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[E5iN
Multicore/Multithreading Challenges ?‘I

e Fully exploiting the inherent parallelism of an application

e Maintaining high throughput for all cores/contexts
(memory wall, synchronization overhead, thread
management overhead, and etc)

e Data locality/affinity to threads for large scale systems to
reduce the data transfer time.
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Our Contributions IF_I]

e Lightweight Processor (LWP)

- Highly multithreaded using lightweight threads
& Successfully hide large latencies and contentions
- Supports Extended Memory Semantics (EMS)

¢ Extremely low overhead on context switch and
synchronization

- Processing-In-Memory(PIM) Based
+ Effectively attack memory wall problem

e Quantitatively evaluate effects of the two main memory
models---Distributed Global Address Space (DGAS)

vs. Partitioned Global Address Space(PGAS) on the
LWP system.



Outline

e Lightweight multithreaded architecture and
the memory models



Lightweight Threads

e Unlike the heavyweight threads in current multicore processors,
the lightweight thread context (frame) is 32 double words

- Two double words are reserved for the thread status; 30 general
purpose registers.

- No other per thread state, easy for multithreading .

e Frames are stored in memory (No Register File)
- Registers are aliases for memory locations

Memory Memory Memory Memory
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Lightweight Multithreading IBI]
u

e Thread creation is fast and inexpensive - single
Instruction

- Contrast with pthread creation - kernel intervention and as
many as 10,000’s of instructions

e Unbounded Multithreading

- Threads are part of the memory system rather than the
processor state.

- “Unlimited number” of threads per processor.
- Many opportunities for issuing an instruction.
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Lightweight Processor (LWP) ]F_!]

e Issue instruction from ready threads on each clock cycle

e Architectural support for low overhead thread management

Local Memory Controller

A
Frame ) .
Eviction . Memory
? 4 Instruction
Logic Frame & Cache bank \
A Buffer
A
Thread Issue J LWP/
Logic
Execution
Pipeline

Lightweight Processor (LWP) Lightweight Processor Chip (LPC) floor plan
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Extended Memory Semantics (EMS) IFT

e Memory subsystem is constructed of 65 bit dwords
- 64 bits of data
- 1 extension bit; 1: dword is Full, O: dword is empty

e Extends Cray MTA F/E bits
- Full/Empty: Contains data or not
- Extra states: Metadata can contain frame pointer

e Same semantics apply to thread reqgisters

. 64 bits of data/metadata

Extension bit




TSN
Single Producer/ Consumer on EMS Il.\lll

e LWP behavior for load_fe with A empty.
- Location A changes state to “FVE: forward value, leave empty”

- Content of A is the target address of the forward operation (all
registers also have a memory address).

FVE i g



Completing the Load

e How does the LWP complete the load_ fe?
- store _ef arrivesat A

- Data associated with store is returned to T2:R2 — this completes the
load fe

- Location A changes to the empty state.

Stare_ef{Tl:Rl, )

reply (TZ2:R2Z, data)




Large Scale System
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A
Memory Models of the LWP/LPC system Il.\lll

e Distributed Global Address Space (DGAS)

- Randomly distributes virtual addresses with some
small, fixed block size, across all LPCs

— Programming is “easy”.
e Partitioned Global Address Space (PGAS)

- Each LPC holds a contiguous partition of virtual
addresses. All the LWPs in same LPC share the
local memory space

— Programming is difficult
e Although the LPC system is physically PGAS, it can

also run in a DGAS addressing mode, using its
massive numbers of hardware threads to hide latency.



Outline li_é]

e Lightweight Multithreaded Architecture and
the memory model

e Simulation methodology
e Results

e Conclusions
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Simulation Methodology IF_!_"]

e Compare PGAS vs. DGAS on LWPs

e SALT -Simulator for the Analysis of LWP Timing

- Contains LWPs, LPCs, Network-on-Chip (NoC) and
memory subsystems, Cray MTA front-end ISA

e Cray MTA-2 the multithreaded supercomputer to
validate the simulation results of LWP’s DGAS
performance

- 32 processors used in all simulations

- 128 stream(thread)/processor
- DGAS model



Simulation Parameters IF_I]

=
LWPs/LPC 1
# of LPCs 64
Memories/LPC up to 128MB
Expected clock rate 500MHz
Instruction issue rate 1 instruction/cycle (With enough threads
to schedule)
Pipeline depth 22 stages
Local memory latency 200ns (100 cycles)

Remote memory latency | 2000ns network delay, plus 200ns

memory latency (1100 Cycles)

Memory throughput 1 memory access per bank every cycle

Values are based on Cray XMT architecture



Benchmark Suite IF_I]

e Regular problems (taken from the UPC book: UPC
distributed shared memory programming by Tarek El-Ghazawi, et.

al)
- Matrix-Vector multiplication
- Image histogramming
- Heat conduction

e lrregular--- Complicated control structures and/or dynamic
data structures.
- N-Queens
- SAT solver kernel
e Different data structures, thread data affinity, and thread

management flavor; Both the PGAS and DGAS models are
applied to each benchmark.
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Matrix-vector multiplication 11—\_7]
u

e Multiplication of an N*N dense matrix and an N vector.
e Threads are distributed uniformly across the LPCs.
e Data Is distributed in both the DGAS and PGAS

fashion
Threa To |To | Threado To |ToO
Threa * p— Thread| 1 * — T1
vl [18 [ Drieadan 72

DGAS Data Distribution PGAS Data Distribution

MTAAP 2008, Miami, FL



Heat Conduction l@

e Heat transfers through a 3D solid.

e The solid is represented by an N*N*N matrix, at each
time step, the temperature is calculated at each point :

Tut]rlk - %(Tit—l,j,k +Tit+1,j,k +T':[j—1,k +T,

i i, j+1,

t t
k +Ti,j,k—1 +Ti,j,k+1)

Thread 6 | Thread 7 | Thread 8
> Each thread holds a sub-cube for

PGAS data distribution.

» DGAS data distribution uses no
locality

Thread 3 | Thread 4 | Thread 5

Thread O | Thread 1 | Thread 2

PGAS data distribution
MTAAP 2008, Miami, FL



SAT Solver IF_I]

e SAT-Boolean satisfiability problem. Itis very hard to
parallelize effectively on conventional architectures

- Given a boolean formula (usually in CNF) , check
whether an assignment of boolean truth values to the
variables in the formula exists, such that the formula
evaluates to true.

- For example, the CNF formula, x1 is true and x3 is
false, then all three clauses are satisfied,regardless of

h I f x2. — —
e VA O (X, v X2) A () A (X, v X,)

- PGAS and DGAS applied for both shared and private
data structures
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e Lightweight multithreaded architecture and
the memory model

e Simulation methodology
e Results

e Conclusions and future work
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Matrix-vector multiplication
LWP performance with fixed data set size
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e Ideal speedup with sufficient threads for both DGAS and
PGAS model

e PGAS has better scalability than DGAS, with the same
number of threads.
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Matrix-vector multiplication
7% LWP performance with fixed number of threads
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e The larger the data size, the larger the workload per
thread. The differences of speedup caused by changing
the size of work load are small.

e The thread management overhead is so low that the
per-thread workload is easy to be satisfied



Matrix-vector multiplication
MTA-2 performance
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e Compiler decides the number of threads automatically

- change the data set size to implicitly change the number
of threads

e Similar performance as the LWP DGAS



Image Histogramming ﬂ,
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e PGAS achieves better speedup
than DGAS on the LWP

e MTA-2 exhibits similar
performance to the LWP with

DGAS model
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Heat Conduction
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e PGAS achieves better speedup

than DGAS on the LWP

MTA-2 exhibits similar
performance to the LWP with

DGAS model



Execution Time
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Data from Parallel Multithreaded Satisfiability Solver: Design and Implementation By Yulik Feldman, et. al @ Intel

e Parallel implementation lead to performance degeneration

e The more processors, the worse performance

e Very hard to achieve good performance on conventional SMPs



SAT Solver on LWP
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N-Queens
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Number of Threads Needed

Conclusions li_é]

e The lightweight multithreaded architecture

- A good solution for regular and irregular problem, especially, for the
irregular problems that are proved hard to parallelize efficiently.

e PGAS vs. DGAS

I Threads needed in PGAS
[ Threads needed in DGAS

Maty; Img . He SA NQ
”X'Vector Mﬁ?tﬁ 'Stograégnf,?”duCtiot,solver Ueens
Iply Ing

- PGAS has better performance than
DGAS with the same number of
threads. For an application with
enough threads, both models achieve
good performance

- Highly irregular applications favor
PGAS more than regular ones

- Threads with limited variables have
similar performance on both models.
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