
Memory Model Effects on Application
Performance for a Lightweight

Multithreaded Architecture

Memory Model Effects on Application
Performance for a Lightweight

Multithreaded Architecture

Sheng Li, Shannon Kuntz, Peter Kogge, and Jay Brockman

University of Notre Dame

MTAAP 2008, Miami, FL

Sheng Li, Shannon Kuntz, Peter Kogge, and Jay Brockman

University of Notre Dame

MTAAP 2008, Miami, FL

MTAAP 2008, Miami, FL

Multicore/Multithreading Challenges

Fully exploiting the inherent parallelism of an application

Maintaining high throughput for all cores/contexts
(memory wall, synchronization overhead, thread
management overhead, and etc)

Data locality/affinity to threads for large scale systems to
reduce the data transfer time.

MTAAP 2008, Miami, FL

Our Contributions

Lightweight Processor (LWP)
0Highly multithreaded using lightweight threads

Successfully hide large latencies and contentions
0Supports Extended Memory Semantics (EMS)

Extremely low overhead on context switch and
synchronization

0Processing-In-Memory(PIM) Based
Effectively attack memory wall problem

Quantitatively evaluate effects of the two main memory
models---Distributed Global Address Space (DGAS)
vs. Partitioned Global Address Space(PGAS) on the
LWP system.

MTAAP 2008, Miami, FL

Outline

Lightweight multithreaded architecture and
the memory models

Simulation methodology

Results

Conclusions

MTAAP 2008, Miami, FL

Lightweight Threads

Unlike the heavyweight threads in current multicore processors,
the lightweight thread context (frame) is 32 double words
0Two double words are reserved for the thread status; 30 general

purpose registers.
0No other per thread state, easy for multithreading .

Frames are stored in memory (No Register File)
0Registers are aliases for memory locations

MTAAP 2008, Miami, FL

Lightweight Multithreading

Thread creation is fast and inexpensive - single
instruction
0Contrast with pthread creation - kernel intervention and as

many as 10,000’s of instructions

Unbounded Multithreading
0Threads are part of the memory system rather than the

processor state.
0“Unlimited number” of threads per processor.
0 Many opportunities for issuing an instruction.

MTAAP 2008, Miami, FL

Lightweight Processor (LWP)

Lightweight Processor (LWP) Lightweight Processor Chip (LPC) floor plan

Issue instruction from ready threads on each clock cycle

Architectural support for low overhead thread management

MTAAP 2008, Miami, FL

Extended Memory Semantics (EMS)

Memory subsystem is constructed of 65 bit dwords
064 bits of data
01 extension bit; 1: dword is Full, 0: dword is empty

Extends Cray MTA F/E bits
0Full/Empty: Contains data or not
0Extra states: Metadata can contain frame pointer

Same semantics apply to thread registers

64 bits of data/metadata

Extension bit

MTAAP 2008, Miami, FL

Single Producer/ Consumer on EMS

LWP behavior for load_fe with A empty.
0Location A changes state to “FVE: forward value, leave empty”
0Content of A is the target address of the forward operation (all

registers also have a memory address).

MTAAP 2008, Miami, FL

Completing the Load

How does the LWP complete the load_fe?
0store_ef arrives at A
0Data associated with store is returned to T2:R2 – this completes the

load_fe

0Location A changes to the empty state.

MTAAP 2008, Miami, FL

Large Scale System

MTAAP 2008, Miami, FL

Memory Models of the LWP/LPC system

Distributed Global Address Space (DGAS)
0Randomly distributes virtual addresses with some

small, fixed block size, across all LPCs
0Programming is “easy”.

Partitioned Global Address Space (PGAS)
0Each LPC holds a contiguous partition of virtual

addresses. All the LWPs in same LPC share the
local memory space
0Programming is difficult

Although the LPC system is physically PGAS, it can
also run in a DGAS addressing mode, using its
massive numbers of hardware threads to hide latency.

MTAAP 2008, Miami, FL

Outline

Lightweight Multithreaded Architecture and
the memory model

Simulation methodology

Results

Conclusions

MTAAP 2008, Miami, FL

Simulation Methodology

Compare PGAS vs. DGAS on LWPs

SALT -Simulator for the Analysis of LWP Timing
0Contains LWPs, LPCs, Network-on-Chip (NoC) and

memory subsystems, Cray MTA front-end ISA

Cray MTA-2 the multithreaded supercomputer to
validate the simulation results of LWP’s DGAS
performance
032 processors used in all simulations
0128 stream(thread)/processor
0DGAS model

MTAAP 2008, Miami, FL

Simulation Parameters

64# of LPCs

2000ns network delay, plus 200ns

memory latency (1100 Cycles)

Remote memory latency
200ns (100 cycles)Local memory latency

1 memory access per bank every cycleMemory throughput

22 stagesPipeline depth

1 instruction/cycle (With enough threads
to schedule)

Instruction issue rate
500MHzExpected clock rate
up to 128MBMemories/LPC

1LWPs/LPC

Values are based on Cray XMT architecture

MTAAP 2008, Miami, FL

Benchmark Suite

Regular problems (taken from the UPC book: UPC
distributed shared memory programming by Tarek El-Ghazawi, et.
al)
0Matrix-Vector multiplication
0Image histogramming
0Heat conduction

Irregular--- Complicated control structures and/or dynamic
data structures.
0N-Queens
0SAT solver kernel

Different data structures, thread data affinity, and thread
management flavor; Both the PGAS and DGAS models are
applied to each benchmark.

MTAAP 2008, Miami, FL

Matrix-vector multiplication

Multiplication of an N*N dense matrix and an N vector.

Threads are distributed uniformly across the LPCs.

Data is distributed in both the DGAS and PGAS
fashion

DGAS Data Distribution PGAS Data Distribution

MTAAP 2008, Miami, FL

Heat Conduction

Heat transfers through a 3D solid.

The solid is represented by an N*N*N matrix, at each
time step, the temperature is calculated at each point :

PGAS data distribution

1
, , 1, , 1, , , 1, , 1, , , 1 , , 1

1 ()
6

t t t t t t t
i j k i j k i j k i j k i j k i j k i j kT T T T T T T+

− + − + − += + + + + +

Each thread holds a sub-cube for
PGAS data distribution.

DGAS data distribution uses no
locality

MTAAP 2008, Miami, FL

SAT Solver

SAT-Boolean satisfiability problem. It is very hard to
parallelize effectively on conventional architectures
0Given a boolean formula (usually in CNF) , check

whether an assignment of boolean truth values to the
variables in the formula exists, such that the formula
evaluates to true.
0For example, the CNF formula, x1 is true and x3 is

false, then all three clauses are satisfied,regardless of
the value of x2.

0PGAS and DGAS applied for both shared and private
data structures

21 3 1 3() () ()X X X X X∨ ∧ ∧ ∨

MTAAP 2008, Miami, FL

Outline

Lightweight multithreaded architecture and
the memory model

Simulation methodology

Results

Conclusions and future work

MTAAP 2008, Miami, FL

Matrix-vector multiplication
LWP performance with fixed data set size

Ideal speedup with sufficient threads for both DGAS and
PGAS model

PGAS has better scalability than DGAS, with the same
number of threads.

DGAS, fixed data size (N=8192) PGAS, fixed data size (N=8192)

MTAAP 2008, Miami, FL

Matrix-vector multiplication
LWP performance with fixed number of threads

The larger the data size, the larger the workload per
thread. The differences of speedup caused by changing
the size of work load are small.

The thread management overhead is so low that the
per-thread workload is easy to be satisfied

DGAS, fixed number of threads (2048) PGAS, fixed number of threads (2048)

MTAAP 2008, Miami, FL

Matrix-vector multiplication
MTA-2 performance

Compiler decides the number of threads automatically
0change the data set size to implicitly change the number

of threads

Similar performance as the LWP DGAS

MTAAP 2008, Miami, FL

Image Histogramming

PGAS achieves better speedup
than DGAS on the LWP

MTA-2 exhibits similar
performance to the LWP with
DGAS model

MTA-2

LWP DGAS (N=8192)
LWP PGAS(N=8192)

MTAAP 2008, Miami, FL

Heat Conduction

MTA-2

LWP DGAS (N=256) LWP PGAS(N=256)

PGAS achieves better speedup
than DGAS on the LWP

MTA-2 exhibits similar
performance to the LWP with
DGAS model

MTAAP 2008, Miami, FL

SAT Solver on Conventional SMPs

Parallel implementation lead to performance degeneration

The more processors, the worse performance

Very hard to achieve good performance on conventional SMPs

Data from Parallel Multithreaded Satisfiability Solver: Design and Implementation By Yulik Feldman, et. al @ Intel

MTAAP 2008, Miami, FL

SAT Solver on LWP

LWP DGAS LWP PGAS

MTA-2

Both PGAS and DGAS achieve better
performance than conventional
architectures.

PGAS is better than DGAS on LWP

MTA has the same performance with
uuf502181 data set as the LWP

MTAAP 2008, Miami, FL

N-Queens

Both PGAS and DGAS achieve good
performance.

Better performance for LWP than for
MTA because of the “unbounded
multithreading” of the LWP.

Saturation is only due to small data set.

LWP PGAS

MTA-2

LWP DGAS

MTAAP 2008, Miami, FL

Outline

Lightweight multithreaded architecture and
the memory model

Simulation methodology

Results

Conclusions

MTAAP 2008, Miami, FL

Conclusions
The lightweight multithreaded architecture
0A good solution for regular and irregular problem, especially, for the

irregular problems that are proved hard to parallelize efficiently.

PGAS vs. DGAS
- PGAS has better performance than
DGAS with the same number of
threads. For an application with
enough threads, both models achieve
good performance

- Highly irregular applications favor
PGAS more than regular ones

- Threads with limited variables have
similar performance on both models.

MTAAP 2008, Miami, FL

Acknowledgments

DARPA and Air Force Research Laboratory
0This material is based upon work supported by the Defense

Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory under the Contract No. AFRLA
FA8650-07-C-7734.

Burton Smith, David Callahan, and David Harper
currently of Microsoft for their contributions to the
development of the LWP architecture.
Gary Block and Paul Springer at NASA/JPL for their
contributions to the development of the simulation
environment.

MTAAP 2008, Miami, FL

Thank you!

