Architecture Optimizations for
Synchronization and

Communication on Chip
Multiprocessors

Sevin Fide and Stephen Jenks

Workshop on Multithreaded Architectures and Applications

International Parallel and Distributed Processing Symposium
April 18, 2008

UClIrvine

Distributed Systems Lab

= |ntroduction

» Register-Based Synchronization

= Data Communications via Prepushing
= Simulation Environment

= Simulation Results

= Conclusion

UClIrvine 2

Distributed Systems Lab

Introduction

= Chip Multiprocessors (CMPs)

= |Increasingly popular to address the growing
demand for higher performance

= Enable concurrent execution of multiple threads

= No explicit synchronization and
communication support for multithreaded
applications running on CMPs

UCIrvine 3

Distributed Systems Lab

= Synchronization Overhead
= Spin Waits
= Memory Bandwidth Bottleneck
= Many Simultaneous Accesses
= Cache Pollution
= Data Evictions from Shared Cache

= Demand-Based Data Transfers
= Depend on Coherence Mechanisms

UClIrvine : -

buted Systems Lab

Conventional Parallel Programming

= Data parallelism by
splitting data across
multiple threads

Processor0

= Memory interface is
overburdened

hits B misses
memory
iccessis
hitsI misses

= Performance degrades
due to large number of

Processor1

cache misses

UClIrvine

Scalable Parallel and
istribut tems La

Synchronized Pipelined Parallelism Model

= SPPM: Producer-consumer
parallelism targeted for CMPs

Producer

* Producers and consumers @itsimisses
communicate via caches mermory
= Producer fetches data into Shared L g
cache and maodifies it e AT
= Consumer uses modified data @“3 [mlsses Yy

Consumer

= A large number of cache
misses are converted into hits

UClIrvine :

Scalable Parallel and
Distributed Systems Lab

= |[ntroduction

» Register-Based Synchronization

= Data Communications via Prepushing
= Simulation Environment

= Simulation Results

= Conclusion

buted Systems

Basic Consumer Implementation

for i<=0 to N do
while sync window for dataBlock[i] is violated
wait
read dataBlock[i]
generate results

= No Useful Work During Spin Waits

= Synchronization Window
= Access synchronization variables in memory

= Coherence Traffic

UClIrvine : g@

Distributed Systems Lab

Basic Consumer Implementation

for i<—0 to N do

while sync window for dataBlock[i] is violated

wait
read dataBlock[i]
generate results

Optimal Miss Rate: 15%

L1 Cache Latency: 1 cycle

L2 Cache Latency: 12 cycles

Average Access Time

= L1 Latency + Miss Rate * (L1 Latency + L2 Latency)

= 3 cycles

UClIrvine

9

Scalable Parallel and
Distributed Systems Lab

Register-Based Synchronization

= To avoid spin waits in
multithreaded applications

= Register-Based

Synchronization (RBS) i ’E
= Employs shared registers P : =
with full/empty status bits ’! c

;)
|-nm|-nm

* Improvements:

P
= Reduced miss rates >|

= Reduced coherence traffic Producer o —
= Reduced execution time
= |dle mode can save power

UClIrvine 10 k= Q

m|m

RBS Implementation

= Memory mapped locations to keep track of
synchronization variable accesses

= Device driver allocates kernel memory and
allows it to be mapped to user space

= Device’s reserved locations accessed as if
they were hardware registers

e » r,LI

=L T

L
UCII » lne 11 Scalable Parallel and
Distributed Systems Lab

= |[ntroduction

» Register-Based Synchronization

= Data Communications via Prepushing
= Simulation Environment

= Simulation Results

= Conclusion

buted Systems

Prepushing

P Cc
processing processing
previous block
data ready request data
recewsee:]edqg:g =»] data needed (miss)

receive data

Conventional Approach

* |Improvements:
= Reduced data requests
= Reduced cache misses
= Reduced communication latency

UClIrvine 13

processing processing
previous block

data ready
send data \ receive data
=) data needed (hit)

Prepushing

0\ [
i = JLE
=L |

Scalable Parallel and
Distributed Systems Lab

Prepushing Models

= Shared Prepushing
= PUSH-S-L1
» send data in shared state, write it to L1 cache
= PUSH-S-L2

= send data in shared state, write it to L2 cache

= Exclusive Prepushing
= PUSH-X-L1
= send data in exclusive state, write it to L1 cache
= PUSH-X-L2
= send data in exclusive state, write it to L2 cache

o o\

UClIrvine 14 g

Distributed Systems Lab

Prepushing Implementation

CPUO

for 1 = 0 to N {
while sync window violation
wait
process dataBlock[i]

signal prepusher

y

Cache Controller

—>| prepusher

CPU 1

for 1 = 0 to N {
while sync window violation
wait
process dataBlock[i]

L1 Cache >| L1 Cache
L2 Cache \{ L2 Cache

UClIrvine

Memory

15

N
2O 2 &
=01

Scalable Parallel and
Distributed Systems Lab

= |[ntroduction

» Register-Based Synchronization

= Data Communications via Prepushing
= Simulation Environment

= Simulation Results

= Conclusion

UClIrvine 16 Oieio
Scalable Parallel and
Distributed Systems Lab

Syst

= Red-Black Solver

= Solves a partial differential equation using a
finite differencing method

= Finite-Difference Time-Domain Method

= Extremely memory intensive electromagnetic
simulation

= ARC4 Stream Cipher

= Stream cipher used in protocols such as SSL
and WEP
-

UCIrvine . = (U

buted Systems Lab

Simulation Environment

= Simics - Full System Simulator
= GEMS Ruby - Memory Model

= Multi-Core System
= 2 GHz UltraSPARC IlI+ Processors
= L1 Cache: 64 KB, 2-way associative, 1 cycle
= L2 Cache: 1 MB, 8-way associative, 12 cycles
= Cache Line Size: 64 B
= Main Memory: 4 GB, 120 cycles
= Operating System: Solaris 9

mi’f,‘ml

=L T

UClIrvine 18 A

buted Systems Lab

= |[ntroduction

» Register-Based Synchronization

= Data Communications via Prepushing
= Simulation Environment

= Simulation Results

= Conclusion

[3 []
f B B
° LA/ g
UClIrvine 19
Scalable Parallel and
Distributed Systems Lab

Syst

RBS Results

= Estimated Access Time per lteration

= Average Access Time *
Access Count per lteration

= RBS Gain

= Estimated Access Time per lteration /
Execution Time per lteration

UClIrvine 20

Distributed Systems Lab

RBS Results (cont’'d.)

= RB Solver - RBS Gain: 2-5% per iteration

Grid Size 200x 200 | 400 x 400
Exec. Time per Iter. (cycles) || 2,056,725 | 13,905.891
Access Count per Iter. 13,531 211,933
Est. Access Time per Iter. 40,593 635.799

= FDTD - RBS Gain: 6-11% per iteration

Grid Size 30x30x30 | 40x40x40
Exec. Time per Iter. (cycles) || 5,741,480 | 8,124,822
Access Count per Iter. 120,425 291,506
Est. Access Time per Iter. 361,275 874,518

= ARC4 - RBS Gain: negligible

Stream Size 10 MB 50 MB
Exec. Time per Iter. (cycles) || 1,327,413 | 1,330,287
Access Count per Iter. 56 72
Est. Access Time per Iter. 168 216

UClrvine 21 g@

Distributed Systems Lab

Normalized Execution Time

1.0 -
0.8
ARC4 - 10
0.6 - W ARC4 - 50
M FDTD - 20
M FDTD - 30
0.4 - M FDTD - 40
B RB - 200
I RB - 400

0.2 1

0.0

SPPM PUSH-S-L1 PUSH-X-L1 PUSH-S-L2 PUSH-X-L2

* Improvement depends on application behavior

= EXxclusive prepushing models are more effective
at reducing execution time

UClIrvine 22 O
Scalable Parallel and

Distributed Systems Lab

Consumer’s L1D Cache Misses

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

SPPM

PUSH-S-L1 PUSH-X-L1 PUSH-S-L2 PUSH-X-L2

ARC4 - 10
W ARC4 - 50
M FDTD - 20
M FDTD - 30
M FDTD - 40
B RB - 200
" RB - 400

= No improvement in PUSH-S-L2 and PUSH-X-L2
because consumer cannot find its data in L1 cache

= Better than accessing remote cache or main memory

UClIrvine

23

Scalable Parallel and
Distributed Systems Lab

Consumer’s L2 Cache Misses

0.0

1.0 -

0.8 A

0.6 4

0.4 1

0.2 4

SPPM

PUSH-S-L1 PUSH-X-L1 PUSH-S-L2 PUSH-X-L2

ARC4 -
W ARC4 -
- 20
- 30

W FDTD
M FDTD
M FDTD

B RB - 200

10
50

40

" RB - 400

UClIrvine

24

Scalable Parallel and
Distributed Systems Lab

Consumer’s Shared Data Requests

1.0 -

0.8 A

0.6

0.4

0.2

0.0 4

SPPM

PUSH-S-L1 PUSH-X-L1 PUSH-S-L2 PUSH-X-L2

ARC4 -
W ARC4 -
M FDTD -
- 30

M FDTD
M FDTD

M RB - 200

10
50
20

40

" RB - 400

= Not many explicit shared data requests because
consumer receives data beforehand

UClIrvine

25

Scalable Parallel and
Distributed Systems Lab

Consumer’s Exclusive Data Requests

1.0 -

0.8 A

ARC4 - 10
" ARC4 - 50
M FDTD - 20
M FDTD - 30
M FDTD - 40
M RB - 200
" RB - 400

0.6 4

0.4 4

0.2 4

0.0

SPPM PUSH-S-L1 PUSH-X-L1 PUSH-S-L2 PUSH-X-L2

= No need to invalidate producer’s copy in
exclusive prepushing models

UClIrvine 26 9@9

Distributed Systems Lab

Conclusion

= RBS and Prepushing improve synchronization
and communication support for multithreaded
applications.

= RBS employs hardware registers to reduce miss
rates and help power savings.

= Prepushing provides an efficient communications
interface where data can be moved/copied from
one cache to another before it is needed at the
destination.

C 2l

—RY

UClIrvine 27

Distributed Systems Lab

