
Architecture Optimizations for
Synchronization and

Communication on Chip
Multiprocessors

Sevin Fide and Stephen Jenks

Workshop on Multithreaded Architectures and Applications
International Parallel and Distributed Processing Symposium

April 18, 2008



2

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



3

Introduction
 Chip Multiprocessors (CMPs)

 Increasingly popular to address the growing
demand for higher performance

 Enable concurrent execution of multiple threads

 No explicit synchronization and
communication support for multithreaded
applications running on CMPs



4

Problems
 Synchronization Overhead

 Spin Waits

 Memory Bandwidth Bottleneck
 Many Simultaneous Accesses

 Cache Pollution
 Data Evictions from Shared Cache

 Demand-Based Data Transfers
 Depend on Coherence Mechanisms



5

Conventional Parallel Programming
 Data parallelism by

splitting data across
multiple threads

 Memory interface is
overburdened

 Performance degrades
due to large number of
cache misses

System 
Memory

Shared 
Cache

misses

hits

memory 
accesses

Processor 0

Processor 1

hits

misses



6

Synchronized Pipelined Parallelism Model

 SPPM: Producer-consumer
parallelism targeted for CMPs

 Producers and consumers
communicate via caches
 Producer fetches data into

cache and modifies it
 Consumer uses modified data

 A large number of cache
misses are converted into hits

System 
Memory

Shared 
Cache

misses

hits

memory 
accesses

misses

Producer

Consumer

hits



7

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



8

for i←0 to N do
while sync window for dataBlock[i] is violated

wait
read dataBlock[i]
generate results

Basic Consumer Implementation

 No Useful Work During Spin Waits

 Synchronization Window
 Access synchronization variables in memory

 Coherence Traffic



9

Basic Consumer Implementation

 Optimal Miss Rate: 15%
 L1 Cache Latency: 1 cycle
 L2 Cache Latency: 12 cycles
 Average Access Time

= L1 Latency + Miss Rate * (L1 Latency + L2 Latency)
= 3 cycles

for i←0 to N do
while sync window for dataBlock[i] is violated

wait
read dataBlock[i]
generate results



10

Register-Based Synchronization
 To avoid spin waits in

multithreaded applications
 Register-Based

Synchronization (RBS)
 Employs shared registers

with full/empty status bits
 Improvements:

 Reduced miss rates
 Reduced coherence traffic
 Reduced execution time
 Idle mode can save power



11

RBS Implementation
 Memory mapped locations to keep track of

synchronization variable accesses

 Device driver allocates kernel memory and
allows it to be mapped to user space

 Device’s reserved locations accessed as if
they were hardware registers



12

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



13

Prepushing

 Improvements:
 Reduced data requests
 Reduced cache misses
 Reduced communication latency



14

Prepushing Models
 Shared Prepushing

 PUSH-S-L1
 send data in shared state, write it to L1 cache

 PUSH-S-L2
 send data in shared state, write it to L2 cache

 Exclusive Prepushing
 PUSH-X-L1

 send data in exclusive state, write it to L1 cache
 PUSH-X-L2

 send data in exclusive state, write it to L2 cache



15

Prepushing Implementation



16

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



17

Benchmarks
 Red-Black Solver

 Solves a partial differential equation using a
finite differencing method

 Finite-Difference Time-Domain Method
 Extremely memory intensive electromagnetic

simulation

 ARC4 Stream Cipher
 Stream cipher used in protocols such as SSL

and WEP



18

Simulation Environment
 Simics - Full System Simulator
 GEMS Ruby - Memory Model
 Multi-Core System

 2 GHz UltraSPARC III+ Processors
 L1 Cache: 64 KB, 2-way associative, 1 cycle
 L2 Cache: 1 MB, 8-way associative, 12 cycles
 Cache Line Size: 64 B
 Main Memory: 4 GB, 120 cycles
 Operating System: Solaris 9



19

Outline

 Introduction

 Register-Based Synchronization

 Data Communications via Prepushing

 Simulation Environment

 Simulation Results

 Conclusion



20

RBS Results
 Estimated Access Time per Iteration

= Average Access Time * 
Access Count per Iteration

 RBS Gain
= Estimated Access Time per Iteration /

Execution Time per Iteration



21

RBS Results (cont’d.)
 RB Solver - RBS Gain: 2-5% per iteration

 FDTD - RBS Gain: 6-11% per iteration

 ARC4 - RBS Gain: negligible



22

Normalized Execution Time

 Improvement depends on application behavior
 Exclusive prepushing models are more effective

at reducing execution time



23

Consumer’s L1D Cache Misses

 No improvement in PUSH-S-L2 and PUSH-X-L2
because consumer cannot find its data in L1 cache

 Better than accessing remote cache or main memory



24

Consumer’s L2 Cache Misses



25

Consumer’s Shared Data Requests

 Not many explicit shared data requests because
consumer receives data beforehand



26

Consumer’s Exclusive Data Requests

 No need to invalidate producer’s copy in
exclusive prepushing models



27

Conclusion
 RBS and Prepushing improve synchronization

and communication support for multithreaded
applications.

 RBS employs hardware registers to reduce miss
rates and help power savings.

 Prepushing provides an efficient communications
interface where data can be moved/copied from
one cache to another before it is needed at the
destination.


