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Abstract. Electrical power grid contingency analysis aims to under-
stand the impact of potential component failures and assess a system’s
capability to tolerate them. The computational resources needed to ex-
plore all potential x-component failures, for modest sizes of x > 1, is
not feasible due to the combinatorial explosion of cases to consider. A
common approach for addressing the large workload is to select the most
severe x-component failures to explore (a process we call filtering). It is
important to assess the efficacy of a filter; in particular, it is necessary to
understand the likelihood that a potentially severe case is filtered out. A
framework for assessing the quality/performance of a filter is proposed.
This framework is generalized to support resource-aware filters and mul-
tiple evaluation criteria.
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1 Introduction

In large-scale power transmission systems, predicting faults and preemptively
taking corrective action to avoid them is essential to prevent rolling blackouts.
Power grid contingency analysis is the study of the impact of potential com-
ponent failures, which is frequently done with computational simulation. In the
early part of this decade, the state of the art was N − 1 contingency analysis,
referring to the ability to predict the behavior of the electrical grid in response
to a single random failure. However, in response to increasing load, dynamic
power generation, and several wide-area blackouts in the early 2000’s, the power
engineering community has begun to realize the necessity of predicting the con-
sequences of more simultaneous faults. This problem, generally termed “N − x
contingency analysis”, grows combinatorially with the number of components in
the grid, and for large power systems spanning thousands of components, the
requirements to enumerate and simulate all possible scenarios rapidly becomes
infeasible. Still, analyzing concurrent failure modes helps operators better un-
derstand a system’s overall behavior, especially its response to cascading faults,
and remains an important objective in the field.



One commonly-accepted method for avoiding this computational explosion
is to use an approximation technique to estimate which elements in the grid
are most likely to cause severe instability in the grid if they fail, and simulate
only the failure of those pieces. This allows for devoting limited computational
resources to the cases most likely to be important to the power grid. In this
context, we see three avenues for general improvement:

1. Many filtering techniques exist in published literature [5], but in general,
there is no universally agreed-upon methodology for evaluating the success
of any particular one over another;

2. Although most filtering algorithms do reduce the number of simulated cases
that need to be computed, there is no general approach to quantifying the
degree to which the accuracy of a filter is affected by the reduction factor;

3. While it is true that there is a correlation between the severity of a sin-
gle fault and the severity of subsequent faults, predicting the former is not
sufficient to predict the latter in general. Thus, when solving the problem
of N − x contingency analysis, the set of sub-problems N − 1, N − 2, etc.
actually compete for simulation resources and must be prioritized according
to operational requirements; no documented technique exists to do so.

When viewed at a high level, contingency analysis is not altogether dissim-
ilar from many existing large-scale data mining problems, and several of the
unsolved issues that contingency analysis faces have analogs in other domains.
In this paper, we present a cohesive solution for addressing all three of the de-
ficiencies above with the hope of providing a jumping-off point for integrating
the contingency analysis and data mining fields. More precisely, our contribu-
tion is an abstract framework that implements: a method for evaluating the
efficacy of a filtering algorithm for contingency selection (Section 3), a technique
for resource-aware integration of multiple filters (Section 4), and a strategy for
managing competing heterogenous selection pipelines with a shared, constrained
resource (Section 5).

2 Context

To a power engineer, contingency analysis is a complex, multi-disciplinary prob-
lem which often requires not only technical ingenuity, but also political and
logistical savvy. Vast networks of embedded sensors and data aggregation nodes
report parameters describing the state of a power grid upstream to control cen-
ters where the data is fed to massive numerical models. Operators then enumer-
ate a host of possible failure conditions and simulate the grid’s response, judging
whether the possible consequences merit preemptive action. Managing this wave
of distributed sensor data, building accurate electrical simulations, and assessing
the relative benefits of corrective adjustments are all well outside the scope of
this paper and rightly deserve entire conferences of their own accord.

Fundamentally, however, the computational workflow for the core problem
can be radically simplified to look more familiar to the computer science com-
munity. The power engineer is essentially concerned with one question: which



failures are the most likely to cause severe damage to the grid? From this per-
spective, we note that contingency analysis looks very similar to a scoring or
ranking problem. The input to our framework is the set of all possible contin-
gencies, each representing the possibility of a component failure somewhere in
the transmission network. Each contingency is simulated and assigned a sever-
ity score by a vetted method, then handed off to an operator. Graphically, this
process looks something like the diagram in Figure 1.
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Fig. 1. General contingency analysis framework. The trusted scorer represents
an algorithm that is trusted by the power grid community and is usually based upon
simulating power flow.

Techniques for computing a numerical value for severity have been thor-
oughly researched in the power engineering community [4, 11]. Unfortunately,
two factors complicate the matter: first, accurate simulation of a real electrical
grid is not a trivial computation. While approximation techniques and iterative
methods have been studied for over 40 years, precise solutions to the AC load
flow equations still require on the order of seconds to compute on a typical server
[8]. Second, the number of possible fault conditions which must be considered is
staggering. Power engineers give the name “N − 1 contingencies” to the set of
possible grid conditions where exactly one major component has critically failed.
Likewise, “N − x” refers to the set of all possible scenarios where x faults have
occurred simultaneously. Current standards set by North American Electric Re-
liability Corporation (NERC), the primary U.S. regulatory body for electricity
generation and transmission, requires utilities to ensure that the power grids
they oversee can operate without failure under N − 1 conditions, and that cer-
tain N − x cases will not cause a system-wide blackout [12]. Given the limited
number of cases considered, it is likely that current analysis will overlook many
preventable catastrophic failures resulting from multiple outages. Unfortunately,
one published model of only high-power transmission in the Western U.S. power
grid contains almost 20,000 distinct transmission lines [16]. If one steps back to
look at the numbers, N −x contingency analysis for x ≤ 3 would amount to well
over 2.6 trillion possible failure conditions. Even on a modern parallel cluster of
1,000 servers, completely simulating every failure would take 8 years–the power
engineering community is looking to get an answer in closer to a few minutes.

It should be clear that this is a severely resource-constrained problem. One
way of overcoming this challenge is to throw out most of the contingency cases,
running a full simulation on only the scenarios that are expected to be the
most severe. We call the algorithm responsible a filter. Essentially, a filter is



just a much simpler algorithm which computes a ranked list of all contingency
cases by approximate severity. Then, based on the amount of computational
resources available, the control center selects a small subset from the top of the
list and runs a full simulation on each, producing an accurately scored final set.
Historically, this has been a popular option in the power engineering community
for two reasons: first, the number of catastrophic contingencies is usually very
small, so removing faults which will have little overall impact can be effective at
significantly reducing the input. Second, when a potentially-critical contingency
is identified, an operator needs exact electrical information in order to take
corrective action, so even if a filter was flawless at identifying severe cases, a full
simulation would still need to be run.
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Fig. 2. Contingency analysis framework with filter. A filter reduces the number
of input cases a trusted scorer must evaluate by predicting the severity of each case
and only allowing the most probable through.

The simple framework in Figure 2 allows us to focus our efforts on a clean,
abstract problem with well-defined elements. Over the next three sections we
will introduce improvements to it that can subsequently be re-integrated into
operational contingency analysis pipelines.

3 A Metric for Evaluating Filters

Influenced by the perspective of using this framework, one of the first obser-
vations we made was that, in spite of a long and well-documented history of
research on filtering in contingency analysis [4, 1, 5, 15], there was a surprising
dearth of work on metrics for quantitatively assessing the efficacy of a given filter
(though some exceptions can be found [7]). Historically, research in this field was
driven by the practical aspects of reducing the overall amount of computation,
instead of a strict notion of accuracy.

To address this problem, we began by considering the behavior of an ideal
filter. If a filter had perfect knowledge, then the set of output cases produced by
a trusted scorer using that filter would be identical to the set of output cases
produced by a trusted scorer using no filter at all. In other words, an ideal
filter can predict with perfect accuracy the top k cases that a trusted scorer will
produce and pass only those cases on. Using this definition, it is not difficult
to invent a means for evaluating the efficacy of any given filter relative to the
theoretical ideal. Essentially, the entire question boils down to choosing the best
method for evaluating the similarity of two ranked lists–a question which has a



large number of possible solutions, each with varying degrees of applicability to
a given domain.

For the contingency analysis problem, we need only to compare the similarity
of the top k elements in each list, since the assumption of our process frame-
work is that there is only a limited amount of time to compute trusted scores.
Moreover, we make a simplifying claim that a given contingency case is strictly
more important than every other contingency case ranked below it in a given list
(driven by the observation that in an operational contingency analysis setting,
a human operator handles the output of a trusted scorer, and operators work in
priority-order). Using these two assumptions, we note that by calling the top k
cases selected using an ideal filter “True” and all other contingencies “False”, we
can directly apply any evaluation metric commonly used for binary classifiers.
Thus, we can speak of the precision of a given filter by computing the number
of contingency cases that appear in the top k of that filter and in the top k of
the ideal filter.

It should be made clear that we do not claim that this adaptation of preci-
sion is globally applicable. On the contrary, we understand that the assumptions
made here may not hold for other domains, and we embrace this diversity. In-
stead, the utility here is a means for taking an arbitrary comparison function
over ordered sets and applying it to the filtering problem. Moreover, as we will
soon see, this abstract definition of a filter metric enables further refinements.

4 Resource-Aware Filter Combination

In Section 2, we described the severe resource constraints on the problem of
contingency analysis. The overwhelming majority of the computational cost of
contingency analysis is spent in the simulation of the electrical behavior of the
various scenarios under consideration. In terms of our abstract framework (Fig-
ure 2), since the trusted scorer is essentially derived from the electrical simulation
we say that the cost of the entire pipeline can be represented by calculating the
cost of the work done by the trusted scorer. Assuming that all other components
have negligible cost might seem strong, but in practice, effective filters must have
a completely different complexity in order to sufficiently reduce the dataset, and
this assumption is quite reasonable.

Looking at the entire contingency analysis workflow, this observation pro-
duces an interesting effect: because a filter controls the size of the input set to a
trusted scorer and the trusted scorer dictates the overall computational load, if
given enough information, it is possible to construct a filter which takes as input
the amount of resources available and produces an output set which will satisfy
that constraint. We call such a filter resource-aware. It is worth reiterating that
in our framework, such an algorithm need not be aware of its own computational
cost but rather the induced effects of its output.

In general, a resource ceiling is usually given in time or compute cycle bounds.
Unfortunately, a filter cannot directly control the amount of time spent by a
trusted scorer on its workload; it can only adjust the number of cases it allows
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Fig. 3. Contingency analysis framework with resource-aware filter. A
resource-aware filter uses information about the resources available to a trusted scorer
(r) to adjust how many input cases are filtered out.

through. Thus, it is necessary to provide a cost function which takes a number of
cases, k, and predicts the resources required to evaluate it, r. For our particular
domain, we can make a reasonable assumption which trivializes this problem: the
variance in the cost of computing any particular electrical grid scenario versus
another is negligible–in practice, the cost of solving the load flow equations for
a power grid is typically dominated by the size of the grid, not its state. Thus,
our cost function is a simple linear relationship between the cardinality of the
set of cases that a filter produces and the time a trusted scorer will take to
evaluate them. In other words, we can assume k ∝ r. For other domains, it is
possible that a more complicated cost function may be necessary, but the overall
principle remains the same.

With a clear definition of what constitutes a resource-aware filter in hand,
we can extend the evaluation metric introduced in Section 3 to quantitatively
evaluate these algorithms. Unfortunately, it quickly becomes evident, after ex-
perimenting with various candidates, that there exists inherent nonlinearity in
the efficacy of a given filter when measured across varying resource constraints.
In other words, one method may be more effective than another when reducing
the input dataset by a factor of 5, but the opposite may be true when reducing
by a factor of 20 (see Figure 4). In practice, this means that one filter function
rarely stands above the rest in all situations, but this need not be a stumbling
block.

The natural solution is to use our evaluation metric as a predictive measure
and adaptively choose the most appropriate filter from a set of candidates based
on the current resource constraint conditions. Under these assumptions, we see
a classic machine learning problem: we build a model of filter behavior with
respect to available resources by evaluating the algorithm while varying the
available resources. By creating such a performance model for each filter in our
arsenal, we allow ourselves to dynamically select which algorithm to use while
the contingency analysis pipeline is in operation. The resulting augmentations
to our framework are shown in Figure 5.

We understand that we have left many aspects of model building for resource-
aware filters untouched. While we will describe some of these as areas for future
work later on, it is important to note that the contribution here is not specific re-
sults from machine learning on filters in contingency analysis (we have refrained
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Fig. 4. Illustrative example of nonlinear efficacy with respect to resource
usage. To visually represent the concept of inconsistent filter performance, we plot the
precision of two hypothetical filters (y-axis) against the amount of resources saved (x-
axis). When the filters are used to reduce the input set by a factor of 5, one outperforms
the other, but the relationship flips when reducing by a factor of 20.
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Fig. 5. Learning a resource model in the contingency analysis framework.
By evaluating training data against a candidate filter, we can build a predictive model
of efficacy vs. output size. This model can be used to select the most effective filter
given the resources available to the trusted scorer, even in the presence of nonlinearity.



from presenting them here), but rather the fact that by using our process frame-
work we enable resource-aware machine learning. In other words, we claim these
assumptions and abstractions are powerful in their own right, as they allow us to
leverage a very large body of prior work in machine learning against this domain.

5 Multi-Criteria Optimization

In addition to massive computational demand, N − x contingency analysis is
complicated by the necessity of addressing various degrees of failure. We can
observe that not only do various filters behave differently when operating on the
N−1 problem versus the N−2 problem, but due to the substantial difference in
computational complexity, some filters become completely infeasible to run (our
assumption about neglecting the cost of filtering breaks down, inverting the cost
model and rendering the filter unusable). Moreover, due to the lower probability
of two simultaneous failures occurring and more lenient federal regulation, the
relative priority of actually performing contingency analysis on N − x changes
drastically as x increases. In other words, it becomes crucial for operators to be
able to allocate appropriate resources to different filters computing dissimilar
problems based on their relative importance.

To simplify the discussion, we will start by generalizing the terminology
somewhat. Instead of talking about concurrently solving the various contingency
analysis problems, we say that there exists a number of criteria which must be
evaluated using a shared, constrained amount of resources. For the power grid
problem, information and code is often shared between different N − x calcula-
tions. However, this overlap is primarily for convenience, not performance, and as
such, we will assume criteria are effectively independent, and each must have its
own separate pipeline (trusted scorer, filter, cost function, performance model,
etc.). The only exception is that the computational resources consumed by one
trusted scorer are shared with those of other criteria. We represent the layout of
this problem visually in Figure 6.

Given the results from Section 4, we already have the tools available to solve
this problem. For each filter, we build a predictive model which expresses the
expected accuracy as a function of the level of resource reduction. Then we
construct an objective function that takes as input a set of models (one for each
criteria) and the available resources r and produces a set of resource allocations
{rA, rB , ...} that collectively optimize the operator’s goal. When running the
workflow operationally, each filter will then produce a set of cases to feed to
its respective trusted scorer which should only consume the specified amount of
resources. We augment our process framework with these new steps in Figure 7.
We note that since the predictive models we generate are empirically-defined, we
cannot make many assumptions about their behavior, and likewise, the same is
true about an objective function which seeks to optimize some value using them.
In other words, there is no efficient, general solution to creating the objective
function we propose for all possible filters. However, part of the reason for this is
that we have not placed any constraints on the goals which we seek to optimize;
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Fig. 6. Multi-criteria contingency analysis framework. Multiple independent
criteria can be evaluated by constructing separate pipelines for each. The total available
resources, r, will be shared when evaluating the trusted scorers.

with simplifying assumptions, it becomes relatively straightforward to produce
a usable algorithm.

The most basic (and restrictive) assumption is to allow only a proportional
allocation of resources. That is, the operator specifies a weight for each criteria
indicating relative importance. A general objective function under this assump-
tion is a simple linear weighting of the available resources–if filter A is given a
weight of 0.25 and filter B is given a weight of 0.75, then one quarter of the
available resources will always be given to the pipeline for criteria A and the re-
mainder to pipeline B. Unfortunately, this assumption is blind; it does not take
into account the relative efficacy of the filters being used. By using our predic-
tive models, we can allow the operator to specify the importance of the answers
they want, as opposed to the resource consumption. More precisely, if we let
the function MA(rA) be the efficacy of filter A as predicted by the model when
producing an output set that will consume rA resources, then we can formulate
an expression for an objective function which prioritizes based on the expected
behavior using a weight for each filter wA.

wA ∗MA(rA) = wB ∗MB(rB)

r = rA + rB

Thus, our objective function becomes a solver for this set of equations. Keep
in mind, however, that M(r) is an empirically-derived model of the behavior of
a filter, and as such, it cannot be assumed to be linear or even differentiable
(and in practice, it is neither). As a result, analytical solvers are generally not
useful for implementing objective functions. Using numerical methods for ap-
proximating a solution is generally sufficient, as the models M(r) are predictive
and therefore inherently entail an expectation of error, so a numerical solution
need only be accurate to less than the margin of error of the predictive model
(and our experience in the power grid domain has been that this is typically
easy to achieve).
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Fig. 7. Multi-criteria contingency analysis framework with resource-aware
filters. By combining all the techniques introduced in this paper, we can intelligently
apportion available resources to multiple pipelines by using predictive models to un-
derstand the efficacy/cost tradeoffs for each filter and an objective function to optimize
the allocation based on an operator’s priorities.



6 Related Work

There are a number of recent papers exploring topics in resource-aware mining;
all of these discuss learning algorithms for building models where the algorithm
is cognizant of resource availability and usage. The goal of these approaches is
to use either minimal computation or to stay within available computational
resources during the learning process and still produce a useful model. Two
applications of this type of resource-aware algorithm include: building a model
from within a sensor network, where battery charge may be a scarce resource [3,
13]; and stream mining where computational resources may be limited relative to
the rate of streaming [14, 6]. We note that our approach differs significantly from
these strategies in that our process aims to optimize the efficacy of an algorithm
(in our case, a filter) based on the resource constraints of a separate, downstream
procedure rather than algorithm itself. We consider the cost of training and
assessing to be computationally negligible.

A recent paper introduced the idea of building decision-making modules in
measurement systems that need to be deployed on resource-constrained plat-
forms [10]. Their idea is to use genetic algorithms (GAs) and multiobjective
optimization to guide the selection of support vector machine (SVM) models
to deploy in a resource-constrained environment such as a wireless sensor net-
work. Their method uses GAs to explore different parameter settings for an
SVM that affects classification accuracy and computational complexity, and se-
lects a finely-tuned SVM for deployment. Each SVM is targeted to a specific
resource-constrained platform and is tuned to run with the available resources.
In our case, the amount of available resources is not fixed at filter-tuning time;
it is imposed after deployment and affects only accuracy, not the computational
requirements. Recall that our assumption is that the cost of computing the filter
is negligible relative to the cost of computing the trusted scorer. Our goal is to
systematically assess the accuracy of a filter at differing availability of resources.

7 Future Work

In this paper we describe how we assess the quality of a filter that we simply
placed into the framework. It might be significantly better to use one or more
machine learning algorithm(s) to construct or tune a filter. An interesting study
would be to compare a learned filter to one of the filters currently considered for
this role such as betweenness centrality for N − 1 contingency analysis [9] and
group betweenness centrality for N − x, x > 1 contingency analysis.

It may be advantageous to deploy multiple filters, some learned and some
predefined, and devise a technique for combining the results of these filters into
an overall rank ordering of contingency cases a la an ensemble technique. The
intention would be to achieve greater overall performance by combining several
algorithms than optimally selecting any single one. An interesting further study
would be to compare several different ensemble techniques measured within our
resource-constrained framework.



We have not explored the use of uncertainty quantification and how un-
certainty values propagate through our framework. We understand (and have
experienced) the error introduced by using a set of training cases to build the
predictive models we use, but measuring this uncertainty could enable us to
reason about the expected bounds of our optimizations. Understanding the un-
certainty propagation might drive further improvement of filters and objective
functions.

Unlike other fields of research, such as machine learning and data mining,
standard datasets for power grids do not exist [2]. It would be valuable to ex-
plore and categorize different characteristics of power grid input and develop a
repository of datasets that are representative of power grids in practice.

Finally, the contingency analysis problem can be viewed as a streaming prob-
lem with updates to the grid occurring in short time intervals, imposing a time
constraint on decisions for corrective adjustments to the power grid in addition
to the existing resource constraint. There is a reuse and prioritization aspect to
a streaming model of the framework that may be worth exploring.

8 Conclusion

We have presented an abstract framework for intelligent filtering in the domain of
power grid contingency analysis. Understanding the need for quantitative meth-
ods to systematically assess the quality of a filter algorithm, we introduced an
evaluation strategy which adapts the notion of precision to fit our contingency
analysis workflow. From there we observed that since the efficacy of a filter may
be significantly different under varying conditions, we proposed a process for
training and applying predictive models in order to select the best filter as a
function of available computational resources. Finally, we extended our frame-
work to support resource allocation using a multi-criteria optimization function
across competing parallel workflows. We close by noting that while the practical
application of our work to the contingency analysis problem has already been
valuable, it is our hope that the generalization of the framework presented in this
paper can offer sound tactics for using filtering as a solution for many resource-
constrained environments as well as providing a basis for further opportunities to
apply machine learning techniques to problems in the power engineering domain.
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