Reducing the Run-time of MCMC Programs by Multithreading on SMP Architectures

Jonathan M. R. Byrd Stephen A. Jarvis Abhir H. Bhalerao

Department of Computer Science University of Warwick

MTAAP IPDPS 2008

WARWICK

くロト (過) (目) (日)

Outline

Markov Chain Monte Carlo

- Introduction to MCMC
- Program Cycle
- Existing Parallelisation

2 Speculative Moves

- Method
- Theoretical Results
- Practical Results

WARWICK

イロト イポト イヨト イヨト

Introduction to MCMC Program Cycle Existing Parallelisation

What is Markov Chain Monte Carlo?

- MCMC is a computationally expensive iterative technique for sampling from a probability distribution.
- Basic idea:
 - Construct a Markov Chain such that its stationary distribution is equal to the distribution we wish to sample.
 - After sufficient burn-in time, sampling from the chain is equivalent to sampling from the distribution.

WARWICK

イロト イポト イヨト イヨト

Introduction to MCMC Program Cycle Existing Parallelisation

What uses Markov Chain Monte Carlo?

MCMC is widely used in

- Bayesian statistics
- Computational physics
- Computational biology
- Specific applications include:
 - Phylogenetic analysis
 - Spectral modelling of X-ray data from the Chandra X-ray satellite

WARWICK

イロト イポト イヨト イヨト

- Calculating financial econometrics
- Mapping vascular trees from retinal slides

Introduction to MCMC Program Cycle Existing Parallelisation

The MCMC Program Cycle

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Summary

Introduction to MCMC Program Cycle Existing Parallelisation

The MCMC Program Cycle

Summary

Introduction to MCMC Program Cycle Existing Parallelisation

The MCMC Program Cycle

Summary

Introduction to MCMC Program Cycle Existing Parallelisation

The MCMC Program Cycle

イロト イポト イヨト イヨト

ъ

Summary

Introduction to MCMC Program Cycle Existing Parallelisation

イロト イポト イヨト イヨト

ъ

The MCMC Program Cycle

Summary

Introduction to MCMC Program Cycle Existing Parallelisation

The MCMC Program Cycle

Summary

Introduction to MCMC Program Cycle Existing Parallelisation

The MCMC Program Cycle

イロト イポト イヨト イヨト

ъ

Introduction to MCMC Program Cycle Existing Parallelisation

WARWICK

イロト イポト イヨト イヨト

Existing Parallelisation

• Execute multiple chains. Take samples from all of them.

- Embarrassingly parallel
- Does not reduce burn-in time.
- Does not help escape local optima.
- Metropolis-Coupled MCMC
 - Execute multiple chains.
 - Coarse parallelisation, machines connected by LAN.
 - Modifies algorithm to improve rate of convergence.
 - Good for escaping local optima.
 - Hard to predict benefits.

Introduction to MCMC Program Cycle Existing Parallelisation

WARWICK

イロト イポト イヨト イヨト

Existing Parallelisation

• Execute multiple chains. Take samples from all of them.

- Embarrassingly parallel
- Does not reduce burn-in time.
- Does not help escape local optima.
- Metropolis-Coupled MCMC
 - Execute multiple chains.
 - Coarse parallelisation, machines connected by LAN.
 - Modifies algorithm to improve rate of convergence.
 - Good for escaping local optima.
 - Hard to predict benefits.

Method Theoretical Results Practical Results

WARWICK

イロト イポト イヨト イヨト

- Each state in a Markov Chain must depend on only the preceding state.
- 2 But, typically only $\frac{1}{4}$ of iterations accept the proposed state-change.
- Consecutive rejected iterations could have been performed in parallel.
- In the second second

Method Theoretical Results Practical Results

WARWICK

イロト イポト イヨト イヨト

- Each state in a Markov Chain must depend on only the preceding state.
- Sut, typically only $\frac{1}{4}$ of iterations accept the proposed state-change.
- Consecutive rejected iterations could have been performed in parallel.
- In the second second

Method Theoretical Results Practical Results

WARWICK

イロト イポト イヨト イヨト

- Each state in a Markov Chain must depend on only the preceding state.
- Sut, typically only $\frac{1}{4}$ of iterations accept the proposed state-change.
- Consecutive rejected iterations could have been performed in parallel.
- In the second second

Method Theoretical Results Practical Results

WARWICK

イロト イポト イヨト イヨト

- Each state in a Markov Chain must depend on only the preceding state.
- Sut, typically only $\frac{1}{4}$ of iterations accept the proposed state-change.
- Consecutive rejected iterations could have been performed in parallel.
- Sector 2 => Assume all iterations will be rejected.

Method Theoretical Results Practical Results

WARWICK

ъ

・ロト ・ 日本 ・ 日本 ・ 日本

Speculative Moves Program Cycle

Method Theoretical Results Practical Results

WARWICK

ъ

・ロト ・ 同ト ・ ヨト・

Speculative Moves Program Cycle

Method Theoretical Results Practical Results

WARWICK

ъ

Speculative Moves Program Cycle

Method Theoretical Results Practical Results

WARWICK

ヘロト ヘ戸ト ヘヨト ヘヨト

Theoretical Benefits of Speculative Moves

- Let:
 - *n* be the number of iterations considered concurrently.
 - *p*_r be the average state-change rejection probability.
- Each program cycle performs 1..n MCMC iterations.
- On average $\frac{1-p_{\ell}^{p}}{1-p_{r}}$ MCMC iterations are performed at each loop of the program cycle.
- If multithreading overhead negligible, time for 1 program cycle \approx time for 1 MCMC iteration.

Method Theoretical Results Practical Results

WARWICK

ъ

ヘロト ヘワト ヘビト ヘビト

Theoretical Results

Theoretical Results

WARWICK

ъ

ヘロト ヘワト ヘビト ヘビト

Theoretical Results

Maximum benefit of speculative moves on runtime

Method Theoretical Results Practical Results

WARWICK

イロト イポト イヨト イヨト

Practical Testing

- Circle detection algorithm used for testing
 - Fixed number of iterations
 - Autogenerated images
 - Runtime values averaged over 20 runs
- Hardware utilised:
 - AMD Athlon 64 X2 4400+ (dual-core)
 - Intel Xeon Dual-Processor
 - Intel Pentium-D (dual core)
 - Intel Core2 Quad Q6600 (2x dual-core dies)
 - 56 Itanium2 processor SGI Altix

Method Theoretical Results Practical Results

WARWICK

э

< 🗇

Comparing Practical with Theoretical (1)

Method Theoretical Results Practical Results

WARWICK

▶ < Ξ

< < >> < </>

Comparing Practical with Theoretical (2)

Method Theoretical Results Practical Results

Preferable Architectures

Jonathan M. R. Byrd, Stephen A. Jarvis, Abhir H. Bhalerao Multithrea

Multithreading MCMC

WARWICK

ъ

This table shows the iteration time at which the overhead from multithreading balances the benefits, when $p_r = 0.75$.

WARWICK

ъ

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

	Iteration	Iteration
	Time (µ <i>s</i>)	Rate (<i>s</i> ⁻¹)
Xeon Dual-Processor	70	14 285
Pentium-D (dual core)	55	18 181
Q6600 (using 2 threads)	75	13 333
Q6600 (using 4 threads)	25	40 000

- The speculative moves method uses increasingly available multiprocessor and multicore machines to reduce the runtime of MCMC program.
- The statistical algorithm is preserved. Speculative moves will not effect the results, only the real-time required to obtain them.
- Real-time reductions of 35% using a dual-core and 55% using quad-cores machines have been demonstrated.

WARWICK

