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Introduction

= Chip Multiprocessors (CMPs)

= |Increasingly popular to address the growing
demand for higher performance

= Enable concurrent execution of multiple threads

= No explicit synchronization and
communication support for multithreaded
applications running on CMPs
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= Synchronization Overhead
= Spin Waits
= Memory Bandwidth Bottleneck
= Many Simultaneous Accesses
= Cache Pollution
= Data Evictions from Shared Cache

= Demand-Based Data Transfers
= Depend on Coherence Mechanisms
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Conventional Parallel Programming

= Data parallelism by
splitting data across
multiple threads

Processor0

= Memory interface is
overburdened

hits B misses
memory
iccessis
hitsI misses

= Performance degrades
due to large number of

Processor1

cache misses
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Synchronized Pipelined Parallelism Model

= SPPM: Producer-consumer
parallelism targeted for CMPs

Producer

* Producers and consumers @itsimisses
communicate via caches mermory
= Producer fetches data into Shared L g
cache and maodifies it e AT
= Consumer uses modified data @“3 [mlsses Yy

Consumer

= A large number of cache
misses are converted into hits
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Basic Consumer Implementation

for i<=0 to N do
while sync window for dataBlock[i] is violated
wait
read dataBlock[i]
generate results

= No Useful Work During Spin Waits

= Synchronization Window
= Access synchronization variables in memory

= Coherence Traffic
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Basic Consumer Implementation

for i<—0 to N do

while sync window for dataBlock[i] is violated

wait
read dataBlock[i]
generate results

Optimal Miss Rate: 15%

L1 Cache Latency: 1 cycle

L2 Cache Latency: 12 cycles

Average Access Time

= L1 Latency + Miss Rate * (L1 Latency + L2 Latency)

= 3 cycles
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Register-Based Synchronization

= To avoid spin waits in
multithreaded applications

= Register-Based

Synchronization (RBS) i ’E
= Employs shared registers P : =
with full/empty status bits ’! c

;)
|-nm|-nm

* Improvements:

P
= Reduced miss rates >|

= Reduced coherence traffic Producer o —
= Reduced execution time
= |dle mode can save power
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RBS Implementation

= Memory mapped locations to keep track of
synchronization variable accesses

= Device driver allocates kernel memory and
allows it to be mapped to user space

= Device’s reserved locations accessed as if
they were hardware registers
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Prepushing

P Cc
processing processing
previous block
data ready request data
recewsee:]edqg:g =»] data needed (miss)

receive data

Conventional Approach

* |Improvements:
= Reduced data requests
= Reduced cache misses
= Reduced communication latency
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Prepushing
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Prepushing Models

= Shared Prepushing
= PUSH-S-L1
» send data in shared state, write it to L1 cache
= PUSH-S-L2

= send data in shared state, write it to L2 cache

= Exclusive Prepushing
= PUSH-X-L1
= send data in exclusive state, write it to L1 cache
= PUSH-X-L2
= send data in exclusive state, write it to L2 cache

o o\
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Prepushing Implementation

CPUO

for 1 = 0 to N {
while sync window violation
wait
process dataBlock[i]

signal prepusher

y

Cache Controller

—>| prepusher

CPU 1

for 1 = 0 to N {
while sync window violation
wait
process dataBlock[i]

L1 Cache >| L1 Cache
L2 Cache \{ L2 Cache
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= Red-Black Solver

= Solves a partial differential equation using a
finite differencing method

= Finite-Difference Time-Domain Method

= Extremely memory intensive electromagnetic
simulation

= ARC4 Stream Cipher

= Stream cipher used in protocols such as SSL
and WEP
-
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Simulation Environment

= Simics - Full System Simulator
= GEMS Ruby - Memory Model

= Multi-Core System
= 2 GHz UltraSPARC IlI+ Processors
= L1 Cache: 64 KB, 2-way associative, 1 cycle
= L2 Cache: 1 MB, 8-way associative, 12 cycles
= Cache Line Size: 64 B
= Main Memory: 4 GB, 120 cycles
= Operating System: Solaris 9

mi’f,‘ml
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RBS Results

= Estimated Access Time per lteration

= Average Access Time *
Access Count per lteration

= RBS Gain

= Estimated Access Time per lteration /
Execution Time per lteration
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RBS Results (cont’'d.)

= RB Solver - RBS Gain: 2-5% per iteration

Grid Size 200x 200 | 400 x 400
Exec. Time per Iter. (cycles) || 2,056,725 | 13,905.891
Access Count per Iter. 13,531 211,933
Est. Access Time per Iter. 40,593 635.799

= FDTD - RBS Gain: 6-11% per iteration

Grid Size 30x30x30 | 40x40x40
Exec. Time per Iter. (cycles) || 5,741,480 | 8,124,822
Access Count per Iter. 120,425 291,506
Est. Access Time per Iter. 361,275 874,518

= ARC4 - RBS Gain: negligible

Stream Size 10 MB 50 MB
Exec. Time per Iter. (cycles) || 1,327,413 | 1,330,287
Access Count per Iter. 56 72
Est. Access Time per Iter. 168 216
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Normalized Execution Time

1.0 -
0.8
ARC4 - 10
0.6 - W ARC4 - 50
M FDTD - 20
M FDTD - 30
0.4 - M FDTD - 40
B RB - 200
I RB - 400

0.2 1

0.0

SPPM PUSH-S-L1  PUSH-X-L1 PUSH-S-L2 PUSH-X-L2

* Improvement depends on application behavior

= EXxclusive prepushing models are more effective
at reducing execution time
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Consumer’s L1D Cache Misses

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

SPPM

PUSH-S-L1 PUSH-X-L1  PUSH-S-L2 PUSH-X-L2

ARC4 - 10
W ARC4 - 50
M FDTD - 20
M FDTD - 30
M FDTD - 40
B RB - 200
" RB - 400

= No improvement in PUSH-S-L2 and PUSH-X-L2
because consumer cannot find its data in L1 cache

= Better than accessing remote cache or main memory
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Consumer’s L2 Cache Misses

0.0
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Consumer’s Shared Data Requests
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= Not many explicit shared data requests because
consumer receives data beforehand
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Consumer’s Exclusive Data Requests
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= No need to invalidate producer’s copy in
exclusive prepushing models
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Conclusion

= RBS and Prepushing improve synchronization
and communication support for multithreaded
applications.

= RBS employs hardware registers to reduce miss
rates and help power savings.

= Prepushing provides an efficient communications
interface where data can be moved/copied from
one cache to another before it is needed at the
destination.
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