message send and receive op.s
W, W, €nergy per message send and receive



Complexity Measures (1)

For an S-round

T. = c+[shared memory comm]
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Complexity Measures (2)

For an S-unit

TS-uni‘r = Zc1|| S-rounds T S-round+Tc

ES-uni’r = Zc1|l S-rounds E S-round+Ec

PS-uni‘r = ES-uni’r/TS-uni’r
For a STAMP proc. with more than one
S-unit: sum of all T ..y or Ec it
For parallel/distributed STAMP proc.s:
max execution time, fotal energy/power



Example (revisited)

Distributed Jacobi algorithm for process i

bool terminated=false; int t=0

while not terminated
receive x(1) from all other processes
Xi(t+1)=-1/q;[%;,; a;x;(t)-b;]
send x;(t+1) to all other processes
/* implicit barrier synchronization here*/
if (termination cond is met) terminated=true



Bounds on Complexity Measures

To ynit = 2n+5+2n{3/(n(n-1))}-2{3/(n(n-1))}+2
= 2n+6/n+7 > 2n

ES—uni‘r < (Z(X"'Y)Win‘r)n

PS-uni‘r < {(Z(X"'Y)Win‘r)n}/zn - (X"'Y)Wint

Assume: every core has the same power limit
of 3(x+y)w,;, then the Jacobi algorithm
should not be assigned to more than three
intra-processor threads per core



Conclusions

Future microarchitectures will be multithreaded

We need effective tools to design scalable
algorithms quickly

Here, we proposed a new generic algorithmic model
called STAMP

Encompasses synchronous, transactional, and
asynchronous computation and communication models

Equipped with universal performance and power
complexity models

Illustrated how to design and analyze algorithms
using STAMP, and how to apply the complexity
estimates to better utilize CMP/CMT-based machine
within given constraints such as power



Future Works

Simulations
Implementations

Evaluation & validation



Thank youl

Any Questions?
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