
GraQL: A Query Language for High-Performance Attributed Graph Databases

Daniel Chavarrı́a-Miranda, Vito Giovanni Castellana, Alessandro Morari, David Haglin and John Feo
Physical and Computational Sciences Directorate
Pacific Northwest National Laboratory (PNNL)

Richland, WA
{daniel.chavarria, vitogiovanni.castellana, alessandro.morari, david.haglin, john.feo}@pnnl.gov

Abstract—Graph databases are becoming a critical tool for
the analysis of graph-structured data in the context of multiple
scientific and technical domains, including cybersecurity and
computational biology. In particular, the storage, analysis and
querying of attributed graphs is a very important capability.
Attributed graphs contain properties attached to the vertices
and edges of the graph structure. Queries over attributed
graphs do not only include structural pattern matching, but
also conditions over the values of the attributes. In this work,
we present GraQL, a query language designed for high-
performance attributed graph databases hosted on a high
memory capacity cluster. GraQL is designed to be the front-end
language for the attributed graph data model for the GEMS
database system.

I. INTRODUCTION

Graph databases have gained increasing interest in the
last few years due to the emergence of data sources that are
sparse and not owned by the user. Both make it difficult
to define a fixed, dense schema for the data and to analyze
the data using traditional relational databases [1], [2], [3].
Cybersecurity and computational biology are two applica-
tion areas in which graph models of data are increasingly
important. In cybersecurity, interaction graphs representing
communication occurring over time between different hosts
or devices on a network can be modeled and represented
accurately in a graph database [4]. Examples from biology
include the modeling of biological pathways which represent
the flow of molecular “signals” inside a cell for purposes of
metabolism, gene expression or other cellular functions.

Flexible and efficient representations of graph data have
become increasingly important for critical application areas
in science, security, commerce and industry. While the
relationship between entities is best represented as a graph,
storing the set of fixed attributes associated with many
entities as vertex-edge pair is wasteful. Consequently, the
representation of attributed graphs, in which vertices and
edges have collections of arbitrary attributes attached to
them—represents a fruitful approach to store graph data
models and to enable queries on them.

A multiplicity of graph database approaches have emerged
as an answer to these challenges, with the repurposing of
the semantic web’s Resource Description Framework (RDF)
and its associated SPARQL query language as one major
ecosystem [5], [6]. Other approaches have built custom and

specialized graph database systems [1], [2], [3] with varying
degrees of success, including ones that run on clusters [7].
However, none have captured the dual nature of data and
provided a transparent manner to specify queries that are
a combination of table and graph operations. Typically, the
answer to a graph query is an enumeration of subgraphs
that match a particular pattern specified by the query. These
patterns are specified in terms of their structure as well
as conditions that the attached properties must satisfy. In
the worst case, providing an answer to a graph query is
equivalent to the NP-complete subgraph homomorphism
problem.

The effective mapping of a graph database system to a
cluster and the fast, efficient execution of complex graph
queries remains a very challenging and open problem, due
to the very nature of graph data and dynamic query environ-
ment. These challenges include the difficulty of partitioning
graphs across nodes on a cluster, irregular and unstructured
data accesses and parallelism, the possibility of obtaining
large intermediate results, as well as the dynamic, just-in-
time nature of the queries. By specifying which relationships
are best represented as a graph and which are best stored as
dense tables, the user can assist the system in making better
decisions on how to layout data in memory and how/where
to execute operations.

Our previous research focused on developing an effective
mapping of RDF/SPARQL databases to high-performance
clusters [8], [9], [10]. While successful, we encountered
many difficulties because our system only supported graph
representations. We found that we lacked efficient ways to
store fixed sets of attributes and to express simple table
operations over the data. Thus, to achieve greater user
productivity, performance, and scalability, we have started
to investigate an attributed graph data model and language
extensions to capture the graph-table duality of real-word
data and queries. Our focus remains an in-memory graph
database in which the data resides across the aggregated
memory of the nodes in the cluster. The principal intent
is to minimize per query processing time and maximize
throughput. For a cluster of large enough size or enough
memory capacity per node, the overall capacity can be in
the range of tens of Terabytes, enough for non-trivial graph
data sets. For our target application space, it is worth while

to trade off the data capacity and persistence of storage, for
the increased high performance and throughput available via
DRAM.

We have based our attributed graph database design on a
few key principles:
• All data is stored in tabular form (equivalent to SQL

tables)
• Graph elements (vertices & edges) are represented as

views over those tables
• All database elements are strongly typed
The rationale behind these design principles are to enable

efficient yet rich and flexible representation of data for
different database uses, while allowing for a clear mapping
of the data and execution to a distributed memory cluster.
In this paper, we present a new data model that provides
both table and graph views of data sets and query language
constructs to define attributed graph pattern searches. We
provide both as extensions to SQL to minimize user dis-
comfort and workplace disruption.

II. DATABASE AND LANGUAGE DESIGN

We describe in more detail the key principles behind
our graph data model design and expand on the rationale
for their choices using the Berlin queries, a well-known
SPARQL/RDF benchmark [11]. We focus on a subset of
queries that correspond to a business intelligence use case.
This subset represents an e-commerce database of products,
producers, offers, vendors, and reviews, as well as types
and features associated with products, and persons writing
reviews. Figure 1 illustrates a logical data model for the
Berlin benchmarks. The ovals represent the data entities,
while the arrows represent the relationships between them.
In addition, each entity has an associated set of fixed, dense
attributes.

ProductsTypes

Producers

Features

Persons

Reviews

Offers Vendors

subclass producer reviewer

vendor

product

reviewFor

type

feature

Figure 1. Berlin logical data model

A. Data Model & Data Definition Language (DDL)
All data in our database is intended to be stored in tabular

form. We follow the same syntax and semantics established
by SQL database systems, enabling us to leverage existing
knowledge and experience with efficient algorithms for pro-
cessing and querying table data. We also have the potential

to use existing software platforms that manage tabular data
without having to reinvent the wheel, thus enabling us
to focus on the areas where we want to innovate: the
vertex/edge view of the data and its graph query potential.

Appendix A gives the table declarations for the Berlin
benchmarks. The tables’ columns, which we refer to as
attributes in our data model, are strongly typed. There is
a table per entity, and two additional tables for the relations
ProductTypes and ProductFeatures. In the case where the
number of attributes is variable, as in the case of the number
of types and features associated with a product, it is best to
declare a separate table to store that data.

In order to support a graph data model on top of basic
tabular data, we have created two new syntactic constructs
to enable the declaration of vertices and edges and to specify
their connection to the underlying tables that represent the
data. Figures 2 and 3 define the vertices and edges of the
graph view depicted in Figure 1.

c r e a t e v e r t e x TypeVtx (i d)
from t a b l e Types

c r e a t e v e r t e x F e a t u r e V t x (i d)
from t a b l e F e a t u r e s

c r e a t e v e r t e x Produce rVtx (i d)
from t a b l e P r o d u c e r s

c r e a t e v e r t e x P r o d u c t V t x (i d)
from t a b l e P r o d u c t s

c r e a t e v e r t e x VendorVtx (i d)
from t a b l e Vendors

c r e a t e v e r t e x O f f e r V t x (i d)
from t a b l e O f f e r s

c r e a t e v e r t e x PersonVtx (i d)
from t a b l e Pe r s on

c r e a t e v e r t e x ReviewVtx (i d)
from t a b l e Reviews

Figure 2. Berlin queries vertex declarations

Consider the declaration of ProductVtx, where each vertex
instance corresponds directly to a row entry in the Products
table. The vertex type declaration includes which columns
from the table uniquely identify each vertex instance (single
column in this case). We call these simple declarations in
which a vertex instance maps directly to a row entry in a
table, one-to-one mappings. We say that the primary key of
the table is the same as the unique identifier of the vertex
instance. For these one-to-one mappings it is easy to see
how, given a vertex instance identifier (key), we can access
additional attributes (columns) present in the source table.

An edge declaration specifies the vertex types it connects,
and the order of the types indicates the direction of the edge.
For example, a producer edge connects product vertices to

c r e a t e edge s u b c l a s s with
v e r t i c e s (TypeVtx as A, TypeVtx as B)

where A. s u b c l a s s O f = B . i d

c r e a t e edge p r o d u c e r with
v e r t i c e s (Produc tVtx , P roduce rVtx)

where P r o d u c t V t x . p r o d u c e r = Produce rVtx . i d

c r e a t e edge t y p e with
v e r t i c e s (Produc tVtx , TypeVtx)

from t a b l e P r o d u c t T y p e s
where P r o d u c t T y p e s . p r o d u c t = P r o d u c t V t x . i d

and P r o d u c t T y p e s . t y p e = TypeVtx . i d

c r e a t e edge f e a t u r e with
v e r t i c e s (Produc tVtx , F e a t u r e V t x)

from t a b l e P r o d u c t F e a t u r e s
where P r o d u c t F e a t u r e s . p r o d u c t = P r o d u c t V t x . i d

and P r o d u c t F e a t u r e s . f e a t u r e = F e a t u r e V t x . i d

c r e a t e edge p r o d u c t with
v e r t i c e s (Offe rVtx , P r o d u c t V t x)

where O f f e r V t x . p r o d u c t = P r o d u c t V t x . i d

c r e a t e edge vendor with
v e r t i c e s (Offe rVtx , VendorVtx)

where O f f e r V t x . vendor = VendorVtx . i d

c r e a t e edge r e v i e w F o r with
v e r t i c e s (ReviewVtx , P r o d u c t V t x)

where ReviewVtx . r e v i e w F o r = P r o d u c t V t x . i d

c r e a t e edge r e v i e w e r with
v e r t i c e s (ReviewVtx , Pe r sonVtx)

where ReviewVtx . r e v i e w e r = PersonVtx . i d

Figure 3. Berlin queries edge declarations

producer vertices. If a from table clause appears, an edge
is created for each table entry satisfying the where clause;
otherwise, the tables of the vertex types are joined and an
edge created for each entry in the result satisfying the where
clause.

GraQL also supports more complex situations in which
multiple vertex and edge types can be created from a
single table, as well as from relational operations over
several tables. In Figure 4 we declare two new vertex types,
ProducerCountry and VendorCountry, and a new edge type,
export. The semantics of our data model and language
creates a vertex instance for every unique country code in
the Producers and Vendors tables and an edge for every
product produced in one country and offered by a vendor
in another country. These more complex declarations where
multiple rows in a table correspond to a single vertex or edge
instance are called many-to-one mappings. Note that in the
case of many-to-one mappings, the primary key of the table
does not serve as a unique identifier (key) of the vertex or
edge. Figure 5 illustrates the many-to-one example visually.
In this case, the four-way join between the tables results in
two edges created between the US and Canada (CA), and
between Italy (IT) and China (CN).

c r e a t e v e r t e x P r o d u c e r C o u n t r y (c o u n t r y)
from t a b l e P r o d u c e r s

c r e a t e v e r t e x VendorCount ry (c o u n t r y)
from t a b l e Vendors

c r e a t e edge e x p o r t with v e r t i c e s
(P roduce rCoun t ry , VendorCount ry)

from t a b l e P r o d u c e r s , P r o d u c t s , Vendors , O f f e r s
where (P r o d u c e r s . i d = P r o d u c t s . p r o d u c e r) and

(Vendors . i d = O f f e r s . vendor) and
(P r o d u c t s . i d = O f f e r s . p r o d u c t) and
(P r o d u c e r . c o u n t r y != Vendor . c o u n t r y)

Figure 4. Richer vertex and edge declarations

id	 …	 country	

1	 US	

2	 IT	

3	 FR	

4	 US	

Producers	 Table	

Derived	 Graph	

Vendors	 Table	

US	 CA	

IT	

FR	

CN	

US	

id	 …	 country	

1	 CA	

2	 CN	

3	 US	

4	 CN	

id	 …	 producer	

1	 1	

2	 4	

3	 2	

4	 2	

Products	 Table	 Offers	 Table	

id	 …	 product	

1	 1	

2	 2	

3	 2	

4	 3	

vendor	

3	

3	

1	

2	

Figure 5. Tables and derived graph using a many-to-one mapping

Using relational algebra, we can define the creation of
vertices from a source table more formally:

V (ai, . . . , ak) = Πai,...,akσϕ(Ta1,...,an) (1)

Equation 1 describes how a vertex type can be created
from a source table. First, a selection operation σ is applied
to the rows in the table that satisfy condition ϕ, then a subset
of the attributes of those rows are selected to form the key
of the vertex type. The table T contains n attribute columns
(a1, . . . , an), while the resulting vertex type contains a
subset of those n columns as its key. Only one vertex
instance will be created for each unique combination of the
specified vertex key. In this manner, a vertex type is a view
over the underlying table data T .

The creation of edges from source (S) and target (T)
vertices and associated table (A) can be formally defined
as follows:

E(a1, . . . , an) = (S ./ (σϕAa1,...,an)) ./ T (2)

Equation 2 describes the semantics of edge creation from
two vertex types (source and target) and an associated table
(relation). First a selection operation σ with condition ϕ is
applied against the associated table. A natural join operation
of these selected tuples is then performed with the source
vertex instances and finally the result is joined with the target
vertex instances.

1) Overall Graph, Vertex and Edge Types: The overall
data can be treated as a single graph G = (V,E), where the
following properties hold:

V = ∪ρVρ
E = ∪τEτ

∀ Vi, Vj : Vi ∩ Vj = ∅
∀ Ei, Ej : Ei ∩ Ej = ∅

That is, the set of vertex types forms a partition over the
vertices of the graph, while the set of edge types forms a
partition over the set of edges. We will take advantage of
this property in the definition and interpretation of the query
language.

We use the notation Ei(Va, Vb) to indicate that particular
edge type Ei connects vertices of type Va and Vb as its
source and target respectively. Since there might be more
than one edge type connecting two particular vertex types,
we use the notation ∪jEj(Va, Vb) to represent all edge types
that connect the same vertex types.

The underlying graph is more precisely described as a
multigraph since more than one edge can exist between the
same pair of vertices.

2) Data Ingest: Populating the database, including tabu-
lar data, vertex and edge instances occurs upon execution of
an ingest command. The data definition commands set up
the scaffolding and structure of the database, while the data
ingestion process fully populates them. The ingest command
is quite simple:

i n g e s t t a b l e P r o d u c t s p r o d u c t s . c sv

In this case, the data for table “Products”, as declared
in the Appendix, is ingested from the file “products.csv”.
The file is expected to be accessible to the cluster nodes
executing the database system, and formatted using the CSV
(comma separated values) standard. It will be parsed accord-
ing to the data types of the attributes in the corresponding
table. Data ingest triggers not only the population of rows
in the table, but also the generation of associated vertex and
edge instances derived from the table.

Ingest commands are intended to be fully atomic with
respect to other data definition and query commands.

B. Query Language

The main objective of our query language is to obtain
subgraph selections from an overall graph that satisfy certain
structural or attribute (column) properties. The syntax and

semantics of our query language enable the expression
of combinations of structural paths in the graph that the
resulting subgraph must match. In addition to these sub-
graph queries, our language supports a subset of standard
SQL relational/tabular operations to enable manipulation,
preprocessing and postprocessing of graph data in table
form. These relational operations follow naturally from the
underlying tabular data store for graph data, as well as the
interpretation of graph query results as tables described in
the following sections.

s e l e c t y . i d
from graph

P r o d u c t V t x (i d = %P r o d u c t 1 %)
−p r o d u c t F e a t u r e−>

F e a t u r e V t x ()
<−p r o d u c t F e a t u r e−

def y : P r o d u c t V t x (i d != %P r o d u c t 1 %)
i n t o t a b l e T1

s e l e c t top 10
id , count (∗) as groupCount

from t a b l e T1
group by i d
order by groupCount desc

Figure 6. Berlin Query 2 - Select the top 10 products most similar to
Product 1 rated by the count of features they have in common.

Figure 6 shows the GraQL code for the second Berlin
query. The result of the first select statement is a table
of product ids, with each id repeated for each feature the
product has in common with the specific product.

Path queries must start with a vertex type and end with
a vertex type to enable correct formation of the resultant
subgraphs. A vertex type must be followed by an edge type
and an edge type must be followed by a vertex type. The
series of character −edge → indicates a path from the left
vertex to the right vertex along an outedge, and ← edge−
indicates a path from the right vertex to the left vertex along
an inedge. Each element between − and either → or ←
separators is a graph query step.

Our query syntax enables the specification of conditional
expressions on keys (or other attributes) of each vertex. Ver-
tex instances that satisfy those conditions are then considered
for the next step in the query path. An empty parentheses
“()” indicate that no filter is applied. On each step of the
query path, attributes can be compared against constants,
other attributes belonging to the same step, and/or attributes
from previous steps (if labeled, see Section II-B2).

1) Basic Path Queries: More formally, we define a path
query q with 2n− 1 steps as follows:

q = V1(ϕV1
)− E1(ϕE1

)→ · · ·−
En−1(ϕEn−1)→ Vn(ϕVn) (3)

A path query is correctly formed only if it starts with a
vertex type and ends with a vertex type. Vertex steps can
only be followed and preceded by edge steps. Edge steps
can only be followed and preceded by vertex steps. There
is an initial vertex step that is not preceded by an edge step
(V1) and a final vertex step that is not followed by an edge
step (Vn).

A query step for a vertex type V with attributes a1, . . . , ak
with conditions ϕ is a selection on the underlying table data
that represents the vertex type:

Vϕ = σϕ(Va1,...,ak) (4)

As V represents a view over the underlying table data,
we simplify the notation by treating V as if it was the table.
Equation 4 describes the result of applying a vertex step in
a query to the vertex type V . It is essentially a relational
selection over V , in which the subset of vertices that matches
condition ϕ is selected.

Similarly, a query step for an edge type E with attributes
a1, . . . , ak represents a selection over the underlying re-
lational data representing the edge type (see Equation 2):
Eϕ = σϕ(Ea1,...,ak).

The result of a path query is the subgraph that matches all
of the query steps. That is for a path query q the matching
subgraph corresponds to the set of vertices V (q) that satisfy
Equation 5 (the formulation for the satisfying set of edges
E(q) is analogous).

V (q) = {υ1 ∈ V1(ϕV1
)∧

υ2 ∈ V2(ϕV2
) ∧ (υ1, υ2) ∈ E1(ϕE1

)∧
υ3 ∈ V3(ϕV3

) ∧ (υ1, υ2) ∈ E1(ϕE1
)∧

(υ2, υ3) ∈ E2(ϕE2)∧
. . .

υn ∈ Vn(ϕVn
) ∧ (υ1, υ2) ∈ E1(ϕE1

) ∧ · · · ∧
(υn−1, υn) ∈ En−1(ϕEn−1

)} (5)

In other words, the path query is satisfied if each step in
the query is satisfied by itself and its successor steps. The
set of vertices selected at a particular step will be culled by
subsequent steps of all vertices that have no path to vertices
selected at that step.

2) Step Labels: Our query language enables the labeling
of a query step. Labels enable references to vertices or edges
that were matched as part of a previous step. In Figure 6,
the set of products that share a feature with %Product1% is
labeled with the syntax def y, allowing the select clause
at the start of the query to refer to just those products.

The label mechanism is a simple way of referring to
sets of vertices (or edges) from a particular step, that have
matched the path up to the point where the label appears.

In other words, the label aliases a set of vertices or edges
that matches a step in the query path.

More formally we define two types of labels: the set label
(def X:) and the element-wise label (foreach x:) used
in the implementation of the first Berlin query shown in
Figure 7.

s e l e c t TypeVtx . i d
from graph

PersonVtx (c o u n t r y = %Count ry2%)
<−r e v i e w e r−

ReviewVtx
−r ev iewFor−>

foreach y : P r o d u c t V t x
−p roduce r−>

Produce rVtx (c o u n t r y = %Count ry1%)
and

(y −type−> TypeVtx)
i n t o t a b l e T 1

s e l e c t top 10
id , count (∗) as groupCount

from t a b l e T1
group by i d
order by groupCount desc

Figure 7. Berlin Query 1 - Select the top 10 most discussed products
categories of products from Country 1 based on reviews from reviewers
from Country 2.

Set Labels:

q = V1(ϕV1)− E1(ϕE1)→ · · · → def X : Vi(ϕVi)− . . .
X − · · · − En−1(ϕEn−1)→ Vn(ϕVn) (6)

q = V1(ϕV1
)− E1(ϕE1

)→ · · · → Vi(ϕVi
)− . . .

X ⊆ Vi(ϕVi)− · · · − En−1(ϕEn−1)→ Vn(ϕVn) (7)

Equation 6 presents a path query with a set label X for
vertex step Vi, which is then referenced in vertex step i +
j. The path query will match all steps using the normal
semantics defined in Equation 5, including for step i+j. This
makes the path query described in Equation 6 semantically
equivalent to the query in Equation 7.

In Equation 7 for step i+ j, we have specified the same
vertex type Vi and same condition ϕVi as for step i. The set
X of matching vertices can be a subset of the Vi vertices
since by definition, it has been culled by the intervening j
steps.

Element-wise Labels:

q = V1(ϕV1)−E1(ϕE1)→ · · · → foreach x : Vi(ϕVi)−. . .
x− · · · − En−1(ϕEn−1)→ Vn(ϕVn) (8)

Equation 8 describes a path query that contains an
element-wise label x for vertex step Vi. The label is then
referenced in step i+j. The semantics of this query are more
restrictive than the set label query described in Equation 6.

In fact, the subgraph patterns matched by Equation 6 are a
superset of those matched by Equation 8.

We define q(i) as the partial path query match up to step i
of query q. Equation 5 provides the definition of a full path
match up to step n of the query. Restricting its scope to step
i provides the definition of a partial query match. V (q(i))
corresponds to the set of vertices matched up to step i, while
E(q(i)) corresponds to the set of edges matched up to the
same step.

An element-wise label matches each individual vertex (or
edge) in the set matched on step i to the elements on step
i + j. More precisely (and without loss of generality), if
vertices ϑ and ψ are members of the set of vertices matched
up to step i:

ϑ, ψ ∈ V (q(i)) = {υi ∈ Vi(ϕVi
) ∧ (υ1, υ2) ∈ E1(ϕE1

)∧
· · · ∧ (υi−1, υi) ∈ Ei−1(ϕEi−1)∧
υ1 ∈ V1(σV1) ∧ υ2 ∈ V2(σV2) ∧ . . .

υi−1 ∈ Vi−1(σVi−1
)} (9)

Then ϑ matches step i + j if ϑ ∈ V (q(i + j)) and ϑ ∈
V (q(i)). That is the exact vertex instance ϑ appears in both
step i and step i+ j in the path.

A set label would match a path with ϑ in step i and ψ in
step i+ j, if ψ satisfies the conditions for step i+ j and ϑ
satisfies the conditions for step i.

Less formally, a set label can match a cycle, while an
element-wise label will only match a cycle.

3) Multi-path Queries: Linear path queries with disjunc-
tions in step conditions and type matching as described in
Section II-B4 cannot express patterns that comprise multiple
paths in a single graph (i.e. contain branches). Figure 8 is
a graphical representation of the first Berlin query. Notice
there is no linear path through all vertices, as the multiple
edges into and out of the product vertex create a branch
point. Multi-path queries are a straightforward extension that
enables the expression of composite graph patterns.

productVtx

type

personVtx.country	 =	
%Country2%

producerVtx.country	 =	
%Country1%producer

typeVtx

reviewer
reviewVtx

reviewFor

Table
{id}

Group	 By
{id}

Count	
Over	
Groups

Top	 10

Figure 8. Berlin Query 1 in graphical form

We provide two ways of composing simple path queries
into a multi-path query: and composition and or compo-

sition. Or composition is straightforward to describe, given
two simple path queries q1 and q2 their composition q1 or q2
matches the union of the subgraphs described by the result
of q1 and q2. That is:

V (q1 or q2) = V (q1) ∪ V (q2)

E(q1 or q2) = E(q1) ∪ E(q2)

The and composition of two queries is only well defined
if the two simple path queries share a label (set or element-
wise). Let q1 define a label ` for step i, if q2 references
label ` at step j then by Equations 6 and 8 the path match
discovered on q1 up to step i is incorporated in step j on q2
together with q2’s own path match up to step j − 1.
q(i) is defined to be the partial path query match up to

step i of query q. Using this definition, q2’s step j must
satisfy the path matched by ` ∧ q2(j − 1).

graph P r o d u c t V t x (i d = %P r o d u c t 1 %) <−[]− []

Figure 9. Query - return subgraph of all reviews and offers of Product 1

4) Type Matching and Path Regular Expressions: A more
powerful query mechanism appears when we want to follow
a path in which there is freedom in which kinds of edges
or vertices to choose for each step. Figure 9 illustrates an
example query in which we return the subgraph of all offers
and reviews of Product1. The syntax “[]” indicates a meta-
variable that can match any edge or vertex type. In this case,
edge types product and reviewFor and vertex types OfferVtx
and ReviewVtx. We refer to steps where multiple edge or
vertex types may match as variant steps.

More precisely, the syntax “[]” indicates that for a
particular step any vertex type or edge type that matches
should be followed. We consider step i with a variant type
for edges:

Vi−1 − Ei−1 → Vi − []→ Vi+1 (10)

In this case, step i of the path query can be satisfied by
any edge type that has source vertex type Vi and target vertex
type Vi+1. If E(i− 1) is the set of edges in the path query
that match up to step i− 1, then the set of edges matching
for step i corresponds to the union of edges of matching
types (using the notation specified in Section II-A1):

E(i) =
⋃
i

Ei(Vi, Vi+1) (11)

The definition of variant query step i when we have
variation over the vertex types is analogous.

Conditional expressions for variant query steps are not
allowed in the query due to the fact that there is no guarantee
that attributes are common across multiple matching vertex
or edge types.

Interaction of Labels with Type Matching Steps: It is
possible to label a type matching step (outside of a path
regular expression). The reason to do so is to be able to write
queries that are type independent, that is the query specifies
a structural pattern in the graph that can be potentially
matched by several vertex and edge types.

def X : []− []→ X (12)

Equation 12 illustrates a purely structural query enabled
by the combination of type matching and labels. In this case,
it specifies a path of length one that starts with any type of
vertex, traverses a single edge and must end with the same
type of vertex. The same semantics apply to foreach labels.

Since all elements in GraQL are strongly typed, the use
of labels for type matching steps must also conform to this
restriction. For this reason, the use of a label from a type
matching further down the query path carries the type of
each matching element (vertex or edge). That is a label X
that corresponds to a vertex of type V1 will only match
a vertex of the same type downstream, it cannot match a
vertex of type V2, thus the type of the label becomes bound
at matching time. A type matched label expands into a set
of labels (X , X ′, X ′′, . . .), an independent one for each
matching type.

Query Path Regular Expressions: A very general query
capability that our design provides is the specification of
paths using regular expressions over variant steps. Figure 10
presents an example of the use of regular expressions in
specifying query paths. In this case, the path starts at
a concrete vertex type (VertexA) with specific conditions
(conditionsA), traverses one or more (+ regular expression
operator) edge/vertex pairs and must end up in a ver-
tex of concrete type VertexB satisfying specific conditions
(conditionsB). Our design supports the traditional regular
expression operators to specify zero or more times (“*”) as
well as specific repetition counts (“{10}”).

graph VertexA (c o n d i t i o n s A) −
{ [] −> [] − [] }+ −>
VertexB (c o n d i t i o n s B)

Figure 10. Regular expression query over variable path lengths

C. Query Results

The previous sections have detailed how queries in GraQL
are composed and what the different language components
mean with respect to the graph being queried. We now
specify how the results of a query can be represented, in
particular given the duality of our data model between a
relational view and a graph view.

Given a simple path query q with n steps, we define an
extension to the standard SQL select operation which en-
ables the specification of a matching subgraph as the query,

as well as the output of these results as a named subgraph
or a table. The extensions are illustrated in Figure 11 for the
named subgraph case.

s e l e c t ∗
from graph V0 − E0 −> V1 − E1 −> . . . −> Vn
i n t o sub graph r e s u l t s G

s e l e c t V0 , Vn
from graph V0 − E0 −> V1 − E1 −> . . . −> Vn
i n t o sub graph r e s u l t s B E

Figure 11. Capturing results of a graph query into a subgraph

In Figure 11 the “select *” syntax indicates the selec-
tion of all matching vertices and edges of the subgraph into
a named entity called “resultsG”, while the second query
selects only the vertices matching the first and last step of
the query into a named subgraph called “resultsBE”. The
output steps (V0, Vn) must be unambiguous to be used in
the “select” statement, if they are not then labels can be used
to disambiguate them.

Figure 12 illustrates how the results set of a query
(resQ1) can be used to seed the second query as its first
vertex step by using the “.” notation. In this case, the vertices
matched by the last step of the first query are used to restrict
the source vertices for the first step of the second query.

s e l e c t Vn
from graph V0 − E −> Vn
i n t o sub graph resQ1

s e l e c t ∗
from graph resQ1 . Vn (condQ1) −> . . .
i n t o sub graph resQ2

Figure 12. Final vertex set of a simple query used in a subsequent query
statement

More precisely, the full subgraph result of a query of n
steps is the set of vertices and edges that satisfy the query up
to the final step, defined as q(n) according to the notation
in Section II-B3. A selection of certain vertices or edges
of the subgraph corresponds to extracting those from the
full matching subgraph and representing them as a (possibly
disconnected) subgraph.

1) Results as Tables: Given the duality between tabular
and graph views of the data, it is natural to consider
how to represent the results of a graph query as tables.
This enables further post-processing of those results using
powerful non-graph, relational operations. We propose a
couple of mechanisms to integrate graph results into standard
SQL relational expressions.

Figure 13 illustrates the proposed syntax for representing
the full matching subgraph of a simple path query as a
new table (resultsT). In this case, each row has all the
attributes of all entities involved in the query path. The table

s e l e c t ∗
from graph Ver t ex1 (c o n d i t i o n s V 1) −

. . . −> VertexN (cond i t i onsVN)
i n t o t a b l e r e s u l t s T

Figure 13. Representing the whole matching subgraph as a table

will have one row for each matching path in the subgraph
(with possible repetitions of subpaths).

s e l e c t V0 . a , EA . c , V1 . d
from graph V0 (conds0) − EA(condsA) −> . . .

V1 (conds1)
i n t o t a b l e r e s u l t s P T

Figure 14. Representing resulting subgraph elements as a table

Figure 14 illustrates the case where the user does not want
the full subgraph as a table, but only a part of it. In this
case, the columns of the table will correspond to V0.a,
EA.c and V1.d, with one row per matching subpath in the
results subgraph (repetitions are possible).

With respect to multi-path queries, their interpretation as a
table follows the same rules as for a single path query. Each
row will consist of columns matching the selected (possibly
all) attributes of the subgraph entities, with the possibility
of rows having NULL entries for attributes that are not part
of certain paths in the multi-path query.

Table I summarizes the core SQL operations on tables
supported by GraQL. For more details on SQL operations
and their semantics see [12].

SQL operation Description
select Selection and projection operations
order by Sorting operation
group by Group together rows with the same key
distinct Select distinct rows of a table
count Count row instances in a table
avg Average numeric values across row instances

min
Return “smallest” value of a column across row
instances

max
Return “largest” value of a column across row
instances

sum
Return summation of numeric values across row
instances

top n Return top n rows of a table
as x Used to alias entity names in relational operations

Table I
TABLE OPERATIONS SUPPORTED BY THE RELATIONAL PART OF GRAQL

III. IMPLEMENTATION AND PERFORMANCE
CONSIDERATIONS

As mentioned in Section I our target system is a cluster
of high-performance servers (“compute nodes”) with ample
DRAM memory connected via a high speed network such
as InfiniBand.

Our database system is named GEMS (Graph Engine for
Multi-threaded Systems) and it is a second-generation sys-
tem intended to target in-memory attributed graph data. The
first-generation GEMS system targeted graphs represented
as RDF triples and used the SPARQL query language.

Data sources for the in-memory GEMS database are
assumed to reside on a high performance parallel filesystem
accessible to all compute nodes on the cluster, for purposes
of data ingest and eventual output to files.

The GEMS database system is composed of the following
components:

1) Clients: clients can range from a simple command-line
interface to web-based front-ends.

2) Server: the server centralizes access to the database
system in order to provide access control, distinct user
accounts, as well as a central metadata repository (cat-
alog) of all existing database objects (tables, vertices,
edges). The catalog contains updated information on
the sizes of those objects (e.g. how many rows in table?
how many vertex instances of certain type?).

3) Backend cluster: the backend cluster supports the
high-performance, massively parallel execution of
graph and tabular queries over the database, which is
primarily resident on the aggregated memory of the
compute nodes.

A GraQL script is a text file with a series of data
definition, data ingest and query commands written in
GraQL with the intent of obtaining insight via queries into
the underlying GEMS graph database. Data definition and
ingest commands can be assumed to execute atomically with
respect to subsequent query commands.

Let Ω = q1, q2, . . . , qn represent the GraQL script in
question. Each qi represents an individual GraQL query
command as defined in Section II-B. An individual qi could
be a simple path query, a multi-path query or a relational
table operation. The output of an individual qi can be used
as input to subsequent individual queries as described in
Section II-C.

A GraQL script is parsed and compiled into a high-level
binary intermediate representation (IR) that is a convenient
mechanism for moving the query script from the front-end
portion of the GEMS system to the backend for execution.

A. Static Query Analysis

Given the availability of a metadata catalog on the GEMS
front-end server, GraQL scripts can be statically checked
for correctness as well as limited levels of feasibility of the
query (e.g. will the query result be empty?).

Correctness checks include a number of different type
checking issues: is the query comparing an attribute with
a constant (or other attribute) of the wrong type? (e.g.
comparing a date to a floating-point number); is the query
using an entity of correct type for certain operations? (e.g.
a table name should be used when a table is required,

rather than a vertex type name); is a path query correctly
formulated?

These are a number of possible query checks that can be
computed in a fully static manner without having access to
the real data in the database. The only requirement is access
to the metadata describing the database’s entities: tables,
vertices and edges.

B. Dynamic Query Analysis, Planning & Optimization

Once the query has been statically analyzed and deemed
correct in the type checking sense, the question then be-
comes how to execute it in the shortest period of time possi-
ble by effectively utilizing the backend cluster’s capabilities.

Once the binary high-level representation of the query has
been transmitted to the cluster environment, further analysis
can be performed with respect to dynamic properties of the
data (which may or may not be available on the front-end
catalog). Examples of these properties could be number of
instances of vertex and edge types, as well as statistical
properties of the degree distribution of a vertex type with
respect to an edge type (e.g. how many outgoing edges of
type E1 are there for instances of vertex type V ?).

A fundamental data structure that we use in the GEMS
cluster backend is the edge index. The edge index lets us
perform a step of a graph path query of the form S(σs) −
E(σe)→ T (σt), where S corresponds to the source vertex
type, E to the edge type and T to the target vertex type (the
σ expressions represents conditions on each type).

For performance considerations, we not only create an
edge index in the lexical direction declared by the user
S − E → T , but also in the reverse direction T − E → S
(when memory space on the cluster is available). The exis-
tence of both forward and reverse indices enables significant
flexibility on how to execute a path query: the execution is
not restricted to the forward-looking lexical representation
of the path query in GraQL.

With the underlying knowledge of the existence of bidi-
rectional edge indices, we can then formulate path query
planning as a series of decisions on which order to traverse
the edge indices indicated by the query.

1) Multi-statement GraQL scheduling & planning: Given
a multistatement GraQL script Ω = q1, q2, . . . , qn, and the
explicit representation of outputs and inputs for each query
via the use of the “into subgraph and “into table”
expressions, we can build a multi-statement dependence
representation.

This representation enables the query planner to determine
whether two separate query statements qi and qj can be
executed in parallel (if there are enough processing and
memory resources on the cluster), or need to be executed in
sequence. Pipelined execution of dependent query statements
can also be considered to reduce the amount of space needed
to materialize intermediate results.

IV. CONCLUSIONS & FUTURE WORK

We have presented the design of the GraQL query
language and its associated GEMS attributed graph data
model. We have discussed the key features of GraQL/GEMS
including the key notion of a graph view built on top of
tabular data sources, strongly typed attributes and entities,
different variants of graph pattern matching, as well as
flexible manipulation of query results as subgraphs and
tables. We are currently working on the implementation
and realization of this design in the context of the GEMS
database system. We expect that our design will provide a
high performance, yet flexible interface to query massive
graph databases stored on a distributed cluster.

ACKNOWLEDGMENT

This work was performed as part of the High-Performance
Data Analytics (HPDA) program at the Pacific Northwest
National Laboratory (PNNL).

REFERENCES

[1] R. Angles and C. Gutierrez, “Survey of graph database
models,” ACM Comput. Surv., vol. 40, no. 1, pp. 1:1–1:39,
Feb. 2008.

[2] V. Kolomičenko, M. Svoboda, and I. H. Mlýnková, “Ex-
perimental Comparison of Graph Databases,” in Proceedings
of International Conference on Information Integration and
Web-based Applications & Services, ser. IIWAS ’13.
New York, NY, USA: ACM, 2013, pp. 115:115–115:124.

[3] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and
D. A. Bader, “A Performance Evaluation of Open Source
Graph Databases,” in Proceedings of the First Workshop on
Parallel Programming for Analytics Applications, ser. PPAA
’14. New York, NY, USA: ACM, 2014, pp. 11–18.

[4] C. Joslyn, S. Choudhury, D. Haglin, B. Howe, B. Nickless,
and B. Olsen, “Massive Scale Cyber Traffic Analysis: A
Driver for Graph Database Research,” in First International
Workshop on Graph Data Management Experiences and
Systems, ser. GRADES ’13. New York, NY, USA: ACM,
2013, pp. 3:1–3:6.

[5] M. Arenas and J. Pérez, “Querying Semantic Web Data with
SPARQL,” in Proceedings of the Thirtieth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Sys-
tems, ser. PODS ’11. New York, NY, USA: ACM, 2011, pp.
305–316.

[6] S. Sakr, S. Elnikety, and Y. He, “G-SPARQL: A Hybrid En-
gine for Querying Large Attributed Graphs,” in Proceedings
of the 21st ACM International Conference on Information and
Knowledge Management, ser. CIKM ’12. New York, NY,
USA: ACM, 2012, pp. 335–344.

[7] A. Khan and S. Elnikety, “Systems for big-graphs,” Proc.
VLDB Endow., vol. 7, no. 13, pp. 1709–1710, Aug. 2014.

[8] J. Weaver, V. G. Castellana, A. Morari, A. Tumeo, S. Puro-
hit, A. Chappell, D. Haglin, O. Villa, S. Choudhury,
K. Schuchardt, and J. Feo, “Toward a data scalable solution
for facilitating discovery of science resources,” Parallel Com-
puting, vol. 40, no. 10, pp. 682 – 696, 2014.

[9] V. Castellana, A. Morari, J. Weaver, A. Tumeo, D. Haglin,
O. Villa, and J. Feo, “In-memory graph databases for web-
scale data,” Computer, vol. 48, no. 3, pp. 24–35, Mar 2015.

[10] A. Morari, V. Castellana, O. Villa, A. Tumeo, J. Weaver,
D. Haglin, S. Choudhury, and J. Feo, “Scaling semantic graph
databases in size and performance,” Micro, IEEE, vol. 34,
no. 4, pp. 16–26, July 2014.

[11] C. Bizer and A. Schultz, “The Berlin SPARQL Benchmark,”
International Journal On Semantic Web and Information
Systems, 2009.

[12] C. J. Date and H. Darwen, A Guide to the SQL Standard
(4th Ed.): A User’s Guide to the Standard Database Lan-
guage SQL. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1997.

APPENDIX

A. Table Declarations for Berlin queries
c r e a t e t a b l e Types (

i d varchar (∗) ,
t y p e varchar (∗) , / / P roduc tType
l a b e l varchar (∗) ,
comment varchar (∗) ,
s u b c l a s s O f varchar (∗) , / / Types . i d [1 . . N]
p u b l i s h e r varchar (∗) ,
d a t e t date

)

c r e a t e t a b l e F e a t u r e s (
i d varchar (∗) ,
t y p e varchar (∗) , / / P r o d u c t F e a t u r e s
l a b e l varchar (∗) ,
comment varchar (∗) ,
p u b l i s h e r varchar (∗) ,
d a t e f date

)

c r e a t e t a b l e P r o d u c e r s (
i d varchar (∗) ,
t y p e varchar (∗) , / / P r o d u c e r
l a b e l varchar (∗) ,
comment varchar (∗) ,
homepage varchar (∗) ,
c o u n t r y varchar (∗) ,
p u b l i s h e r varchar (∗) ,
d a t e p date

)

c r e a t e t a b l e P r o d u c t s (
i d varchar (∗) ,
t y p e varchar (∗) , / / P r o d u c t
l a b e l varchar (∗) ,
comment varchar (∗) ,
p r o d u c e r varchar (∗) , / / P r o d u c e r s . i d
p r o p e r t y N u m e r i c 1 i n t e g e r ,
p r o p e r t y N u m e r i c 2 i n t e g e r ,
p r o p e r t y N u m e r i c 3 i n t e g e r ,
p r o p e r t y N u m e r i c 4 i n t e g e r ,
p r o p e r t y N u m e r i c 5 i n t e g e r ,
p r o p e r t y T e x t 1 varchar (∗) ,

p r o p e r t y T e x t 2 varchar (∗) ,
p r o p e r t y T e x t 3 varchar (∗) ,
p r o p e r t y T e x t 4 varchar (∗) ,
p r o p e r t y T e x t 5 varchar (∗) ,
p u b l i s h e r varchar (∗) ,
d a t e p date

)

c r e a t e t a b l e P r o d u c t T y p e s (
/ / A p r o d u c t has 1 t o N t y p e s
p r o d u c t varchar (∗) , / / P r o d u c t s . i d
t y p e varchar (∗) / / Types . i d

)

c r e a t e t a b l e P r o d u c t F e a t u r e s (
/ / A p r o d u c t has 9 t o 22 f e a t u r e s
p r o d u c t varchar (∗) , / / P r o d u c t s . i d
f e a t u r e varchar (∗) / / F e a t u r e s . i d

)

c r e a t e t a b l e Vendors (
i d varchar (∗) ,
t y p e varchar (∗) , / / Vendor
l a b e l varchar (∗) ,
comment varchar (∗) ,
homepage varchar (∗) ,
c o u n t r y varchar (∗) ,
p u b l i s h e r varchar (∗) ,
d a t e v date

)

c r e a t e t a b l e O f f e r s (
i d varchar (∗) ,
t y p e varchar (∗) , / / O f f e r
p r o d u c t varchar (∗) , / / P r o d u c t s . i d
vendor varchar (∗) , / / Vendors . i d
p r i c e f l o a t ,
v a l i dF rom date ,
v a l i d T o date ,
d e l i v e r y D a y s i n t e g e r ,
o f ferWebPage varchar (∗) ,
p u b l i s h e r varchar (∗) ,
d a t e o date

)

c r e a t e t a b l e P e r s o n s (
i d varchar (∗) ,
t y p e varchar (∗) , / / Pe r s on
name varchar (∗) ,
mai lbox varchar (∗) ,
c o u n t r y varchar (∗) ,
p u b l i s h e r varchar (∗) ,
d a t e p date

)

c r e a t e t a b l e Reviews (
i d varchar (∗) ,
t y p e varchar (∗) , / / Review
r e v i e w F o r varchar (∗) , / / P r o d u c t s . i d
r e v i e w e r varchar (∗) , / / P e r s o n s . i d
r e v i e w D a t e date ,
t i t l e varchar (∗) ,
t e x t varchar (∗) ,
r a t i n g s 1 i n t e g e r ,
r a t i n g s 2 i n t e g e r ,
r a t i n g s 3 i n t e g e r ,
r a t i n g s 4 i n t e g e r ,
p u b l i s h e r varchar (∗) ,
d a t e r date

)

