
Architecture Optimizations for
Synchronization and

Communication on Chip
Multiprocessors

Sevin Fide and Stephen Jenks

Workshop on Multithreaded Architectures and Applications
International Parallel and Distributed Processing Symposium

April 18, 2008



2

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



3

Introduction
 Chip Multiprocessors (CMPs)

 Increasingly popular to address the growing
demand for higher performance

 Enable concurrent execution of multiple threads

 No explicit synchronization and
communication support for multithreaded
applications running on CMPs



4

Problems
 Synchronization Overhead

 Spin Waits

 Memory Bandwidth Bottleneck
 Many Simultaneous Accesses

 Cache Pollution
 Data Evictions from Shared Cache

 Demand-Based Data Transfers
 Depend on Coherence Mechanisms



5

Conventional Parallel Programming
 Data parallelism by

splitting data across
multiple threads

 Memory interface is
overburdened

 Performance degrades
due to large number of
cache misses

System 
Memory

Shared 
Cache

misses

hits

memory 
accesses

Processor 0

Processor 1

hits

misses



6

Synchronized Pipelined Parallelism Model

 SPPM: Producer-consumer
parallelism targeted for CMPs

 Producers and consumers
communicate via caches
 Producer fetches data into

cache and modifies it
 Consumer uses modified data

 A large number of cache
misses are converted into hits

System 
Memory

Shared 
Cache

misses

hits

memory 
accesses

misses

Producer

Consumer

hits



7

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



8

for i←0 to N do
while sync window for dataBlock[i] is violated

wait
read dataBlock[i]
generate results

Basic Consumer Implementation

 No Useful Work During Spin Waits

 Synchronization Window
 Access synchronization variables in memory

 Coherence Traffic



9

Basic Consumer Implementation

 Optimal Miss Rate: 15%
 L1 Cache Latency: 1 cycle
 L2 Cache Latency: 12 cycles
 Average Access Time

= L1 Latency + Miss Rate * (L1 Latency + L2 Latency)
= 3 cycles

for i←0 to N do
while sync window for dataBlock[i] is violated

wait
read dataBlock[i]
generate results



10

Register-Based Synchronization
 To avoid spin waits in

multithreaded applications
 Register-Based

Synchronization (RBS)
 Employs shared registers

with full/empty status bits
 Improvements:

 Reduced miss rates
 Reduced coherence traffic
 Reduced execution time
 Idle mode can save power



11

RBS Implementation
 Memory mapped locations to keep track of

synchronization variable accesses

 Device driver allocates kernel memory and
allows it to be mapped to user space

 Device’s reserved locations accessed as if
they were hardware registers



12

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



13

Prepushing

 Improvements:
 Reduced data requests
 Reduced cache misses
 Reduced communication latency



14

Prepushing Models
 Shared Prepushing

 PUSH-S-L1
 send data in shared state, write it to L1 cache

 PUSH-S-L2
 send data in shared state, write it to L2 cache

 Exclusive Prepushing
 PUSH-X-L1

 send data in exclusive state, write it to L1 cache
 PUSH-X-L2

 send data in exclusive state, write it to L2 cache



15

Prepushing Implementation



16

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



17

Benchmarks
 Red-Black Solver

 Solves a partial differential equation using a
finite differencing method

 Finite-Difference Time-Domain Method
 Extremely memory intensive electromagnetic

simulation

 ARC4 Stream Cipher
 Stream cipher used in protocols such as SSL

and WEP



18

Simulation Environment
 Simics - Full System Simulator
 GEMS Ruby - Memory Model
 Multi-Core System

 2 GHz UltraSPARC III+ Processors
 L1 Cache: 64 KB, 2-way associative, 1 cycle
 L2 Cache: 1 MB, 8-way associative, 12 cycles
 Cache Line Size: 64 B
 Main Memory: 4 GB, 120 cycles
 Operating System: Solaris 9



19

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



20

RBS Results
 Estimated Access Time per Iteration

= Average Access Time * 
Access Count per Iteration

 RBS Gain
= Estimated Access Time per Iteration /

Execution Time per Iteration



21

RBS Results (cont’d.)
 RB Solver - RBS Gain: 2-5% per iteration

 FDTD - RBS Gain: 6-11% per iteration

 ARC4 - RBS Gain: negligible



22

Normalized Execution Time

 Improvement depends on application behavior
 Exclusive prepushing models are more effective

at reducing execution time



23

Consumer’s L1D Cache Misses

 No improvement in PUSH-S-L2 and PUSH-X-L2
because consumer cannot find its data in L1 cache

 Better than accessing remote cache or main memory



24

Consumer’s L2 Cache Misses



25

Consumer’s Shared Data Requests

 Not many explicit shared data requests because
consumer receives data beforehand



26

Consumer’s Exclusive Data Requests

 No need to invalidate producer’s copy in
exclusive prepushing models



27

Conclusion
 RBS and Prepushing improve synchronization

and communication support for multithreaded
applications.

 RBS employs hardware registers to reduce miss
rates and help power savings.

 Prepushing provides an efficient communications
interface where data can be moved/copied from
one cache to another before it is needed at the
destination.


