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Motivations (1)

• The trend in micro-architecture today is 
towards multiple cores in shared-memory 
configurations

• Each core is itself multithreaded
• So that future microprocessors will execute 

many threads in parallel
• In the future, Moore’s law applied to 

computing will be maintained by doubling the 
number of threads ever other year
• Not by increasing the frequency



Motivations (2)

• Increasing frequency is untenable because of 
power issues 

• CMPs will then be connected in shared-memory 
or message passing configurations

• High-end applications running on high-end 
servers such as HPC and database systems have 
abundant number of threads and will thrive in 
such environment

• We need tools to quickly develop algorithms that 
can scale on future desktops (workstations and 
PCs) with ever increasing number of threads.



Motivations (3)

• The tool must
• Estimate performance and scalability
• Estimate power
• Model shared memory and message passing
• Be simple enough to be quickly deployed
• Be reasonably accurate at least enough to 

estimate scalability
• Capture essential structure and parameters of 

parallel applications
• Include new emerging programming paradigms, 

such as transactional memory



Multithreaded Machines

Example: Niagara multicore chip



Examples of Traditional Parallel 
Computational Models

• PRAM
• QSM (Queued Shared Memory)
• BSP (Bulk Synchronous Parallel)

• All existing models are too restrictive!
• Power is not incorporated!



STAMP

• Synchronous, Transactional, and 
Asynchronous Multi-Processing

• Generic algorithmic model (parallel, 
distributed & nested processes that 
cooperate w/ each other) 

• Universal performance & power 
complexity model



STAMP Process

• A STAMP process
• An execution: A                         

sequence of local                                
computations &                        
communication operations

• A local computation: Operation that can 
be performed in a single processing unit

• A communication operation
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Distribution of STAMP Processes

• Intra-processor

• Inter-processor

• Trade-offs between execution time 
(performance) complexity and 
power/energy complexity

T1 T4T2 T3 T1 T4T2 T3
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Synchrony in STAMP

Possible combinations of modes of execution & 
communication based on synchrony

Transactional AsynchronousExec
Comm

Synchronous

Asynchronous

[trans_exec]
[synch_comm]

[async_exec]
[synch_comm]

[async_exec]
[async_comm]

[trans_exec]
[async_comm]



Distribution & Synchrony in STAMP

Example using attributes of distribution, execution and 
communication – solving a system of linear equations 

(Ax=b) using the Jacobi algorithm

Jacobi(A[], b[], x) [intra_proc,async_exec,synch_comm]
bool terminated=false; int t=0
while not terminated

forall i: xi(t+1)=-1/aii[Σj≠i aijxj(t)-bi]
if (termination cond is met) terminated=true



Structure of STAMP

Distributed Jacobi algorithm for process i
bool terminated=false; int t=0
while not terminated

receive x(t) from all other processes
xi(t+1)=-1/aii[Σj≠i aijxj(t)-bi]
send xi(t+1) to all other processes
/* implicit barrier synchronization here*/
if (termination cond is met)

terminated=true

S-unit
(minimal

sequential
process)

S-round

local computation



A STAMP Algorithm

• Consists of any combinations of
• S-units
• Nested STAMPs
• Parallel/Distributed STAMP processes



STAMP Complexity Models
• Performance (execution time) complexity

• In one time unit a local operation can be computed 
by a processing component on data available in 
memory local to it

• For S-round and S-unit: add the time needed for 
local operations, shared memory accesses and 
message exchanges

• For parallel/distributed STAMP processes: take 
the maximum among the execution times of them

• Power/energy complexity
• Add the energy of each computation, shared 

memory access and message exchange



Parameters (1)

• Global parameters: Pa, Pe, n
• For local execution: cfp, cint, wfp, wint, c 

(c: time cost for local computations 
including fp & int operations)

• For communication
• For shared memory access
• For message passing



Parameters (2)

• For shared memory
• l: upper bound on delay in accessing a shared memory 

module due to memory hierarchy
• k: maximum number of accesses to any shared memory 

location
• gsh: bandwidth defined as the ratio of the # of local 

operations performed by the thread in one time unit 
to the total number of memory accesses in the same 
time unit

• dr, dw: #s of shared memory read and write op.s
• wdr, wdw: energy per shared memory read and write 



Parameters (3)

• For message passing
• L: upper bound on message delay
• gmp: bandwidth defined as the ratio of the # 

of local operations performed by the thread 
in one time unit to the total number of 
messages delivered in the same time unit

• ms, mr: #s of message send and receive op.s
• wms, wmr: energy per message send and receive 



Complexity Measures (1)

• For an S-round
• TS-round = c+[shared memory comm]  

(k+[Pe≥1]le+[Pa≥1]la+gsh_a(dr_a+dw_a)+gsh_e(dr_e+
dw_e))+[message passing comm] 
([Pe≥1]Le+[Pa≥1]La+gmp_a(ms_a+mr_a)+gmp_e(ms_e+
mr_e))

• ES-round = cfpwfp+cintwint
+wdr(dr_a+dr_e)+wdw(dw_a+dw_e) 
+wmr(mr_a+mr_e)+wms(ms_a+ms_e)



Complexity Measures (2)

• For an S-unit
• TS-unit = Σall S-rounds T S-round+Tc
• ES-unit = Σall S-rounds E S-round+Ec
• PS-unit = ES-unit/TS-unit

• For a STAMP proc. with more than one 
S-unit: sum of all TS-unit or ES-unit

• For parallel/distributed STAMP proc.s: 
max execution time, total energy/power



Example (revisited)

Distributed Jacobi algorithm for process i
bool terminated=false; int t=0
while not terminated

receive x(t) from all other processes
xi(t+1)=-1/aii[Σj≠i aijxj(t)-bi]
send xi(t+1) to all other processes
/* implicit barrier synchronization here*/
if (termination cond is met) terminated=true



Bounds on Complexity Measures

• TS-unit ≥ 2n+5+2n{3/(n(n-1))}-2{3/(n(n-1))}+2
= 2n+6/n+7 ≥ 2n

• ES-unit ≤ (2(x+y)wint)n
• PS-unit ≤ {(2(x+y)wint)n}/2n = (x+y)wint

• Assume: every core has the same power limit 
of 3(x+y)wint, then the Jacobi algorithm 
should not be assigned to more than three 
intra-processor threads per core



Conclusions
• Future microarchitectures will be multithreaded
• We need effective tools to design scalable 

algorithms quickly
• Here, we proposed a new generic algorithmic model 

called STAMP
• Encompasses synchronous, transactional, and 

asynchronous computation and communication models
• Equipped with universal performance and power 

complexity models
• Illustrated how to design and analyze algorithms 

using STAMP, and how to apply the complexity 
estimates to better utilize CMP/CMT-based machine 
within given constraints such as power



Future Works

• Simulations

• Implementations

• Evaluation & validation



Thank you!

Any Questions?


	STAMP: A Universal Algorithmic Model for Next-Generation Multithreaded Machines and Systems
	Motivations (1)
	Motivations (2)
	Motivations (3)
	Multithreaded Machines
	Examples of Traditional Parallel Computational Models
	STAMP
	STAMP Process
	Distribution of STAMP Processes
	Synchrony in STAMP
	Distribution & Synchrony in STAMP
	Structure of STAMP
	A STAMP Algorithm
	STAMP Complexity Models
	Parameters (1)
	Parameters (2)
	Parameters (3)
	Complexity Measures (1)
	Complexity Measures (2)
	Example (revisited)
	Bounds on Complexity Measures
	Conclusions
	Future Works
	Thank you!��Any Questions?

