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Multicore/Multithreading Challenges

Fully exploiting the inherent parallelism of an application

Maintaining high throughput for all cores/contexts 
(memory wall, synchronization overhead, thread 
management overhead, and etc)

Data locality/affinity to threads for large scale systems to 
reduce the data transfer time. 
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Our Contributions

Lightweight Processor (LWP) 
0Highly multithreaded using lightweight threads

Successfully hide large latencies and contentions
0Supports Extended Memory Semantics (EMS)

Extremely low overhead on context switch and 
synchronization

0Processing-In-Memory(PIM) Based
Effectively attack memory wall problem

Quantitatively evaluate effects of the two main memory 
models---Distributed Global Address Space (DGAS) 
vs. Partitioned Global Address Space(PGAS) on the 
LWP system.
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Outline

Lightweight multithreaded architecture and 
the memory models

Simulation methodology 

Results

Conclusions
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Lightweight  Threads

Unlike the heavyweight threads in current multicore processors, 
the lightweight thread context (frame) is 32 double words 
0Two double words are reserved for the thread status; 30 general 

purpose registers.
0No other per thread state, easy for multithreading .

Frames are stored in memory (No Register File)
0Registers are aliases for memory locations
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Lightweight  Multithreading

Thread creation is fast and inexpensive - single 
instruction
0Contrast with pthread creation - kernel intervention and as 

many as 10,000’s of instructions

Unbounded Multithreading
0Threads are part of the memory system rather than the 

processor state.
0“Unlimited number” of threads per processor. 
0 Many opportunities for issuing an instruction.
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Lightweight Processor (LWP)

Lightweight Processor (LWP)            Lightweight Processor Chip (LPC) floor plan

Issue instruction from ready threads on each clock cycle

Architectural support for low overhead thread management
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Extended Memory Semantics (EMS) 

Memory subsystem is constructed of 65 bit dwords
064 bits of data
01 extension bit; 1: dword is Full, 0: dword is empty

Extends Cray MTA F/E bits 
0Full/Empty:   Contains data or not 
0Extra states: Metadata can contain frame pointer 

Same semantics apply to thread registers

64 bits of data/metadata

Extension bit
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Single Producer/ Consumer on EMS

LWP behavior for load_fe with A empty.
0Location A changes state to “FVE: forward value, leave empty”
0Content of A is the target address of the forward operation (all

registers also have a memory address).
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Completing the Load

How does the LWP complete the load_fe?
0store_ef arrives at A
0Data associated with store is returned to T2:R2 – this completes the 

load_fe

0Location A changes to the empty state.
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Large Scale System 
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Memory Models of the LWP/LPC system

Distributed Global Address Space (DGAS)
0Randomly distributes virtual addresses with some 

small, fixed block size, across all LPCs 
0Programming is “easy”. 

Partitioned Global Address Space (PGAS) 
0Each LPC holds a contiguous partition of virtual 

addresses. All the LWPs in same LPC share the 
local memory space 
0Programming is difficult

Although the LPC system is physically PGAS, it can 
also run in a DGAS addressing mode, using its 
massive numbers of hardware threads to hide latency.
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Simulation Methodology

Compare PGAS vs. DGAS on LWPs

SALT -Simulator for the Analysis of LWP Timing
0Contains LWPs, LPCs, Network-on-Chip (NoC) and 

memory subsystems, Cray MTA front-end ISA

Cray MTA-2 the multithreaded supercomputer to 
validate the simulation results of LWP’s DGAS 
performance
032 processors used in all simulations
0128 stream(thread)/processor
0DGAS model
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Simulation Parameters

64# of LPCs

2000ns network delay, plus 200ns

memory latency (1100 Cycles)

Remote memory latency
200ns (100 cycles)Local memory latency

1 memory access per bank every cycleMemory throughput

22 stagesPipeline depth

1 instruction/cycle (With enough threads 
to schedule)

Instruction issue rate
500MHzExpected clock rate
up to 128MBMemories/LPC

1LWPs/LPC

Values are based on Cray XMT architecture



MTAAP 2008, Miami, FL

Benchmark Suite

Regular problems (taken from the UPC book: UPC 
distributed shared memory programming by Tarek El-Ghazawi, et. 
al)
0Matrix-Vector multiplication
0Image histogramming
0Heat conduction 

Irregular--- Complicated control structures and/or dynamic 
data structures. 
0N-Queens
0SAT solver kernel

Different data structures, thread data affinity, and thread 
management flavor; Both the PGAS and DGAS models are 
applied to each benchmark.
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Matrix-vector multiplication

Multiplication of an N*N dense matrix and an N vector.

Threads are distributed uniformly across the LPCs.

Data is distributed in both the DGAS and PGAS 
fashion

DGAS Data Distribution                    PGAS Data Distribution
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Heat Conduction

Heat transfers through a 3D solid.

The solid is represented by an N*N*N matrix, at each 
time step, the temperature is calculated at each point :

PGAS  data distribution
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Each thread holds a sub-cube for 
PGAS  data distribution.

DGAS data distribution uses no 
locality
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SAT Solver

SAT-Boolean satisfiability problem. It is very hard to 
parallelize effectively on conventional  architectures
0Given a boolean formula (usually in CNF) , check 

whether an assignment of boolean truth values to the 
variables in the formula exists, such that the formula 
evaluates to true. 
0For example, the CNF formula, x1 is true and x3 is 

false, then all three clauses are satisfied,regardless of 
the value of x2.

0PGAS and DGAS applied for both shared and private 
data structures

21 3 1 3( ) ( ) ( )X X X X X∨ ∧ ∧ ∨
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Outline
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the memory model
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Matrix-vector multiplication 
LWP performance with fixed data set size

Ideal speedup with sufficient threads for both DGAS and 
PGAS model

PGAS has better scalability than DGAS, with the same 
number of threads. 

DGAS, fixed data size (N=8192)                              PGAS, fixed data size (N=8192) 
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Matrix-vector multiplication 
LWP performance with fixed number of threads

The larger the data size, the larger the workload per 
thread. The differences of speedup caused by changing 
the size of work load are small.

The thread management overhead is so low that the 
per-thread workload is easy to be satisfied 

DGAS, fixed number of threads (2048)              PGAS, fixed number of threads (2048) 



MTAAP 2008, Miami, FL

Matrix-vector multiplication 
MTA-2 performance

Compiler decides the number of threads automatically 
0change the data set size to implicitly change the number 

of threads

Similar performance as the LWP DGAS
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Image Histogramming

PGAS achieves better speedup 
than DGAS on the LWP

MTA-2 exhibits similar 
performance to the LWP with 
DGAS model

MTA-2

LWP DGAS (N=8192)
LWP PGAS(N=8192)
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Heat Conduction

MTA-2

LWP DGAS (N=256)                                                LWP PGAS(N=256)

PGAS achieves better speedup 
than DGAS on the LWP

MTA-2 exhibits similar 
performance to the LWP with 
DGAS model
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SAT Solver on Conventional SMPs

Parallel implementation lead to performance degeneration

The more processors, the worse performance

Very hard to achieve good performance on conventional SMPs 

Data from Parallel Multithreaded Satisfiability Solver: Design and Implementation By Yulik Feldman, et. al @ Intel
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SAT Solver on LWP 

LWP DGAS                                                        LWP PGAS

MTA-2

Both PGAS and DGAS achieve better 
performance than conventional 
architectures. 

PGAS is better than DGAS on LWP

MTA has the same performance with 
uuf502181 data set as the LWP
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N-Queens

Both PGAS and DGAS achieve good 
performance. 

Better performance for LWP than for 
MTA because of  the “unbounded 
multithreading” of the LWP.

Saturation is only due to small data set.

LWP PGAS

MTA-2  

LWP DGAS
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Conclusions
The lightweight multithreaded architecture
0A good solution for regular and irregular problem, especially, for the 

irregular problems that are proved hard to parallelize efficiently.

PGAS vs. DGAS
- PGAS has better performance than 
DGAS with the same number of 
threads. For an application with 
enough threads, both models achieve 
good performance

- Highly irregular applications favor 
PGAS more than regular ones 

- Threads with limited variables have 
similar performance on both models.  
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Thank you!


