
ALGORITHMS FOR

VERTEX-WEIGHTED MATCHING IN GRAPHS

by

Mahantesh Halappanavar
B.S. August 1996, Karnataka University

M.S. December 2003, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2009

Approved by:

Alex Pothen (Director)

Jessica Crouch

Bruce Hendrickson

Stephan Olariu

Mohammad Zubair

ABSTRACT

ALGORITHMS FOR

VERTEX-WEIGHTED MATCHING IN GRAPHS

Mahantesh Halappanavar

Old Dominion University, 2009

Director: Dr. Alex Pothen

A matching M in a graph is a subset of edges such that no two edges in M are inci-

dent on the same vertex. Matching is a fundamental combinatorial problem that has

applications in many contexts: high-performance computing, bioinformatics, net-

work switch design, web technologies, etc. Examples in the first context include

sparse linear systems of equations, where matchings are used to place large matrix

elements on or close to the diagonal, to compute the block triangular decomposition

of sparse matrices, to construct sparse bases for the null space or column space of

under-determined matrices, and to coarsen graphs in multi-level graph partitioning

algorithms. In the first part of this thesis, we develop exact and approximation al-

gorithms for vertex weighted matchings, an under-studied variant of the weighted

matching problem. We propose three exact algorithms, three half approximation

algorithms, and a two-third approximation algorithm. We exploit inherent proper-

ties of this problem such as lexicographical orders, decomposition into sub-problems,

and the reachability property, not only to design efficient algorithms, but also to

provide simple proofs of correctness of the proposed algorithms. In the second part

of this thesis, we describe work on a new parallel half-approximation algorithm for

weighted matching. Algorithms for computing optimal matchings are not amenable

to parallelism, and hence we consider approximation algorithms here. We extend

the existing work on a parallel half approximation algorithm for weighted matching

and provide an analysis of its time complexity. We support the theoretical obser-

vations with experimental results obtained with MatchBoxP, toolkit designed and

implemented in C++ and MPI using modern software engineering techniques. The

work in this thesis has resulted in better understanding of matching theory, a func-

tional public-domain software toolkit, and modeling of the sparsest basis problem as

a vertex-weighted matching problem.

c©Copyright, 2009, by Mahantesh Halappanavar, All Rights Reserved

iii

ACKNOWLEDGEMENTS

“One can pay back the loan of gold, but one dies forever in debt to those

who are kind.” - Malayan Proverb

First and foremost, I would like to thank my advisor Alex Pothen, without him

this work would have been impossible. He not only introduced me to the subject, but

has also been a constant inspiration throughout. His support and encouragement has

been invaluable both personally and professionally, for which I will remain forever

indebted.

This work has evolved in collaboration with Florin Dobrian, a friend, guide and

mentor who has irreversibly changed my thinking. I will also remain indebted to As-

sefaw Gebremedhin for his friendship and generousness in improving my presentation

on numerous occasions.

I remain thankful to my committee members Jessica Crouch, Bruce Hendrickson,

Stephan Olariu and Mohammad Zubair. Their comments have been thought pro-

voking, and their suggestions invaluable. I also want to thank Erik Boman for his

time and efforts in helping my research.

I will remain indebted to my supervisor Mike Sachon and coworkers Amit Kumar

and Ruben Igloria, for providing flexibility, support and a productive work environ-

ment. Special thanks are due to Amit Kumar for his friendship that has only grown

over the years.

I was introduced to academic research in my Masters program by Ravi Mukka-

mala. I will remain forever indebted for his mentorship - academic as well as spiritual.

I would like to thank the following departments at Old Dominion University - the

Office of Graduate Studies for the University Graduate Fellowship during 2005 to

2006; the Office of Research and the Department of Computer Science for teaching

and research assistanceships during 2001 to 2005; and the Office of Study Abroad

for travel assistance in 2005.

With long hours away from home, the last five years have been especially hard on

my wife Savitha and daughter Anika. They have accepted it in stride and I cannot

thank them enough for it. I will remain thankful to my parents who have always

emphasized education above everything else, my sister for being my inspiration, my

in-laws for their support, and my very large extended family where everyone has

made a special impression on me.

iv

This research used resources of the National Energy Research Scientific Comput-

ing Center, which is supported by the Office of Science of the U.S. Department of

Energy under Contract No. DE-AC02-05CH11231.

v

vi

TABLE OF CONTENTS

Page
LIST OF TABLES . ix
LIST OF FIGURES . xvii

CHAPTERS

I Introduction . 1
I.1 Outline . 3
I.2 Combinatorial Scientific Computing 3
I.3 Motivation . 4
I.4 Contributions . 9
I.5 Chapter Summary . 10

II Background and Related Work . 11
II.1 Introduction . 11
II.2 Foundations . 15
II.3 Maximum Cardinality Matching . 25
II.4 Maximum Edge-Weight Matching . 28
II.5 Approximation Algorithms . 33
II.6 Chapter Summary . 39

III Exact Algorithms . 40
III.1 Introduction and Related Work . 40
III.2 Foundations . 44
III.3 New Algorithms for Maximum Vertex-weight Matching 47

III.3.1 Algorithm GlobalOptimal . 48
III.3.2 Algorithm LocalOptimal . 50
III.3.3 Algorithm HybridOptimal . 51
III.3.4 Negative Weights . 53

III.4 Proof of Correctness . 55
III.5 A Reachability-Based Algorithm . 61
III.6 Chapter Summary . 62

IV Approximation Algorithms . 64
IV.1 Introduction . 64
IV.2 New 1

2
-approx Algorithms . 64

IV.3 Proof of Correctness . 71
IV.4 Global 2

3
-approx Algorithm . 78

IV.4.1 Proof of Correctness . 78
IV.5 Potential Local 2

3
-approx Algorithm 88

IV.5.1 Correctness of Algorithm LocalTwoThird 89
IV.6 Experimental Results . 91
IV.7 Chapter Summary . 95

V Parallel Approximate Algorithms . 97
V.1 Introduction . 97

vii

V.1.1 Complexity Analysis . 100
V.2 Distributed Algorithm of Hoepman 104

V.2.1 Complexity Analysis . 107
V.3 Parallel 1

2
-approx Algorithm . 108

V.3.1 Complexity Analysis . 119
V.4 Experimental Results . 122

V.4.1 Data Set for Experiments . 122
V.4.2 Performance of Serial Matching Algorithms 127
V.4.3 Performance of Parallel Matching Algorithm: 130
V.4.4 Performance of Parallel Matching on Graphs from Applications 144
V.4.5 Analysis of Communication 147

V.5 Chapter Summary . 150
VI Conclusions and Future Work . 152

VI.1 Future Work . 153

viii

LIST OF TABLES

Page
1 Algorithms for maximum cardinality matching [66]. For a graph G =

(V,E), n = |V | represents the number of vertices, and m = |E| the
number of edges. For graph types, B denotes bipartite graphs, and G
denotes nonbipartite graphs. 27

2 Power of data structures. For a graph G = (V,E), n = |V | represents
the number of vertices, and m = |E| the number of edges. 31

3 Algorithms for maximum edge-weight matching [66]. For a graph G =
(V,E) with weight function w : E → R+, n = |V | represents the
number of vertices, m = |E| the number of edges, and W is the largest
absolute value of an integer weight. For graph types, B represents
bipartite, and G the nonbipartite graphs. 32

4 Algorithms for approximate weighted matching. For a graph G =
(V,E), n = |V | represents the number of vertices, m = |E| the number
of edges in G, and ε→ R+ is a positive real number. 33

5 A survey of algorithms for maximum vertex-weight matching. For a
given graph G = (V,E), n = |V | represents the number of vertices,
and m = |E| the number of edges. 46

6 A summary of algorithms proposed for vertex weighted matchings. Bi-
partite and general graphs are represented with B and G respectively.
For a bipartite graph G = (S, T,E), n = (|S| + |T |) represents the
number of vertices, m = |E| the number the edges, and dk is a gen-
eralization of the vertex degree that denotes the average number of
distinct alternating paths of length at most k edges starting at a ver-
tex in G. 47

7 A summary of algorithms proposed for vertex weighted matchings. Bi-
partite and general graphs are represented with B and G respectively.
For a bipartite graph G = (S, T,E), n = (|S| + |T |) represents the
number of vertices, m = |E| the number the edges, and dk is a gen-
eralization of the vertex degree that denotes the average number of
distinct alternating paths of length at most k edges starting at a ver-
tex in G. 65

8 Matrix Instances. Downloaded from University of Florida Matrix Col-
lection. 92

9 Performance of Global-based Algorithms. The numbers represent com-
pute time in seconds. 92

10 Relative Performance of Global and Local-based Algorithms. The num-
bers represent compute time in seconds. 93

11 Matrix Instances downloaded from University of Florida Matrix Col-
lection. Unsymm represents unsymmetric matrices and Symm repre-
sents symmetric matrices. 123

ix

12 Synthetic and Model Graphs. SSCA#2 graphs are generated using
GT-Graph generator. The number of vertices in the original graph
are doubled to convert it into a bipartite graph to eliminate self-loops;
duplicate edges, if any, are also eliminated. RGGs and grid graphs are
generated with MatchBox-P and have random edge weights. 125

13 Performance of serial approx algorithm. The second column represents
the ratio of weights of approximate and exact matchings. Similarly,
the third column represents the ratio of cardinality of the two match-
ings. Fourth and fifth columns show the time in seconds to compute
approximate and exact matchings respectively. 127

14 Grid graphs for weak scalability studies. Columns three and four rep-
resent the number of processors used to solve the grid graphs of a given
size. 135

x

LIST OF FIGURES

Page
1 Landscape of the matching problems. The vertex-weighted matching

problem can be formulated as an edge-weighted matching problem.
The weighted matching algorithms utilize techniques developed for the
cardinality matching problem. The arrows indicate these relationships. 2

2 Representation of a sparsest column-space basis problem. A matrix A
with k rows and n columns, and a basis B with k rows and k linearly
independent columns. 7

3 A greedy algorithm for computing a sparsest column-space basis. (a)
State before augmenting a basis Bi with a column of current heaviest
weight wmax from C; (b) state after augmenting a basis with a sparsest
linearly independent column from C. 7

4 Computation of a sparsest column-space basis with a maximum vertex-
weight matching. (a) A matrix A; (b) A bipartite graph (G) repre-
sentation of A. Numbers on the right indicate the weight of each S
vertex. Bold lines represent the matched edges, and matched vertices
are colored black; (c) A candidate basis as computed by a maximum
vertex-weight matching in G. 9

5 An example of matching. (a) A bipartite graph G, (b) a matching M
in G. Bold lines represent matched edges, and matched vertices are
colored black. 12

6 Types of matchings. Matched edges are represented with bold lines and
matched vertices are filled with black color. (a) A maximal matching,
(b) a maximum matching, and (c) a perfect matching. 13

7 Types of paths. Matched edges are represented with bold lines and
matched vertices are colored black. (a) An alternating path starting
with an unmatched vertex, (b) an alternating path starting with a
matched vertex, and (c) an augmenting path. 15

8 Augmentation by symmetric difference. The matched edges are rep-
resented with bold lines and matched vertices are colored black. (a)
Before augmentation, (b) after augmentation. 16

9 The symmetric difference of two matchings MS ⊕MT . Dashed lines
represent edges in MS and Solid lines represent edges in MT . (a) A
cycle; (b)-(e) Augmenting or alternating paths. 17

10 Effect of M ⊕ P . Bold lines represent matched edges and matched
vertices are colored black. (a) Paths P and Q do not intersect; (b)
paths P and Q intersect. This figure has been adapted from [57]. . . 18

xi

11 Breadth-first search. The vertex being processed at a given step is col-
ored purple, and also marked by an arrow. The shaded lines represent
the processed edges. The vertices that have already been processed
are colored black. The adjacency list for each vertex is maintained
in an increasing order of the indices of vertices. (a) The input graph
before execution, (b)-(f) the intermediate states of execution. State
of the pseudo-queue at each step: (b) [2, 3, 4] (c) [3, 4, 5], dequeue 2,
enqueue 5; (d) [4, 5, 6] dequeue 3, enqueue 6; (e) [5, 6] dequeue 4; (f)
[6] dequeue 5. 22

12 Depth-first search. The vertex being processed at a given step is col-
ored purple, and also marked by an arrow. The shaded lines represent
the processed edges. The vertices that have already been processed
are colored black. The adjacency list for each vertex is maintained
in an increasing order of the indices of vertices. (a) The input graph
before execution. (b)-(f) the intermediate states of execution. State
of the pseudo-stack at each step: (b) [2, 3, 4] (c) [2, 3, 5] pop 4, move
2, move 3, push 5; (d) [3, 2, 6] pop 5, move 2, push 6; (e) [2, 3] pop 6,
move 3; (f) [2]. 23

13 Single-source single-path technique. The vertex being processed at
a given step is colored purple, and also pointed by an arrow. The
shaded lines represent potential augmenting paths. Bold lines repre-
sent matched edges and matched vertices are colored black. (a) The
input graph before execution, (b)-(d) the intermediate states of exe-
cution, and (e) the final state. 23

14 Multiple-source single-path technique. The vertices being processed at
a given step are colored purple. The shaded lines represent potential
augmenting paths. Bold lines represent matched edges and matched
vertices are colored black. (a) The input graph before execution, (b)-
(d) the intermediate states of execution, and (e) the final state. . . . 24

15 Multiple-source multiple-path technique. The vertices processed at a
given step are colored purple. The shaded lines represent potential
augmenting paths, bold lines represent matched edges and matched
vertices are colored black. (a) The input graph before execution, (b)
the intermediate state of execution, and (c) the final state. 24

16 Execution of Algorithm GlobalHeavy. The weights are associated
with the edges. Bold lines represent matched edges, and matched ver-
tices are colored black. Vertices processed at a given step are colored
purple. Dashed lines represent the edges that are removed from the
graph. (a) The input graph before execution, (b)-(c) the intermediate
states of execution, and (d) the final state. 34

xii

17 Execution of Algorithm LAM. The weights are associated with the
edges. Bold lines represent matched edges. Matched vertices are col-
ored black, and the vertices being processed at a given step are colored
purple. The shaded edges represent dominating edges at a current
step, and dashed lines represent the edges that are removed from the
graph. (a) The input graph before execution, (b)-(e) the intermediate
states of execution, and (f) the final state. 36

18 Execution of Algorithm PathGrow. The weights are associated with
the edges. The solid bold-lines represent edges matched in M1, and the
dashed bold-lines represent the edges matched in M2. The matched
vertices are colored black, and the vertices processed at a given step
are colored purple. The shaded edges highlight the edges that are
being processed for matching at a given step. (a) The input graph
before execution, (b)-(f) the intermediate states of execution. 38

19 Decomposition of the maximum vertex-weight matching problem. . . . 41
20 The symmetric difference of two matchings MS ⊕MT . Dashed lines

represent edges in MS and Solid lines represent edges in MT . (a) A
cycle; (b)-(e) Augmenting or alternating paths. 42

21 Execution of Algorithm GlobalOptimal. (a) The input graph
G = (S, T,E) before execution, weights are associated only with the
S vertices. (b)-(e) The intermediate states of execution. Bold lines
represent matched edges, and matched vertices are colored black. The
shaded edges highlight the shortest augmenting path from a given S
vertex. Vertices colored Violet represent the vertex processed at a
given step, and the end-point of an augmenting path if one exists.
The arrows indicate the S vertex that is being processed at a given step. 50

22 Execution of Algorithm LocalOptimal. (a) The input graph G =
(S, T,E) before execution, weights are associated only with the S ver-
tices. (b)-(d) The intermediate states of execution, (e) the final state.
Bold lines represent matched edges, and matched vertices are colored
black. The shaded edges highlight all the augmenting paths that exist
from a given T vertex. The arrows indicate the T vertex that is being
processed at a given step. 52

23 Transformation of graphs with negative weights. (a) The input graph
G = (S, T,E) with some negative weights associated with the vertices,
(b) the new graph G

′
(S
′
, T
′
, E
′
) with zero or positive weights. The

new vertices are filled with Black color. 54
24 Illustration of the reachability property. Bold lines represent the

matched edges and matched vertices are colored black. 56
25 Illustrates that reachability property holds for Algorithm GlobalOp-

timal. Bold lines represent the matched edges and matched vertices
are colored black. (a) State before (k + 1)-th augmentation, (b) state
after (k + 1)-th augmentation. 58

xiii

26 Greedy initialization. Bold lines represent matched edges, and
matched vertices are colored black. (a) The input graph G = (S, T,E),
weights are associated only with the T vertices, (b) a greedy initial-
ization that picks best augmenting paths of length one, and (c) an
optimal matching. 63

27 Execution of Algorithm GlobalHalf. (a) The input graph G =
(S, T,E) with weights associated only with the S vertices, (b)-(e) the
intermediate states of execution. Bold lines represent matched edges,
and matched vertices are colored black. The shaded edges mark the
augmenting paths of length one (an unmatched edge) from a given S
vertex, (f) the final state. 67

28 Execution of Algorithm LocalHalf. (a) The input graph G =
(S, T,E) with weights associated only with the S vertices, (b)-(d)
the intermediate states of execution, (e) the final state. Bold lines
represent matched edges, and matched vertices are colored black. The
shaded edges mark all the augmenting paths of length one (unmatched
edges) that exist from a given T vertex. 69

29 Execution of Algorithm GlobalTwoThird. (a) The input graph
G = (S, T,E) before the execution, weights are associated only with
S vertices, (b)-(e) the intermediate states of execution. Bold lines
represent matched edges, and matched vertices are colored black. The
shaded edges highlight the shortest augmenting path from a given S
vertex, and (f) the final state. 80

30 Symmetric difference. (a) Input graph, weights are associated only
with the S vertices such that s1 � s2 � s3 � s4; (b) an optimal
matching M∗ computed by Algorithm GlobalOptimal. Bold lines
represent matched edges. At step one, edge e(s1, t3) is matched; at
step two, edge e(s2, t2) is matched; at step three, the matching is aug-
mented via path [s3, t2, s2, t3, s1, t1]; no path exists at step four; (c) a
2
3
-approx matching M3 computed by Algorithm GlobalTwoThird,

Wavy lines represent matched edges; At step one, edge e(s1, t3) is
matched; at step two, edge e(s2, t2) is matched; at step three, no
augmenting path of length three exists; at step four, the matching
is augmented via path [s4, t3, s1, t1]; and (d) the symmetric difference
M∗⊕M3. The bold lines denote edges matched in M∗, and wavy lines
denote edges matched in M3. 81

31 Intuition for proof of 2
3
-approx algorithm GlobalTwoThird. For

each failed S vertex, Algorithm GlobalTwoThird will match two
S vertices that are at least as heavy as the failed vertex. Note that the
association of matched vertices with failed vertices is dynamic. The
figure is representative of a state at a particular step of execution. . . 82

32 New augmenting paths. Bold lines represent the matched edges and
matched vertices are colored black. The two kinds of paths in Lemma
IV.4.1 are shown as P1 and P2. 83

xiv

33 Execution of Algorithm LocalTwoThird. (a) The input graph
G = (S, T,E) before the execution, weights are associated only with S
vertices, (b)-(d) the intermediate states of execution, and (e) the final
state. Bold lines represent matched edges, and matched vertices are
colored black. The shaded edges highlight all the augmenting paths
that exist from a given T vertex. 89

34 Performance of Approximation Algorithms. Cardinality of matchings
of the approximation algorithms as a ratio of the cardinality of the
exact algorithm. 94

35 Performance of Approximation Algorithms. Weight of matchings of
the approximation algorithms as a ratio of the weight of the exact
algorithm. 94

36 New augmenting paths. (a) No augmenting path of length less than or
equal to five exist starting at vertex s1 in graph G at step k; (b) an
augmenting path of length five is available from s1 at a step after k. . 95

37 Execution of Algorithm 22. (a) The input graph G = (V,E) with
weights associated with the edges; (b) an intermediate step of execu-
tion where the pointers are set for each vertex in the graph; (c) an
intermediate step where vertices that are pointing to each other are
matched. Bold lines represent matched edges. Dashed lines represent
the edges removed from the graph; (d) reset pointers for vertices 4 and
6; (e) edge (4, 5) is matched; (d) the final state. Matched vertices are
colored black. 102

38 Complexity analysis. A sample graph G with weights associated with
the edges such that (w(e1) > w(e2) > · · · > w(e8)). 103

39 Execution of Hoepman’s Algorithm. (a) The input graph G = (V,E)
with weights associated with the edges, vertices {1, 2, 3} are assigned
to processors {P1, P2, P3} respectively; (b) an intermediate step of ex-
ecution when REQUEST messages are sent by each processor to their
neighbors of choice; (c) an intermediate step when edge (2, 3) is
matched. (d) A possible intermediate step when processors P2 and
P3 send UNAVAILABLE messages to P1 in that order, (d’) an alternative
situation when P1 gets an UNAVAILABLE message from P3, and sends
a REQUEST to P2. Eventually, P1 will also receive an UNAVAILABLE

message from P2. (e) The final state. Matched vertices are colored
black. 106

40 Data distribution among processors. (a) The input graph G = (V,E)
with weights associated with the edges; (b) The vertex set V is par-
titioned among two processors P0 and P1. Processor P0 owns vertices
{0, 3, 4} and Processor P1 owns vertices {1, 2, 6}. (c) Data storage
on the processors. Along with internal edges, each processor will also
store the endpoints of the edges that get cut (cross-edges). These
vertices are called the ghost vertices and are colored purple in the figure.109

xv

41 Possible communication patterns. Message types are denoted by R
for REQUEST, U for UNAVAILABLE, and F for FAILURE. (a) When two
requests match, it results in a matched edge. An UNAVAILABLE message
from P1 to P0 can be responded by an UNAVAILABLE message (b), or
a FAILURE message (c) from P0 to P1. (d) An UNAVAILABLE message
from P0 can either be responded with an UNAVAILABLE or a FAILURE

message by P1. 117
42 Execution of parallel approximation algorithm. (a) The input graph

G = (V,E) with weights associated with the edges, vertices {0, 3, 4}
are assigned to processor {P0}, and vertices {1, 2, 6} are assigned
to processor {P1}. (b) an intermediate step of execution when lo-
cal computations are done. REQUEST(4, 1) message is sent from P0

to P1; (c) Processor P0 matches edge (0, 3) and sends messages:
UNAVAILABLE(0, 6) and REQUEST(4, 6) to P1. Processor P1 matches
edge (1, 2) and sends messages: UNAVAILABLE(1, 4) and REQUEST(6, 4)
to P0. (d) Processor P0 matches edge (4, 6) and sends message
UNAVAILABLE(4, 1) to P1. Processor P1 matches edge (6, 4) and sends
message UNAVAILABLE(6, 0) to P0. 118

43 Illustration of different imbalance factors on Processor Pi. 119
44 Visualization of matrix structures. 123
45 Random geometric graph. A random geometric graph with 1, 000 ver-

tices as visualized with Pajek. 124
46 SSCA#2 graph. An SSCA#2 graph with 1, 024 vertices as visualized

with Pajek. 125
47 Five-point grid graph. A 10 X 10 five-point grid graph visualized with

Pajek. 126
48 Nine-point grid graph. A 10 X 10 nine-point grid graph visualized with

Pajek. 126
49 Performance of Serial Approximation Algorithms: Weight. The path

growing algorithms are represented by PG1, PG2, and PG3. 128
50 Performance of Serial Approximation Algorithms: Cardinality. 129
51 Performance of Serial Approximation Algorithms: Compute Time. . . 129
52 4k grid graph: Edgecut as a function of number of vertices. Ac-

tual edgecut for different number of partitions using multi-level K-
way partitioning algorithm in Metis, and ideal edgecut given by
(2
√
|V |(
√
P − 1)), where V is the number of vertices and P is the

number of partitions. 131
53 4k grid graph: Compute time (maximum). Maximum time is the time

in seconds of the slowest processor in the group of processors used to
solve the problem. 132

54 4k grid graph: Compute time (average). Average time is the sum of
compute time on each processor in the group divided by the number
of processors in that group. 133

55 Speedup for 4k x 4k grid graph. 133

xvi

56 4k grid graph: Cardinality after Phase-1. 134
57 Weak scaling for grid graphs: Series-1 uses the graph size and proces-

sor combinations as shown in Table 14. 136
58 Weak scaling for grid graphs: Series-2 uses the graph size and proces-

sor combinations as shown in Table 14. 136
59 Edgecut and number of messages for different grid graphs: The graph

size and processor combinations are shown in Table 14. 137
60 320k RGG: Edgecut as a function of number of vertices. Actual edge-

cut for different number of partitions using multi-level K-way parti-
tioning algorithm in Metis. 137

61 320k RGG: Compute time (maximum). Maximum time is the time
in seconds of the slowest processor in the group of processors used to
solve the problem. 138

62 320k RGG: Compute time (average). Average time is the sum of
compute time on each processor in the group divided by the number
of processors in that group. 138

63 320k RGG: Speedup. 139
64 320k RGG: Cardinality after Phase-1. 139
65 524k SSCA#2: Edgecut as a function of number of vertices. Actual

edgecut for different number of partitions using K-way partitioning
algorithm in Metis. 140

66 524k SSCA#2: Compute time (maximum). Maximum time is the
time in seconds of the slowest processor in the group of processors
used to solve the problem. 141

67 524k SSCA#2: Compute time (average). Average time is the sum of
compute time on each processor in the group divided by the number
of processors in that group. 142

68 524k SSCA#2: Speedup. 142
69 524k SSCA#2: Cardinality after Phase-1. 143
70 Edgecut for graphs from applications. Percentage of edges cut is a

ratio of edgecut to the number of edges in the graph. 144
71 Graphs from Applications: Compute time for different matrices with

different number of processors. Compute time in seconds (log2 scale)
is plotted on the Y-axis, and the number of processors is plotted on
the X-axis. Max is the maximum time on any given processor in the
set, and Avg is the average time for a given set of processors. 145

72 Graphs from Applications: Compute time for different matrices with
different number of processors. Compute time in seconds (logarithmic
scale with base two) is plotted on the Y-axis, and the number of pro-
cessors is plotted on the X-axis. Max is the maximum time on any
given processor in the set, and Avg is the average time for a given
number of processors. The Figure also has results for two instances of
SSCA#2 graphs. 146

xvii

73 Communication. Total number of messages sent are bounded between
twice and thrice the edge cut. 147

74 Communication. Total number of messages sent are bounded between
twice and thrice the edge cut. 148

75 Message Bundling. Percentage bundled represents the number of mes-
sages that could be bundled in Phase 1, higher the better. Percentage
sent represents the actual number of messages that get sent due to
bundling, lower the better. 149

76 Message Bundling. Percentage bundled represents the number of mes-
sages that could be bundled in Phase 1, higher the better. Percentage
sent represents the actual number of messages that get sent due to
bundling, lower the better. 149

77 Limitations of the pointer-based approach. (a) The input graph G =
(V,E) with weights associated with the edges; (b) an intermediate
step of execution where the pointers are set for each vertex in the
graph; (c) an intermediate step where vertices that are pointing to
each other are matched. Bold lines represent matched edges. Dashed
lines represent the edges removed from the graph; (d) the final state.
Matched vertices are colored black. 150

1

CHAPTER I

INTRODUCTION

“Pioneered by the work of Jack Edmonds, polyhedral combinatorics has

proved to be a most powerful, coherent, and unifying tool throughout

combinatorial optimization.” - Alexander Schrijver [66]

Given a graph G = (V,E) with a set of vertices V , and a set of edges E, a matching

M is a subset of edges such that no two edges in M are incident on the same vertex.

A graph can additionally have weights associated with the edges, or the vertices,

or both. The objective of the matching problem can be to maximize the number

of edges in M (a maximum cardinality matching); or to maximize the total weight

of matched edges (a maximum edge-weight matching problem); or to maximize the

total weight of matched vertices (a maximum vertex-weight matching). Thus, we

have three basic variations of the matching problem:

1. Maximum cardinality matching (MCM),

2. Maximum edge-weight matching (MEM), and

3. Maximum vertex-weight matching (MVM).

Figure 1 sketches a landscape of the matching problems. While the three problems

are closely related, they also have unique features that distinguish them from each

other. The cardinality and the edge-weighted matching problems have been studied

extensively. However, the vertex-weighted matching problem has not received as

much attention. The main focus of our work, therefore, is on the vertex-weighted

matching problem.

An underlying combinatorial problem in many scientific computing applications is

finding matchings in graphs. For example, the problem of coarsening a graph without

losing the characteristics of the original graph in multi-level partitioning algorithms

can be solved by computing a matching problem. The matching problem can be

solved in polynomial time, and we will provide a detailed discussion of some of these

algorithms in Chapter II. However, for many of the large-scale scientific computing

applications, polynomial-time solutions are not always sufficient. Thus, there is a

need for faster approximation algorithms for the matching problem. The weighted

2

Vertex Wtd Matching

GeneralBipartite

ApproxExact

Cardinality Matching

GeneralBipartite

ApproxExact

Edge Wtd Matching

GeneralBipartite

ApproxExact

FIG. 1: Landscape of the matching problems. The vertex-weighted matching problem
can be formulated as an edge-weighted matching problem. The weighted matching
algorithms utilize techniques developed for the cardinality matching problem. The
arrows indicate these relationships.

matching problem in particular has numerous applications and therefore many linear-

time approximation algorithms have been proposed for the same [24, 64]. The best

known approximation for the edge-weighted matching problem is a (2
3
− ε)-approx

algorithm with a run time of O(|E| log 1
ε
), where |E| represents the number of edges

and ε is a positive real number [59]. In this work we propose a 2
3
-approx algorithm

for vertex-weighted matching with linear-time performance for a class of graphs with

some restrictions.

Along with the development of new algorithms, there is a need for good open

source implementation of the matching algorithms. Driven by these needs, we pro-

pose to accomplish the following with this dissertation:

• development of new exact and approximation MVM-algorithms,

• development of open source implementation of these algorithms, and

• development of use-case models for the vertex weighted matching problem.

We will now provide a brief outline of this thesis.

3

I.1 OUTLINE

The thesis is organized into six chapters. In this chapter we present an overview

and motivation for this work. The second chapter provides an introduction to the

matching theory, and discusses background and related work. Third and fourth

chapters discuss the exact and approximation algorithms for the maximum vertex-

weight matching problem (MVM) respectively. In chapter five we provide details

of a parallel half-approximation algorithm and experimental results on a distributed

memory parallel computer. The sixth chapter provides conclusions and plans for the

future work.

In order to motivate our work, we will now provide a brief introduction to a field

of study known as combinatorial scientific computing (CSC), where this disserta-

tion belongs to. CSC encompasses three broad fields - computer science, applied

mathematics, and operations research.

I.2 COMBINATORIAL SCIENTIFIC COMPUTING

Combinatorial scientific computing is the development, analysis and application of

discrete algorithms for applications in scientific computing [33, 34]. The three com-

ponents that characterize CSC are (i) identifying a scientific computing problem, and

building an appropriate combinatorial model for this problem; (ii) developing an ef-

ficient solution for the combinatorial problem; and (iii) developing required software

tools and evaluating the performance on representative test instances.

Computational simulation of a physical phenomenon is a better alternative to

experiments in many situations, and in some cases the only alternative. However,

realistic simulations of physical phenomena are extremely difficult. Computational

challenges and massive resource requirements for numerous applications in science

and engineering have been extensively documented by hundreds of field experts in

the SCaLeS (A Science-Based Case for Large-Scale Simulation) reports [42]. Com-

binatorial algorithms play a critical role in computational science by enhancing the

efficiency of numerical algorithms, and in many cases enables a computation which

would be infeasible otherwise. The role of combinatorial algorithms in scientific com-

puting have been discussed in detail elsewhere, and we refer the readers to a paper

by Hendrickson and Pothen [34] for one such discussion.

Approximation algorithms are generally developed for intractable problems [35].

4

However, approximation algorithms for problems that have known polynomial-time

solutions are increasingly becoming popular. The motivation for this comes from the

fact that many polynomial-time algorithms can be computationally very expensive

for large-scale problems. A further need for approximation algorithms can come from

resource limitations. One example is a scheduling problem in high-speed network

switches, where the algorithms not only need to be fast, but should also be easy to

implement in hardware [52].

As one of the fundamental combinatorial problems, matching is important both

theoretically and practically. Theoretically, it is interesting because of its similarity

to many NP-complete problems like the Integer Programming Problem, while at the

same time lending itself to a polynomial time solution [57]. Such solutions have

been made possible due to ingenious techniques like augmenting paths, and the

identification and shrinking of blossoms [8, 48]. We believe that further study of these

tools and techniques will promote good solutions for other combinatorial problems.

The matching problem is also important from a practical perspective because of its

use in many applications in diverse fields of science and engineering. Some of these

applications are discussed in [1, 24, 25, 26, 8, 40, 46, 53, 62, 63, 64, 65]. In this thesis,

we will discuss two such applications in order to motivate this study.

I.3 MOTIVATION

Vertex-weighted matching has many applications. Some of the problems that use

maximum vertex-weighted matching (MVM) are:

• Sparsest column-space basis problem [60],

• Facility scheduling problem [11], and

• Reverse spanning tree problem [2].

In order to illustrate the process of modeling an application as a vertex-weighted

matching problem, we will discuss two specific examples. The first problem is a

specialized version of the dating problem provided as an exercise in [9] that we call a

mercenary dating problem, and the second is the computation of a sparsest column-

space basis of a matrix [60].

5

Mercenary Dating Problem

A dating service is provided with data from m men and n women sufficient to deter-

mine which pairs of men and women are compatible. The data also includes the price

that each person will pay for getting matched; assume unique positive prices. The

total revenue for the dating service is proportional to the total number of dates that

it can arrange, and on the individual price that it receives from the matched people.

The objective is to maximize the total revenue for the dating service (mercenary).

Note that the with the assumption of positive prices revenue can always be increased

by increasing the number of people that will get matched. We will prove this later.

Some people might remain unmatched (a perfect matching may not exist).

Let us model the problem as a bipartite graph G(S, T,E) with weight functions

wS : S → R+ and wT : T → R+. The vertex set S represents men and the vertex

set T represents women. A vertex in S (and T) represents a single person. The

compatibility of a man s with a woman t is represented as an edge est ∈ E. The

weight function on the vertices represents the commission that each person is willing

to pay if matched. The objective function of the mercenary dating problem can be

accomplished by computing an MVM in G.

We will now provide an intuition for solving the problem by computing a max-

imum vertex-weight matching in the graph. The details of the algorithm will be

discussed in Chapter III. First, ignore the weights associated with the T vertices.

Try to maximize the revenue that can be generated by matching as many men as

possible based on the weights associated with the S vertices. This simply reduces

to computation of a maximum cardinality matching in G with a particular order for

processing the vertices (decreasing order of weights). Similarly, repeat the process

by ignoring the weights associated with the S vertices and by trying to maximize the

revenue by matching as many women as possible. Thus, we now have two different

matchings from two separate computations. We can no merge these two matchings

together by retaining all the S vertices matched in the first matching as well as all

the T vertices matched in the second matching. This results in an optimal solution

to the mercenary dating problem. The details are provided in Chapter III.

6

Sparsest column-space Basis Problem

Another application of vertex weighted matching arises in the computation of a

sparsest column-space basis (SCB) of a matrix. The sparsest column-space basis

problem is an instance of the nice-basis problem that has numerous applications in

scientific computing, including models of deforming structures, circuit and device

modeling, equality constrained optimization, etc. We refer the readers to [60] for

details. We will now briefly discuss the role of vertex weighted matching in the

solution of SCB. This is a novel method for computing a SCB and has not been

published elsewhere.

Consider a matrix A with k rows and n columns, n > k, and rank k. A set of

columns C = {c1, c2, · · · cl} is linearly independent if none of the columns in C can

be expressed as a linear combination of the others. The maximal number of linearly

independent columns of A is called the column rank of A. The row rank of A is

defined similarly. Since the row and column ranks are equal, they are called the rank

of A. A generalized diagonal of A is a subset of nonzeros with at most one chosen

from each row and each column. The maximum number of nonzeros in a generalized

diagonal is called the structural rank of A. The numerical rank of a matrix (we

have called this the rank) is less than or equal to the structural rank of A. In the

following discussions we will make a simplifying assumption that the numerical and

the structural ranks of a matrix are equal.

A basis for the column-space of A is a linearly independent set of columns with

maximum rank (by the assumption on A, this is k). A sparsest basis for the column-

space of A is a basis with the fewest nonzeros in it. Formally, the sparsest column-

space basis problem (SCB) can be defined as:

Definition I.3.1. Given a sparse matrix A of rank k, with k rows and n > k columns,

find a sparsest basis B for its column-space.

The sparsest column-space basis selects k out of n sparse columns of A. A graph-

ical representation of SCB is given by Figure 2. For a matrix with k rows and n

columns there could be
(
n
k

)
potential column-space bases. However, a simple greedy

algorithm, as follows, works: Start with an empty set (of columns) B. Find the

sparsest column based on the number of non-zeros in the column and represented

with a weight function wi. Add this column to B. Until k columns have been added

to B, add new (sparsest) columns such that they are linearly independent of the

7

FIG. 2: Representation of a sparsest column-space basis problem. A matrix A with k
rows and n columns, and a basis B with k rows and k linearly independent columns.

current columns in B. The set B now represents the sparsest set over all choices of

sparsest column-space bases. One step of this algorithm is illustrated in Figure 3. A

sparsest column-space basis can be computed in O(k2n) time and a 1
2
-approx solution

in O(nnz(A) + k2) time, where nnz(A) denotes the number of nonzero elements in

A [60].

FIG. 3: A greedy algorithm for computing a sparsest column-space basis. (a) State
before augmenting a basis Bi with a column of current heaviest weight wmax from C;
(b) state after augmenting a basis with a sparsest linearly independent column from
C.

The proof that such a greedy algorithm will solve the sparsest column-space basis

problem is given by a theory about greedy algorithms: combinatorial structures

known as matroids, as named by Hessler Whitney [19, 45].

Definition I.3.2. A matroid M = (E, I) is defined as a set of elements E, and a

nonempty collection of subsets, I, of E defined to be independent. The three proper-

ties that an independent set I ∈ I needs to satisfy are:

1. The empty set is independent;

8

2. Subsets of an independent set are independent;

3. Given two independent sets with unequal cardinalities, the smaller set can be

augmented with some element from the larger set to form a larger independent

set (this is called the exchange property).

Based on this background, we will now discuss how computing a sparsest column-

space basis can be transformed into a maximum vertex-weight matching problem.

A matrix A with k rows and n columns can be represented as a bipartite graph

G = (S, T,E) with weight function w : S → R+, where set S represents the columns,

set T represents the rows, and each nonzero element in A is represented by an edge

est ∈ E. The weight of a column vertex is given by w(s) = k + 1 − deg(s), where

deg(s) represents the number of nonzeros in column s. A matrix and its bipartite

graph representation are shown in Figures 4.(a) and 4.(b).

A matching M in G corresponds to a subset of nonzeros in A, with at most one

from each column and each row (see Figure 4.(a) for an example). By permuting

the rows and columns of A, we can put the nonzeros corresponding to a matching

on the diagonal of A. This is illustrated in Figure 4.(c). As discussed earlier, the

maximum number of nonzeros in a matching is the structural rank of a matrix. If we

make a simplifying assumption that the numerical rank of A is equal to the structural

rank of A, then a maximum matching in G will result in a candidate basis with full

structural rank. While the assumption that the numerical rank of a matrix is equal

to the structural rank is true for many scientific computing applications, it is not

always a correct assumption. However, the correctness of a candidate basis with full

structural rank can be checked by numerical factorization.

Thus, the greedy algorithm for computing a sparsest basis, discussed earlier, can

now be replaced by an algorithm for computing a matching. Specifically, a maximum

vertex-weight matching, since it will compute a maximum matching that is as sparse

as possible. The weights on the S vertices are formulated such that maximizing the

total weight of the matched vertices will minimize the number of nonzeros in the

submatrix induced by this matching (basis B).

Spencer and Mayr provide a O(
√
nm log n) time algorithm [69] for computing a

maximum vertex-weight matching, where n denotes the number of vertices and m

denotes the number of edges in a graph. Exact algorithms tend to be expensive for

large-scale problems, and therefore, there is a need for approximation algorithms. We

9

FIG. 4: Computation of a sparsest column-space basis with a maximum vertex-weight
matching. (a) A matrix A; (b) A bipartite graph (G) representation of A. Numbers
on the right indicate the weight of each S vertex. Bold lines represent the matched
edges, and matched vertices are colored black; (c) A candidate basis as computed by
a maximum vertex-weight matching in G.

provide detailed discussions on exact and approximate MVM-algorithms in Chapters

III and IV.

In summary the motivation for this work comes from:

• Theory : the need for a systematic study of vertex-weighted matching problem,

• Implementation: the need for public-domain tools that implement matchings,

and

• Applications : the need for solutions of applications of vertex-weighted match-

ing.

I.4 CONTRIBUTIONS

The contributions of this thesis are:

1. Theory:

• New framework for developing proof of correctness for vertex weighted

matchings;

• New 1
2
-approx algorithms for vertex weighted matchings;

• New 2
3
-approx algorithm for bipartite vertex weighted matchings;

2. Experiments:

10

• Open-source library of C++ routines to compute various kinds of match-

ings;

• Open-source library of C++ and MPI routines to compute approximate

matchings in parallel.

• Extensive experimental study of various (serial) matching algorithms, and

scalability study of 1
2
-approx parallel algorithm with up to 8, 192 proces-

sors.

3. Applications:

• Study of applicability of vertex weighted matchings in solving the sparsest

basis problem.

• Study of approximation algorithms in sparse matrix computations.

I.5 CHAPTER SUMMARY

In this chapter we provided the motivation and rationale for this dissertation. We

also introduced two specific application of the vertex weighted matching problem.

We show how the sparsest-basis problem can be efficiently solved by modeling it as

a maximum vertex-weight matching problem and concluded the chapter by listing

some of the contributions of this work.

11

CHAPTER II

BACKGROUND AND RELATED WORK

“It (matching) is included in (class) P, thanks to the ingenious

introduction of nontrivial combinatorial tools such as alternating paths

and blossoms.” - Marek Karpinski and Wojciech Rytter [39]

Matching theory has been studied in great detail [8, 45, 48, 57, 66]. In this chapter,

we will provide a brief introduction to matchings in graphs. We will also introduce

the basic tools and techniques to compute a matching. We will discuss both ex-

act and approximation algorithms for the maximum cardinality and the maximum

edge-weight matchings in bipartite graphs. The approximation algorithms are also

applicable to nonbipartite graphs. We will keep the discussion on the exact algo-

rithms brief. Our goal is to provide sufficient background for a better understanding

of the proposed algorithms. Since the approximation algorithms have been more

recently developed, we will discuss them at a relatively greater detail. We refer the

reader to above cited references for a thorough discussion on matching theory and

algorithms.

II.1 INTRODUCTION

A graph G is a pair (V,E), where V is a set of vertices and E is a set of edges

that represent a binary relation on V . A simple instance of a graph is shown in

Figure 5. The vertices are represented with small circles, and the lines that connect

two vertices represent the edges. In a graph, weights can be associated with edges,

vertices, or both. In this proposal, we will only consider weights with real positive

numbers. Graphs with negative weights will have to be considered separately. The

association of weights in a graph G = (V,E) can be represented as w : E → R+ for

a weight function on edges, and w : V → R+ for a weight function on vertices.

A bipartite graph G = (S, T,E) is a graph in which the vertex set V = S ∪ T can

be partitioned into two sets S and T , S ∩ T = φ, such that no two vertices in S, or

in T , are joined by an edge. An example of a bipartite graph is shown in Figure 5.

Since edges in a bipartite graph always join an S vertex to a T vertex, cycles of odd

length cannot exist. Absence of odd-length cycles is a distinguishing characteristic

12

of bipartite graphs, that is important and well exploited in the context of matching

algorithms.

We use the following notations. Given a graph G = (V,E), an edge e belong to

Set E. We can further specify the two endpoints (u, v) of an edge as euv. The weight

assigned with an edge is denoted as w(e), and the weight of a vertex v is denoted as

w(v). Given a vertex v ∈ V , the set of edges incident on it is called the adjacency

set, and denoted as adj(v). We will introduce other symbols and notations where

appropriate.

A matching in a graph can be defined as follows:

Definition II.1.1. Given a graph G = (V,E) with a set of vertices V , and a set of

edges E, a matching M is a subset of edges such that no two edges in M are incident

on the same vertex.

A matching can also be seen as a pairing of two objects in the set. Using the

example of mercenary dating problem that we introduced in Chapter 1, the set of

men is denoted by {S1, S2, S3}, and the set of women is denoted by {T1, T2, T3}. A

matching is pairing of a man with a woman such that no man is paired with more

than one woman, and no woman is paired with more than one man. This is illustrated

in Figure 5.

FIG. 5: An example of matching. (a) A bipartite graph G, (b) a matching M in G.
Bold lines represent matched edges, and matched vertices are colored black.

CLASSIFICATION

Based on different criteria the matching problem can be classified as follows:

• Input graph: Bipartite and Nonbipartite,

• Objective function: Cardinality and Weighted,

13

• Placement of weights in the graph: Edge-weighted and Vertex-weighted,

• Optimality : Exact and Approximate.

A given matching problem can thus be specified as an exact maximum edge-

weight matching problem, or as a 1
2
-approx vertex-weighted matching problem. The

landscape of matching algorithms is provided in Figure 1.

The odd-length cycles that exist in nonbipartite graphs need special consideration

and will significantly increase the conceptual complexity of a matching algorithm for

nonbipartite graphs. However, the computational complexity might remain the same

as that for bipartite graphs.

The cardinality of a matching is the number of edges in it and is denoted by

|M |. Based on the cardinality there can be three types of matchings. A maximal

matching is a matching that cannot be augmented by adding a new edge to it.

However, it might be possible to increase the cardinality of a maximal matching by

changing the set of matched edges. A maximum matching in a graph is a matching

of maximum cardinality among all possible matchings. When all the vertices are

matched, the matching is called a perfect matching. While a maximum matching is

also a maximal matching, a maximal matching is not always a maximum matching.

However, a perfect matching necessarily has maximum cardinality. These three types

of matchings are illustrated in Figure 6.

FIG. 6: Types of matchings. Matched edges are represented with bold lines and
matched vertices are filled with black color. (a) A maximal matching, (b) a maximum
matching, and (c) a perfect matching.

In a graph G = (V,E) with weight function w : E → R+, the edge-weight of a

matching M is the sum of weights of the matched edges
∑

e∈M w(e). For a graph

G = (V,E) with weight function w : V → R+, the vertex-weight of a matching is

the sum of weights of matched vertices
∑

v∈V (M) w(v), where V (M) represents the

set of matched vertices. We will denote the edge-weight and the vertex-weight as

weight, and depend on the context for specific reference as to whether the weights

14

are associated with the edges or the vertices. For the current discussion we will

only consider positive weights. We will later show that the same algorithms can be

extended to include negative weights. A maximum edge-weight matching, also known

as a maximum weighted matching, is a matching of maximum edge-weight among

all possible matchings in a graph. A maximum edge-weight matching can be of

maximal, maximum or perfect cardinality. A maximum vertex-weight matching is a

matching of maximum vertex-weight among all possible matchings in a graph. When

the weights are positive, a maximum vertex-weight matching is also a matching of

maximum cardinality, which will proved in Chapter III.

An α-approx algorithm computes a solution that is within a factor of α of the opti-

mal value. For example, a 1
2
-approx algorithm for a maximum edge-weight matching

problem guarantees that the weight of an approximate matching computed by the

algorithm is at least half of the weight of an optimal matching. If M2 denotes a

matching computed by a 1
2
-approx algorithm, and M∗ denotes an optimal matching,

then ∑
e∈M2

w(e) ≥ 1

2

∑
e∈M∗

w(e) (1)

Approximation algorithms for maximum cardinality matching are relatively easier

than approximation algorithms for weighted matchings. While computing a linear

time 1
2
-approx to maximum cardinality matching (maximal) is trivial, computing the

same for weighted matching is not. We will discuss these approximation algorithms

in Section II.5.

15

II.2 FOUNDATIONS

One of the most fundamental techniques in matching is the technique of augmen-

tation. Given a graph G = (V,E) and a matching M in G, a path is said to be

alternating if it alternates between an edge in M (matched) and an edge not in M

(unmatched). An alternating path that starts and ends with edges that are not in

M (unmatched) is called an augmenting path. Note that an augmenting path will

always have an odd number of edges and an even number of vertices. A few examples

of paths are illustrated in Figure 7.

FIG. 7: Types of paths. Matched edges are represented with bold lines and matched
vertices are colored black. (a) An alternating path starting with an unmatched
vertex, (b) an alternating path starting with a matched vertex, and (c) an augmenting
path.

The symmetric difference of two sets, denoted by the symbol ⊕, is computed

by choosing the elements that are present in either of the sets, but not in both.

Mathematically, the symmetric difference of two setsM and P is shown in Equation 2.

The operator \ represents the set resulting from retaining only those elements in the

set on the left hand side of the operator that do not also exist in the set on the right

hand side of the operator (the set minus operator).

M ⊕ P = (M \ P) ∪ (P \M) (2)

In the context of matching, the symmetric difference operation is important due

to Lemma II.2.1, which states that the cardinality of a current matching can always

be increased by performing a symmetric difference with an augmenting path. The

process of symmetric difference is illustrated in Figure 8. Note that although the

matched edges change, the matched vertices will always remain matched.

Lemma II.2.1. Consider a graph G = (V,E) and a matching M . Let P be an

augmenting path in G with respect to M . The symmetric difference, M
′

= M ⊕ P ,

is a matching of cardinality (|M |+ 1).

16

FIG. 8: Augmentation by symmetric difference. The matched edges are represented
with bold lines and matched vertices are colored black. (a) Before augmentation, (b)
after augmentation.

Proof. There are two parts to the proof. First we will prove that the symmetric

difference M⊕P will result in a matching, and then we will prove that the symmetric

difference will result in a matching that increases the cardinality by one.

(i) An augmenting path P is of the form [e1, e2, e3, · · · , en], where all odd-indexed

edges {e1, e3, · · · , en} are unmatched, and all even-indexed edges {e2, e4, · · · , en−1}
are matched. Also, edges e1 and en are unmatched, and n is an odd number. The

symmetric difference is given by M ⊕ P = (M \ P) ∪ (P \M). The edges obtained

by the operation (M \ P) contain those edges that are in M , but are not part of

the path P , and therefore a set of independent edges (it retains the matched edges

independent of P). The edges obtained by the operation (P \M) contain those edges

that are on the path P , but are not in M (the unmatched edges in P). By definition,

an augmenting path P connects two distinct unmatched vertices, and therefore, edges

e1 and en are independent edges. All the intermediate edges in {P \M} are also

independent edges because they share vertices with matched edges. Therefore, the

symmetric difference M ⊕ P results in a matching.

(ii) An augmenting path P starts and ends with an unmatched edge, therefore, the

number of unmatched edges in P is exactly one larger than than the number of

matched edges in P . Thus, symmetric difference M ⊕ P results in a matching of

cardinality of (|M |+ 1).

The concept of symmetric difference immediately gives us a basic technique to

compute a matching: find an augmenting path, and perform the symmetric difference.

The proof of correctness for such an algorithm is given by Theorems II.2.1 and II.2.2.

Theorem II.2.1 (Berge [1957]). A matching M in a graph G is a maximum match-

ing if and only if there is no M-augmenting path in G.

17

Proof. There are two aspects to the proof.

(i) Suppose there exists an M -augmenting path in G, then the cardinality of M can

be increased by one, and therefore, M is not a maximum matching and contradicts

the assumption (follows from Lemma II.2.1). Therefore, if M is a maximum match-

ing, then there exist no M -augmenting paths in G.

(ii) Suppose that there exist no M -augmenting paths in G, and yet, M is not a max-

imum matching. Let M∗ be a maximum matching in G. The symmetric difference

M ⊕M∗ will result in a collection of alternating paths and cycles as illustrated in

Figure 9. If one of these alternating paths is M -augmenting, then there also exists an

M -augmenting path in G, and therefore, contradicts the assumption (follows from

part (i)). Also, by assumption there are no M∗ augmenting paths in M ⊕M∗. Thus,

the symmetric difference M ⊕M∗ will consist of alternating paths that are not aug-

menting paths, and cycles, and therefore, an equal number of edges from M and M∗.

Alternatively, |M | = |M∗|, and the theorem holds.

FIG. 9: The symmetric difference of two matchings MS⊕MT . Dashed lines represent
edges in MS and Solid lines represent edges in MT . (a) A cycle; (b)-(e) Augmenting
or alternating paths.

Theorem II.2.2. Consider a graph G = (V,E) and a matching M . Let P be an

augmenting path with two unmatched vertices v and w as endpoints. If there exists

no augmenting path in G starting from an unmatched vertex u with respect to M ,

then there is no augmenting path from u with respect to M ⊕ P either.

Proof. Let the augmenting path starting at u be Q, and the augmenting path between

v and w be P . This is illustrated in Figure 10. There are two possibilities:

(i) Paths P and Q do not intersect. This means that the two paths do not have any

18

vertices or edges in common. This is illustrated in Figure 10.(a). In such a case P

will not have any effect on the possibility of an augmenting path starting at u. If no

augmenting path exists from u with respect to M , then no augmenting path exists

from u with respect to M ⊕ P either. Therefore, the theorem holds.

(ii) Paths P and Q intersect each other. Path Q is of the form [u, u1, · · · , uj, · · · , u
′
].

Let uj be the first vertex on Q that is also on P . This is illustrated in Figure 10.(b).

The portion of Q from u up to uj, along with the portion of P that is incident on

uj with a matched edge (Q
′

in Figure 10.(b)), forms an augmenting path starting at

u with respect to M . This contradicts the assumption, and therefore, the theorem

holds.

FIG. 10: Effect of M ⊕P . Bold lines represent matched edges and matched vertices
are colored black. (a) Paths P and Q do not intersect; (b) paths P and Q intersect.
This figure has been adapted from [57].

Corollary II.2.1. If at some stage of an augmentation-based matching algorithm,

there is no augmenting path starting at vertex u, then there will be no augmenting

path from u at any future step in the algorithm.

Proof. Inducting on the number of steps that remain after discovering that no aug-

menting path exists from a vertex u, we can use Theorem II.2.2 to show that there

never will be an augmenting path from u, if none existed when u was processed the

first time.

Thus, from Corollary II.2.1, it is enough if we process a given vertex only once.

We will now discuss techniques to perform the search for augmenting paths in a

graph.

19

GRAPH SEARCH TECHNIQUES FOR MATCHING

Searching for an augmenting path in a graph with respect to a matching is one the

basic steps in the computation of a matching. There are two basic approaches to find

an augmenting path - a breadth-first search, and a depth-first search. The difference

between a breadth-first and a depth-first search comes from the way the elements

are queued during a search. We will define two data structures known as a pseudo-

queue, and a pseudo-stack. A pseudo-queue is different from a regular queue data

structure in that the former excludes duplicate elements. Note, that Algorithm 1 does

not attempt to add duplicates, and therefore, does need this special data structure.

Similarly, there are no duplicates in a pseudo-stack. An additional characteristic of a

pseudo-stack is that if a new element that is being added to the pseudo-stack already

exists, then it is moved to the top of the pseudo-stack. We need vectors to store

information about the parent-child relationships (parent), distance from the source

(depth), and state of processing (color). We initialize color with φ for all vertices,

and update it to Processable or Processed.

A breadth-first search is illustrated in Algorithm 1, and works as follows. Initialize

the data structures by setting the color, parent and depth values to zeros. Start with a

vertex u and add it to the pseudo-queue data structure and mark it as Processable.

Enqueue the vertices adjacent to u and mark them as Processable. Add u as the

parent of all the enqueued vertices and set the depth values for these elements one

greater than the depth value of the parent. Repeat the steps by dequeing the front

of the queue each time, until all the vertices have been processed. A breadth-first

search on a small graph is illustrated in Figure 11.

A depth-first search is illustrated in Algorithm 2. The algorithm functions as

follows. Start with a vertex u and mark it as Processed. Enqueue the vertices

adjacent to u in a pseudo-stack data structure, and mark them as Processable.

Add u as the parent of all the enqueued vertices, and a depth value one greater than

the depth of the parent. Dequeue the top of the pseudo-stack, and repeat the steps

until all the vertices have been processed. A depth-first search on a small graph is

illustrated in Figure 12.

The search for an augmenting path can be breadth-first, depth-first or a com-

bination of these. The search could either start from one vertex (single-source), or

simultaneously from a set of unmatched vertices (multiple-source). The general strat-

egy is to find a shortest-augmenting path. Therefore, breadth-first search is generally

20

Algorithm 1 Input: A graph G and a vertex source u. Output: A breadth-first
tree. Associated data structures: Q is a queue data structure. Effect: perform
a breadth-first search.
1: procedure BreadthFirstSearch(G = (V,E), u)
2: for all v ∈ V do . Initialization
3: color[v] = φ;
4: parent[v] = 0;
5: depth[v] = 0;
6: end for
7: Q← {u};
8: color[u]← Processable;
9: while Q 6= φ do . Graph search

10: pick v from Q; . Head of the queue
11: Q← Q\v; . Dequeue
12: color[v]← Processed;
13: for all w ∈ adj[v] do
14: if color[w] 6= φ then
15: continue;
16: end if
17: parent[w]← v;
18: depth[w]← depth[v] + 1;
19: Q← Q ∪ {w}; . Enqueue
20: color[w]← Processable;
21: end for
22: end while
23: end procedure

21

Algorithm 2 Input: A graph G and a vertex source u. Output: A breadth-
first (or depth-first) tree. Associated data structures: S is a pseudo-stack data
structure. Effect: perform a depth-first search.

1: procedure DEPTH-FIRST-SEARCH(G = (V,E), u)
2: for all v ∈ V do . Initialization
3: color[v] = φ;
4: parent[v] = 0;
5: depth[v] = 0;
6: end for
7: S ← {u};
8: color[u]← Processable;
9: while Q 6= φ do . Graph search

10: pick v from S; . Top of the pseudo-stack
11: S ← S\v; . Dequeue
12: color[v]← Processed;
13: for all w ∈ adj[v] do
14: if color[w] 6= φ then
15: move w to the top of S;
16: continue;
17: end if
18: parent[w]← v;
19: depth[w]← depth[v] + 1;
20: S ← S ∪ {w}; . Enqueue
21: color[w]← Processable;
22: end for
23: end while
24: end procedure

22

FIG. 11: Breadth-first search. The vertex being processed at a given step is colored
purple, and also marked by an arrow. The shaded lines represent the processed edges.
The vertices that have already been processed are colored black. The adjacency list
for each vertex is maintained in an increasing order of the indices of vertices. (a)
The input graph before execution, (b)-(f) the intermediate states of execution. State
of the pseudo-queue at each step: (b) [2, 3, 4] (c) [3, 4, 5], dequeue 2, enqueue 5; (d)
[4, 5, 6] dequeue 3, enqueue 6; (e) [5, 6] dequeue 4; (f) [6] dequeue 5.

used. Once an augmenting path is discovered, augmentation can be performed by

either along a single path, or simultaneously along a set of vertex-disjoint augmenting

paths. Thus the three strategies are:

1. Single-source single-path, illustrated in Figure 13, uses a breadth-first search.

2. Multiple-source single-path, illustrated in Figure 14, uses a breadth-first search.

3. Multiple-source multiple-path, illustrated in Figure 15, uses a combined

breadth-first and depth-first search.

We will provide more details about these approaches in the following discussions on

maximum cardinality and maximum edge-weight matching algorithms.

23

FIG. 12: Depth-first search. The vertex being processed at a given step is colored
purple, and also marked by an arrow. The shaded lines represent the processed edges.
The vertices that have already been processed are colored black. The adjacency list
for each vertex is maintained in an increasing order of the indices of vertices. (a) The
input graph before execution. (b)-(f) the intermediate states of execution. State of
the pseudo-stack at each step: (b) [2, 3, 4] (c) [2, 3, 5] pop 4, move 2, move 3, push 5;
(d) [3, 2, 6] pop 5, move 2, push 6; (e) [2, 3] pop 6, move 3; (f) [2].

FIG. 13: Single-source single-path technique. The vertex being processed at a given
step is colored purple, and also pointed by an arrow. The shaded lines represent
potential augmenting paths. Bold lines represent matched edges and matched vertices
are colored black. (a) The input graph before execution, (b)-(d) the intermediate
states of execution, and (e) the final state.

24

FIG. 14: Multiple-source single-path technique. The vertices being processed at a
given step are colored purple. The shaded lines represent potential augmenting paths.
Bold lines represent matched edges and matched vertices are colored black. (a) The
input graph before execution, (b)-(d) the intermediate states of execution, and (e)
the final state.

FIG. 15: Multiple-source multiple-path technique. The vertices processed at a given
step are colored purple. The shaded lines represent potential augmenting paths, bold
lines represent matched edges and matched vertices are colored black. (a) The input
graph before execution, (b) the intermediate state of execution, and (c) the final
state.

25

II.3 MAXIMUM CARDINALITY MATCHING

Maximum cardinality matching (MCM) algorithms for bipartite graphs are concep-

tually easier than those for nonbipartite graphs. In this section, we will discuss MCM

algorithms for bipartite graphs, and refer the readers to [28, 29, 8, 45, 48, 57, 66, 73]

for discussions on algorithms for nonbipartite graphs. We will provide two algorithms

for MCM, a simple algorithm based on the single-source single-path approach, and an

advanced algorithm based on the multiple-source multiple-path approach for search-

ing an augmenting path.

The simple version of MCM is given in Algorithm 3. The algorithm functions as

follows. Let G = (S, T,E) be a bipartite graph, and M an empty matching. Find an

M -augmenting path P in G, and perform the symmetric difference M⊕P to increase

the cardinality of the current matching. Repeat the process until no M -augmenting

paths exist in G. A breadth-first or depth-first search, as described in Algorithms 1

and 2, can be used to find an augmenting path starting at a given vertex. However,

the former is preferred because it retrieves the shortest augmenting path from a given

source, if such a path exists. This graph search operation is bounded by O(m), where

m = |E| is the number of edges in G. Since G is a bipartite graph, edges will always

connect an S vertex to a T vertex. Therefore, it is sufficient to loop either over the S

vertices, or the T vertices. A vertex needs to be processed only once, this follows from

Corollary II.2.1. Thus, Algorithm MAX-CARD1 can be computed in O(nm) time,

where n is either the number of S vertices or T vertices, depending on the vertex

set used. Execution of Algorithm MAX-CARD1 based on a single-source single-path

approach is illustrated in Figure 13, and that for a multiple-source multiple-path is

illustrated in Figure 14.

Algorithm 3 Input: A bipartite graph G. Output: a matching M . Effect: com-
putes a maximum cardinality matching using a single-source single-path approach.

1: procedure MAX-CARD1(G = (S, T,E),M)
2: M ← φ;
3: for all s ∈ S do . Can also loop over T vertices
4: Find an augmenting path P starting at s;
5: if P found then
6: M ←M ⊕ P ;
7: end if
8: end for
9: end procedure

26

In the previous section we briefly mentioned about the multiple-source multiple-

path approach for finding augmenting paths in a graph and illustrated it in Figure 15.

Hopcroft and Karp [37] use a similar technique and show that the worst-case bounds

for such an approach in bipartite graphs is O(
√
nm), where n is the number of

vertices and m the number of edges. From a simple observation of Figure 15, possibly

many vertex-disjoint augmenting paths can be found with each pass, and therefore,

drastically reduces the total number of steps that need to be performed. In fact, the

number of steps is bounded by O(
√
n). We refer the reader to [37] for a proof.

A multiple-source multiple-path search approach works by finding a set of vertex-

disjoint M -augmenting paths per iteration; specifically, a maximal set of shortest

length vertex-disjoint M -augmenting paths. A breadth-first search is first performed

to compute the length of the shortest augmenting path. Then, depth-first searches

are done simultaneously from each unmatched vertex to find a maximal set of vertex-

disjoint paths. Thus, the cardinality of a matching advances by |M ′ | = |M |+d, where

d is the number of vertex-disjoint augmenting paths, instead of |M ′| = |M | + 1 for

single-path approach. Algorithm 4 sketches a multiple-path technique for computing

a maximum cardinality matching in a bipartite graph.

Algorithm 4 Input: a bipartite graph G. Output: a matching M . Effect:
computes a maximum cardinality matching M in G using a mulitple-source multiple-
path approach.

1: procedure MAX-CARD2(G = (S, T,E),M)
2: M ← φ;
3: repeat
4: P ← {P1, P2, . . . , Pk}; . a maximal set of vertex-disjoint paths of

shortest length
5: M ←M ⊕ P
6: until P = φ;
7: end procedure

We conclude our discussion on the maximum cardinality matching algorithms

with Table 1 that summarizes the development of MCM algorithms in bipartite and

nonbipartite graphs.

27

Year Authors Graph Type Complexity

1931 Konig B O(nm)
1955 Kuhn B O(nm)
1965 Edmonds G O(n2m)
1972 Gabow G O(n3)
1973 Hopcroft and Karp B O(

√
nm)

1974 Kameda and Munro G O(nm)
1974 Even and Kariv G O(n2.5)
1976 Kariv G O(

√
nm log log n)

1980 Micali and Vazirani G O(
√
nm)

1991 Alt, Blum, Melhorn and Paul B O(n1.5
√

m
logn

)

1991 Feder and Motwani B O(
√
nm logn(n

2

m
))

1995 Goldberg and Karzanov G O(
√
nm logn

n2

m
)

TABLE 1: Algorithms for maximum cardinality matching [66]. For a graph G =
(V,E), n = |V | represents the number of vertices, and m = |E| the number of edges.
For graph types, B denotes bipartite graphs, and G denotes nonbipartite graphs.

28

II.4 MAXIMUM EDGE-WEIGHT MATCHING

Given a graph G = (V,E) with weight function w : E → R+, and a matching M , the

weight of a matching is the sum of weight of matched edges
∑

e∈M w(e). A matching

M in G is a maximum edge-weight matching (MEM) if it has the largest weight of all

matchings in the graph. Conceptually, an algorithm for computing a MEM is similar

to an algorithm to compute a maximum cardinality matching (MCM). In both the

cases, the general technique is to find augmenting paths and perform symmetric

differences to increase the current size of the matching. However, for a MEM one

also has to consider the weights associated with the edges. This will add complexity

to the MEM algorithms. Traditionally, the MEM problem has been formulated as

a linear programming problem, and is an example of the theory of duality. The

intuition for such a formulation is given by Theorem II.4.1. The theorem highlights

relationships between maximization and minimization, and between the weights on

the edges and the weights on the vertices. We refer the reader to [66] for a proof of

the theorem.

Theorem II.4.1 (Egerváry [1931]). Consider a bipartite graph G = (S, T,E) with

weight function w : E → R+. Let V = {S ∪ T} represent the set of vertices. The

maximum weight of a matching M in G is equal to the minimum weight of y(V),

where y : V → R+ is a set of dual weights on V such that, for each edge est ∈ E,

ys + yt ≥ w(est).

Linear programming (LP) problems are optimization (minimization or maximiza-

tion) problems with linear objective function subject to linear inequality constraints.

Linear programming problems are usually formulated as primal problems. Every

primal formulation can also be recast as a dual LP problem (this primal-dual for-

mulation for the MEM problem will be described shortly). The dual of a dual is

the primal problem. The dual of a primal problem can be obtained by changing the

objective function and the constraints. If one is a maximization problem, then other

is a minimization problem. A solution to the objective function that satisfies all

the constraints is known as a feasible solution. By design, every feasible solution to

the dual program gives an upper bound on the optimal value of the primal feasible

29

solution, and vice versa. The solution is optimal when the primal and dual solutions

are equal.

The primal-dual solution for the MEM problem in bipartite graphs is known as

the Hungarian method for the assignment problem as proposed by Harold W. Kuhn

[43]. Consider a bipartite graph G = (S, T,E) with weight function w : E → R+.

Let nS = |S| and nT = |T | represent the number of S and T vertices respectively,

and m = |E| represents the number of edges. Let n denote the total number of S

and T vertices, n = nS + nT . If a vertex pair (si, ti) does not exist in the edge set

E, then the weight wst is set to zero. The primal-dual formulation for the MEM

problem is given by:

Primal problem:

z = maximize

nS∑
s=1

nT∑
t=1

wstxst,

subject to constraints:

nS∑
s=1

xst = 1 for t = 1, ..., nT ,

nT∑
t=1

xst = 1 for s = 1, ..., nS,

xst ∈ {0, 1} for s = 1, ..., nS; t = 1, ..., nT .

Dual problem:

w = minimize

nS∑
s=1

us +

nT∑
t=1

vt,

subject to constraints:

us + vt ≥ wst for s = 1, ..., nS; t = 1, ..., nT ,

us, vt ≥ 0.

The primal variable xst is assigned to the edges, and can take a value of 1 if

matched, and 0 if not. The dual variables us and vt are assigned to the vertices, and

help guide the graph search procedures. The optimality of the primal-dual solution

is given by Lemma II.4.1. We refer the reader to [76] for a proof.

Lemma II.4.1 (Complementary slackness condition). If there exist vectors u, v ∈ Rn

and a matching X ∈ {0, 1}m with the following properties:

1. wst = (w(est)− us − vt) ≤ 0 for all s, t, and

30

2. Xst = 1 only when wst = 0,

then the matching X is optimal and has a value (
∑nS

s=1 us +
∑nT

t=1 vt).

Based on the complimentary slackness condition, the key idea for the primal-dual

algorithm is to maintain dual feasibility at all times (Condition 1 from Lemma II.4.1),

and form a subgraph of these edges, known as the tight edges, for which wst = 0.

From a vertex, a search for an augmenting path is made in this subgraph. If an

augmenting path exists, then the current matching is augmented with this path and

proceed to the next vertex. If no such path can be found in the tight subgraph, the

duals are adjusted such that an augmenting path might become possible. The process

repeats until the current vertex is matched. The process of updating the duals is

nontrivial and assumes the presence of a perfect matching in the graph. Note that

the required number of edges with zero weights can be trivially added to the initial

bipartite graph in order to facilitate a perfect matching. When the number of S and

T vertices differ (nS 6= nT), a perfect matching is either an S-perfect or a T -perfect

matching based on the cardinalities. A skeleton for computing an S-perfect matching

is described in Algorithm 5.

The search strategy in Algorithm MAX-WT is based on the single-source single-

path approach, and iterations are made through the S vertices. The complexity

of the graph search procedure is bounded by O(m), where m = |E| denotes the

number of edges in G. However, there is an additional task of updating the dual

variables when a search for an augmenting path fails. From a given source, shortest

augmenting paths to all possible unmatched vertices are built. The typical approach

at this step is to use a Dijkstra-like search [19] to compute the smallest change

in dual variables that is required to create a new augmenting path. This step is

critical in determining the overall complexity of the algorithm. Updating the dual

variables requires manipulation of priority queues, and therefore, the complexity of

the algorithm is influenced by the choice of the priority queue implementation. The

complexities as determined by some of the common data structures is summarized

in Table 2.

We will conclude the discussion on MEM algorithms with a summary of historical

development of MEM algorithms for bipartite and nonbipartite graphs as listed in

Table 3.

31

Algorithm 5 Input: A bipartite graph G. Output: a matching M . Effect:
computes a maximum edge-weight S-perfect matching M in G.

1: procedure MAX-WT(G = (S, T,E), w : E → R+, M)
2: M ← φ; . Initialization
3: ∀s ∈ S, dual[s] = max(w(est)), for t ∈ adj(s);
4: ∀t ∈ T , dual[t] = max((w(est)− dual[s])), for s ∈ adj(t);
5: for all s ∈ S do . Compute matching
6: while (true) do . Repeat until s gets matched.
7: w(est) = (w(est)− dual[s]− dual[t]);
8: G = (S, T,E), where E ⊂ E such that ∀est ∈ E, w(est) = 0;
9: Find an augmenting path Ps t in G with respect to M ;

10: if P found then
11: M ←M ⊕ P ;
12: break;
13: else
14: δ ← minimum change required to update duals; . Dijkstra-like

search
15: dual[s]← dual[s]− δ;
16: dual[t]← dual[t] + δ;
17: end if
18: end while
19: end for
20: end procedure

Data structure Time to update duals

Simple vectors O(n2)
Binary heaps O(m log n)
Fibonacci heaps O(m+ n log n)

TABLE 2: Power of data structures. For a graph G = (V,E), n = |V | represents the
number of vertices, and m = |E| the number of edges.

32

Year Authors Graph Type Complexity
1957 Berge (theoretical) – –
1955 Kuhn, Munkres B O(n4)
1960 Iri B O(n2m)
1965 Edmonds G O(n4)
1969 Dinits and Kronrod B O(n3)
1973 Gabow G O(n3)
1976 Lawler G O(n3)
1982 Galil, Micali and Gabow G O(nm log n)
1983 Ball and Derigs G O(nm log n)
1988 Gabow and Tarjan B O(

√
nm log(nW))

1989 Gabow, Galil, and Spencer G O(n(m log log logmax{m
n
,2} n+ n log n))

1990 Gabow G O(n(m+ n log n))
1991 Gabow and Tarjan B O(m log(nW)

√
nα(n,m) log n)

1992 Orlin and Ahuja B O(
√
nm log(nW))

2001 Kao, Lam, Sung, and Ting B O(
√
nmW logn(n2/m))

TABLE 3: Algorithms for maximum edge-weight matching [66]. For a graph G =
(V,E) with weight function w : E → R+, n = |V | represents the number of vertices,
m = |E| the number of edges, and W is the largest absolute value of an integer
weight. For graph types, B represents bipartite, and G the nonbipartite graphs.

33

II.5 APPROXIMATION ALGORITHMS

Approximation algorithms are generally developed for intractable problems [35].

Given that the matching algorithms are polynomial, approximation techniques for

matchings were initially developed for greedy initialization in exact algorithms [25].

However, recent developments in approximation algorithms for matching have been

motivated by scientific computing applications [24, 64]. For some applications match-

ings need to be computed on very large graphs, while for other applications, match-

ings need be computed a large number of times, although for small or medium sized

graphs. The optimality of the matching is not critical for many of these applications,

and therefore, motivate the development of fast approximation algorithms. Yet an-

other motivation for the development of approximation algorithms for matchings is

the simplicity in parallel implementations. In this section we will discuss some of the

recent developments in approximation theory for matching algorithms as summarized

in Table 4.

Year Author(s) Strategy Approx Complexity

1983 Avis Global maximum 1
2

O(m log n)
1999 Preis Local maximum 1

2
O(m)

2003 Drake and Hougardy Path-growing (PG) 1
2

O(m)
2003 Drake and Hougardy PG with short augmentations 2

3
− ε O(m1

ε
)

2004 Pettie and Sanders Randomized, Deterministic 2
3
− ε O(m log 1

ε
)

TABLE 4: Algorithms for approximate weighted matching. For a graph G = (V,E),
n = |V | represents the number of vertices, m = |E| the number of edges in G, and
ε→ R+ is a positive real number.

Avis proposed a simple heuristic algorithm for computing approximate matching

[4]. The algorithm is as follows. Given a graph G = (V,E) with weight function

w : E → R+, consider the edges in decreasing order of weights. Pick a heaviest

unmatched edge and add it to the matching M (initially empty). From G, remove

all the edges that are incident on the endpoints of the current matched edge. Repeat

the process until all the edges have been processed. This is illustrated in Algorithm

6.

It is ease to see that Algorithm GlobalHeavy computes a maximal matching in

G. Given the fact the cardinality of a maximal matching is at least half of a maximum

cardinality, the weight of the matching computed by GlobalHeavy guarantees a
1
2
-approx to a maximum edge-weight matching in G. Since the edges need to be

34

considered in sorted order, the time complexity for Algorithm GlobalHeavy is

O(m logm+m), where m = |E| is the number of edges in G. Execution of Algorithm

GlobalHeavy on a simple graph is illustrated in Figure 16.

Algorithm 6 Input: A graph G. Output: a matching M . Effect: computes a
1
2
-approx matching M in G.

1: procedure GlobalHeavy(G = (V,E), w : E → R+,M)
2: M ← φ;
3: repeat
4: Pick a globally heaviest edge euv ∈ E;
5: M ←M ∪ euv;
6: Delete all edges incident on u and v from E;
7: until E = φ;
8: end procedure

FIG. 16: Execution of Algorithm GlobalHeavy. The weights are associated with
the edges. Bold lines represent matched edges, and matched vertices are colored
black. Vertices processed at a given step are colored purple. Dashed lines represent
the edges that are removed from the graph. (a) The input graph before execution,
(b)-(c) the intermediate states of execution, and (d) the final state.

The locally-heaviest approximation algorithm (LAM) proposed by Robert Preis

guarantees a 1
2
-approx for both cardinality and weight, and runs in linear time [54, 64].

The basic strategy for LAM is conceptually similar to a Tabu Search [31], in that local

decisions made greedily will result in global optimization. The general structure of the

algorithm is as follows. Given a graph G = (V,E) with weight function w : E → R+,

arbitrarily pick an unmatched edge euv ∈ E. Scan the edges that are incident on

the vertices u and v. If an edge eux (or evy) is found such that w(eux) > w(euv),

35

then proceed to the edge eux. Repeat this process recursively. An edge exy is said to

be a locally-heaviest or locally-dominating if it is heavier than all the edges incident

on the vertices x and y. Stop the recursive search when a locally-heaviest edge is

found, and add it to the matching set. Remove all the edges that are incident on

the matched edge, and repeat the process until all the edges have been processed.

A simple overview of the process is given in Algorithm 7. It is involved to show

that the algorithm runs in linear time O(m). We refer the readers to [64] for details.

Execution of LAM on a simple graph is shown in Figure 17.

Algorithm 7 Input: A graph G. Output: a matching M . Effect: computes a
1
2
-approx matching M in G.

1: procedure LAM(G = (V,E), w : E → R+,M)
2: M ← φ;
3: repeat
4: Pick a locally-heaviest edge euv ∈ E;
5: M ←M ∪ euv;
6: Delete all edges incident on u and v from E;
7: until E = φ;
8: end procedure

While LAM is conceptually simple, its implementation is nontrivial. Drake and

Hougardy propose a simpler algorithm [24] based on the concept of growing a path

in a given graph. The algorithm is sketched in Algorithm 8. The path-growing

algorithm guarantees a 1
2
-approx for both cardinality and weight. The path-growing

algorithm works as follows. Given a graph G = (V,E) with weight function w : E →
R+, two empty matching sets M1 and M2, start with an arbitrary unmatched vertex

u. Search for the heaviest edge euv ∈ E incident on u, and add it to the matching

set M1. Remove u and all the edges incident on u from G. Now proceed to v and

perform the same steps. This time add the heaviest edge evw ∈ E incident on v to

the matching set M2. Repeat the process adding new edges alternatively to sets M1

and M2.

There are many schemes to select the final matching from path-growing approach.

One can maintain the temporary matchings M1 and M2 locally or globally. In the

global approach, as illustrated in Algorithm 8, the two sets M1 and M2 are compared

only at the end of the execution. The final matching is the heavier of M1 and M2.

For a local approach, M1 and M2 can be compared at the beginning of each new path

during the execution, and the heavier of M1 and M2 is added to the final matching

36

FIG. 17: Execution of Algorithm LAM. The weights are associated with the edges.
Bold lines represent matched edges. Matched vertices are colored black, and the ver-
tices being processed at a given step are colored purple. The shaded edges represent
dominating edges at a current step, and dashed lines represent the edges that are
removed from the graph. (a) The input graph before execution, (b)-(e) the interme-
diate states of execution, and (f) the final state.

at the end of each step. Alternatively, dynamic programming can also be used to

compute the final matching. Dynamic programming will yield the best matching,

and local selection will yield better results than global selection. For a given graph,

an edge will be processed only once by Algorithm PathGrow, thus resulting in a

linear time algorithm. We refer the reader to [24] for details.

In more recent work [74, 59], advances have been made to improve the approx-

imation ratio from half to (2
3
− ε). The basic technique is to iteratively improve

the weight and the cardinality by performing short-augmentations that meet a cer-

tain threshold for improvement. An augmenting path of certain length, usually of

length three or five edges, is called a short-augmenting path. One such simple scheme

that looks for augmenting paths of length three in a graph with an initial maximal

matching M is shown in Algorithm 9. Augmenting with short paths will not always

increase the weight of the final matching. Therefore, a greedy decision is made based

on a threshold β that represents the ratio of weight of the existing matching, and

the weight of the matching after augmentation. For example, if the value of β is

one, then augmentation will be performed only if the weight of the final matching

37

Algorithm 8 Input: A graph G. Output: a matching M . Effect: computes a
1
2
-approx matching M in G.

1: procedure PathGrow(G = (V,E), w : E → R+,M)
2: M ← φ; M1 ← φ; M2 ← φ; . Initialization
3: i← 1;
4: while E 6= φ do . Compute M1 and M2

5: M1 ← φ; M2 ← φ;
6: i← 1;
7: Arbitrarily pick a vertex u ∈ V of degree ≥ 1;
8: while deg(v) ≥ 1 do . deg(v) represents the number of edges incident

on a vertex v
9: Pick the heaviest edge euv ∈ E incident on u;

10: Mi ←Mi ∪ {euv};
11: i← (3− i); . Alternate between M1 and M2

12: Delete u and all edges incident on u from G;
13: u← v;
14: end while
15: end while
16: if w(M1) > w(M2) then . Compute M
17: M ←M1;
18: else
19: M ←M2;
20: end if
21: end procedure

38

FIG. 18: Execution of Algorithm PathGrow. The weights are associated with the
edges. The solid bold-lines represent edges matched in M1, and the dashed bold-lines
represent the edges matched in M2. The matched vertices are colored black, and the
vertices processed at a given step are colored purple. The shaded edges highlight the
edges that are being processed for matching at a given step. (a) The input graph
before execution, (b)-(f) the intermediate states of execution.

at least remains the same (while the cardinality will increase). A 1
2
-approx matching

computed with one of the algorithms discussed before, for example GlobalHeavy,

can be used to compute the initial maximal matching M .

39

Algorithm 9 Input: A graph G, and a maximal matching M . Output: a matching
M
′
. Effect: improve cardinality and weight of the input matching M .

1: procedure IMPROVE-MATCHING(G = (V,E), w : E → R+,M,M
′
)

2: M
′ ←M ;

3: repeat k times
4: for all e ∈M ′

do
5: Find β-augmenting path P centered at e; . β is the threshold value
6: if P found then
7: M

′ ←M
′ ⊕ P ;

8: end if
9: end for

10: until
11: end procedure

II.6 CHAPTER SUMMARY

In this chapter, we gave a brief introduction to matching and discussed exact and

approximation algorithms for matching in graphs. The scope of the exact algorithms

was restricted to bipartite graphs. Some of the recent developments in approximation

techniques for matchings were also discussed. One of the goals for this chapter has

been to build the necessary background for presenting our work in the following

chapters.

40

CHAPTER III

EXACT ALGORITHMS

“The complexity of the vertex-weighted matching problem is close to that

of the unweighted matching problem.” - Thomas Spencer and Ernst

Mayr [69]

The maximum vertex-weight matching (MVM) problem is simple as well as challeng-

ing, the complexity lies between that of the unweighted and the edge-weighted ver-

sions of the matching problem. Unlike the maximum edge-weight matching, the max-

imum vertex-weight matching problem has received little attention by researchers.

After extensive search, we could locate only a handful of publications dedicated to the

vertex-weighted matching problem. In this chapter we will provide an introduction,

discuss related work and provide three new algorithms for the exact vertex-weighted

matching problem. The approximation algorithms for vertex-weighted matching will

be discussed in Chapter IV.

III.1 INTRODUCTION AND RELATED WORK

A maximum vertex-weight matching (MVM) can be defined as:

Definition III.1.1. Given a graph G = (V,E) with weight function w : V → R+, a

maximum vertex-weight matching M in G is a matching that maximizes the sum of

weights of the matched vertices, denoted by V(M):

Maximize
∑

v∈V (M)

w(v) (3)

Note that an MVM problem can also be formulated as a maximum edge-weight

matching problem by defining the weight of an edge as the sum of the weights of

its incident vertices. However, we will show that an MVM is conceptually as well

as computationally easier than an MEM problem. We will also show that the MVM

problem is conceptually similar to the MCM problem.

The maximum vertex-weight matching problem was studied by Thomas Spencer

and Ernst Mayr [69]. A brief mention of maximum vertex-weight matching is also

made by Ketan Mulmuley, Umesh Vazirani and Vijay [55]. With specific application

in Input Queueing Switches, Tabatabaee, Georgiadis and Tassiulas [71] also propose

41

an MVM algorithm. In this chapter we will provide relevant concepts from these

two papers and use them in our subsequent work. Detailed descriptions of the new

algorithms and the proof sketch of correctness will also be provided.

Spencer and Mayr show that the MVM problem in a nonbipartite graph can be

reduced to the MVM problem in a bipartite graph. Further, the bipartite MVM

problem itself can be simplified into two subproblems of computing the MVM in

special bipartite graphs called the restricted bipartite graphs. Spencer and Mayr also

show how to transform the MVM problem in a graph with negative weights to the

MVM problem in a graph with positive weights. Thus, computing the MVM in a

restricted bipartite graph will lead to a solution in general graphs. This relationship

is illustrated in Figure 19.

FIG. 19: Decomposition of the maximum vertex-weight matching problem.

Given a bipartite graph G = (S, T,E) and weight functions wS : S → R+ and

wT : T → R+, the two restricted bipartite graphs can be defined as: (i) G = (S, T,E)

and weight function wS : S → R+, and (ii) G = (S, T,E) and weight function

wT : T → R+. In the first restricted bipartite graph the weights on T vertices are set

to zero and in the second the weights on S vertices are set to zero, while everything

else remains the same. The fact that the matching problem in a bipartite graph can

be simplified into two subproblems of computing matchings in the restricted bipartite

graphs is given by Theorem III.1.1.

Theorem III.1.1 (Mendelsohn-Dulmage). Given two matchings MS and MT in a

bipartite graph G = (S, T,E), a new matching M ⊆ MS ∪MT can be computed in

linear time such that M matches all the S vertices matched by MS and all the T

vertices matched by MT .

Proof. Compute the symmetric difference MS ⊕MT , this will contain a set of cycles

and paths as enumerated in Figure 20. In each case it is possible to pick edges for

42

M such that it covers all the vertices of S matched by MS and all the T vertices

matched by MT . The edges that are matched by both MS and MT should also be

added to M . All the above operations are bounded by O(|E|). All these operations

can be summarized as follows:

(a) A cycle: arbitrarily choose MS or MT edges,

(b) MS-augmenting path: choose MT edges,

(c) MT -augmenting path: choose MS edges,

(d) MS-alternating path: choose MS edges,

(e) MT -alternating path: choose MT edges, and

(f) MS ∩MT : choose MS or MT edges.

FIG. 20: The symmetric difference of two matchings MS ⊕MT . Dashed lines rep-
resent edges in MS and Solid lines represent edges in MT . (a) A cycle; (b)-(e)
Augmenting or alternating paths.

An implementation of the Mendelsohn-Dulmage technique is illustrated in Algo-

rithm 10. The algorithm has three stages. In Stage 1, Lines 8-17, we will pick the

relevant MS edges shown as Cases (c) and (d) in Figure 20. These edges can be

detected by looking for S vertices that are matched by MS and unmatched by MT .

In Stage 2, Lines 19-29, we pick the relevant MT edges shown as Cases (b) and (e)

in Figure 20). These can be detected by looking for T vertices that are matched by

MT and unmatched by MS. In Stage 3, Lines 30-36, we will pick the edges that will

be matched by both MS and MT , as well as the cycles.

43

Algorithm 10 Input: A bipartite graph G and matchings MS and MT . Output:
a matching M . Effect: using Mendelsohn-Dulmage technique, computes a matching
M that matches all the S vertices matched by MS and all the T vertices matched by
MT .

1: procedure MendelsohnDulmage(G = (S, T,E), Ms, Mt, M)
2: for all s ∈ S do . Initialize M
3: M [s]← φ;
4: end for
5: for all t ∈ T do
6: M [t]← φ;
7: end for
8: for all s ∈ S do . Pick MS edges (Cases (c) and (d))
9: if Ms[s] 6= φ and Mt[s] = φ then

10: s
′ ← s;

11: repeat
12: t

′ ←MS[s
′
];

13: M [s
′
]← t

′
;

14: M [t
′
]← s

′
;

15: s
′ ←MT [t

′
];

16: until s
′
= φ or MS[s

′
] = φ

17: end if
18: end for
19: for all t ∈ T do . Pick MT edges (Cases (b) and (e))
20: if Mt[t] 6= φ and Ms[t] = φ then
21: t

′ ← t;
22: repeat
23: s

′ ←MT [t
′
];

24: M [s
′
]← t

′
;

25: M [t
′
]← s

′
;

26: t
′ ←MS[s

′
];

27: until t
′
= φ or MT [t

′
] = φ

28: end if
29: end for
30: for all s ∈ S do . Pick MS edges (Cases (a) and (f))
31: if Ms[s] 6= φ and M [s] = φ then
32: t←MS[s];
33: M [s]← t;
34: M [t]← s;
35: end if
36: end for
37: end procedure

44

III.2 FOUNDATIONS

We will now discuss two theorems that provide necessary and sufficient conditions

to prove the optimality of an MVM. An important observation is the fact that any

maximum vertex-weight matching is also a maximum cardinality matching. This

provides the necessary condition and is stated by Theorem III.2.1.

Theorem III.2.1. Given a graph G = (V,E) and weight function w : V → R+, a

maximum vertex-weight matching M in G is also a maximum cardinality matching.

Proof. Let M be a maximum vertex-weight matching that is not of maximum cardi-

nality. Since M is not of maximum cardinality, there is at least one augmenting path

P with respect to M . The symmetric difference M ⊕ P will increase the cardinal-

ity of M by one edge and matches two new vertices while retaining all the vertices

that were already matched by M . Since positive weights are associated with the

vertices, the total weight of M increases when its cardinality is increased. Therefore

a maximum vertex-weight matching is also a maximum cardinality matching.

If a graph has a perfect matching, then all the vertices will be matched by any

maximum cardinality matching in this graph. Therefore any maximum cardinality

matching will also be a maximum vertex-weight matching for this graph. However,

when a maximum cardinality matching in a graph is not a perfect matching, comput-

ing a maximum vertex-weight matching will be conceptually harder than computing

a maximum cardinality matching. Since only a subset of vertices need to be matched,

we will have to explicitly consider the weights associated with the vertices. An im-

portant concept in vertex-weighted matching is the lexicographical ordering of vertex

sets.

We will need the definition of a lexicographical order to differentiate vertices with

duplicate weights. For a graph G = (V,E) with weight function w : V → R+, let

each vertex be assigned a distinct integer label between 1 and |V |. A relationship

between two vertices, and sets of vertices, can be established by using both the

weights and the labels associated with the vertices. A precedence operator ≺ can be

defined as follows: given two vertices v1 and v2, v1 ≺ v2 if and only if w(v1) < w(v2),

or w(v1) = w(v2) and l(v1) < l(v2), where l(v1) and l(v2), the labels of vertices v1

and v2 are considered as integers. Conversely, v2 succeeds v1, denoted as v2 � v1.

The precedence relationship can be used to compare two matchings. Given two

matchings M1 and M2 in a graph G = (V,E), let V1 = V (M1) and V2 = V (M2)

45

denote the set of vertices matched by M1 and M2 respectively. Assuming that the

cardinality of the two matchings is the same |V1| = |V2|, we will say that V1 is

lexicographically smaller than V2, denoted as V (M1) ≺ V (M2), if the first difference

between the two sets, v1 ∈ V1 and v2 ∈ V2, is such that v1 ≺ v2. Conversely, V2

succeeds V1, denoted as V2 � V1. Given a set of maximum cardinality matchings in a

graph {V1, V2, . . . Vk}, a lexicographically largest matching Vj is a matching such that

it succeeds all other matchings, Vj � Vi for any i in 1 ≤ i ≤ k and i 6= j.

We have seen that any MVM is a maximum cardinality matching. The lexico-

graphical order of a vertex set can be used to prove that some maximum cardinality

matching is also a maximum vertex-weight matching in a graph and is given by

Theorem III.2.2:

Theorem III.2.2 (Mulmuley, Vazirani, Vazirani). Given a graph G = (V,E) and

weight function w : V → R+, a lexicographically largest matching of maximum car-

dinality is also a maximum vertex-weight matching in G.

Proof. Let ML represent a lexicographically largest matching and M∗ represent a

maximum vertex-weight matching. Also, let ML and M∗ be different, with respect

to matched vertices, from each other. From Theorem III.2.1, M∗ is a maximum

cardinality matching in G, and ML is also a maximum cardinality matching by

choice.

Consider the matched vertices in ML and M∗ in decreasing order of weights.

Let v1 ∈ V be the first vertex where the two matched sets differ. The symmetric

difference ML⊕M∗ will result in an alternating path P starting at v1, matched only

by ML and ending with v2 ∈ V , matched only by M∗. Since v1 is the first vertex

in the decreasing order that is different, it is larger than v2 (w(v1) > w(v2)). The

matching obtained by the symmetric difference P⊕M∗ will have a weight larger than

M∗, and therefore, contradicts the assumption that M∗ is a maximum vertex-weight

matching.

If w(v1) = w(v2), then by performing M∗ ← P ⊕M∗ we have brought the two

matchings ML and M∗ closer to each other. Continue considering the vertices in the

decreasing order of weights until they are different. When such a vertex is found, it

will contradict the assumption. If no such vertex is found, then both ML and M∗

will have the same weights. Thus, w(ML) = w(M∗).

The lexicographic order of matched vertices is an important observation that

46

assisted in the design of the first proposed algorithm, which sorts the vertices in

decreasing order of their weights and process them in that order. The algorithm

proposed by Spencer and Mayr [69] also uses a sorting-based approach to compute

an MVM. Their divide and conquer strategy is successful because the choice of the

heaviest vertices that should be matched can be determined independently from the

choice of the lightest vertices that should be matched. Given a graph G = (V,E)

with weight function w : V → R+, there can be at most O(log2 n) divisions, where n

is the number of vertices. Computing a maximum cardinality matching at each step

will dominate the run time. Since any given problem can be reduced to computing

an MVM in a bipartite graph, a maximum cardinality can be computed in O(
√
nm)

time complexity [37], thus providing an overall time complexity of O(
√
nm log n) to

compute an MVM in a graph. In their algorithm Tabatabaee, Georgiadis and Tas-

siulas, first compute a maximum cardinality matching and then sort the unmatched

vertices in decreasing order of weights. From each unmatched vertex processed in

that order, an attempt to increase the weight of the matching is made. A maxi-

mum cardinality matching, as well as the subsequent computation can be bounded

by O(nm). Related work is summarized in Table 5.

Year Author(s) Complexity

1984 Spencer and Mayr O(
√
nm log n)

1987 Mulmuley, Vazirani and Vazirani Theoretical
2001 Tabatabaee, Georgiadis and Tassiulas O(nm)

TABLE 5: A survey of algorithms for maximum vertex-weight matching. For a given
graph G = (V,E), n = |V | represents the number of vertices, and m = |E| the
number of edges.

47

III.3 NEW ALGORITHMS FOR MAXIMUM VERTEX-WEIGHT

MATCHING

In this section we provide three algorithms to compute maximum vertex-weight

matchings (MVM). We will build on the work of Spencer and Mayr [69], and Mul-

muley, Vazirani and Vazirani [55] for the exact algorithms. We also propose three

algorithms for 1
2
-approx matchings and a 2

3
-approx algorithm. The approximation

algorithms are discussed Chapter 4. The proposed algorithms are summarized in

Table 6.

Name Type Description Complexity

Exact Algorithms
GlobalOptimal B Sort-based O(n log n+ nm)
LocalOptimal B Search-based O(nm)
HybridOptimal G Sort and search-based O(n log n+ nm)

Approximation Algorithms
GlobalHalf B 1

2
-approx; Sort-based O(n log n+m)

LocalHalf B 1
2
-approx; Search-based O(m)

HybridHalf G 1
2
-approx; Sort and search-based O(n log n+m)

GlobalTwoThird B 2
3
-approx; Sort-based O(n log n+ nd3)

TABLE 6: A summary of algorithms proposed for vertex weighted matchings. Bipar-
tite and general graphs are represented with B and G respectively. For a bipartite
graph G = (S, T,E), n = (|S|+ |T |) represents the number of vertices, m = |E| the
number the edges, and dk is a generalization of the vertex degree that denotes the
average number of distinct alternating paths of length at most k edges starting at a
vertex in G.

The fundamental technique to compute an MVM is to find an augmenting path

and augment the matching via symmetric difference of the augmenting path and the

current matching. The algorithms for MVM are conceptually similar to algorithms

for computing a maximum cardinality matching. The proposed algorithms use the

single-source single-path approach (discussed in Chapter 2). In a single-source single-

path approach, the search for an augmenting path starts from an unmatched vertex,

and if found, augmentation can be performed along only one such path. For the

proposed algorithms we will not be able to use the multiple-path approach proposed

by Hopcroft and Karp [37], as discussed later in this chapter.

For the bipartite graph algorithms, we propose two basic approaches - global and

local. The two approaches differ in the way the vertices are selected for processing.

48

While GlobalOptimal uses a global-order in selecting the vertices as sources for

augmenting paths, LocalOptimal selects the sources arbitrarily (but, considers all

the potential augmenting paths from this source in an order). From the perspective

of computational complexity, both the techniques have similar worst-case bounds.

However, there can be significant differences in performance. The primary motivation

for developing two different approaches is to provide an algorithm for computing

maximum vertex-weight matchings in nonbipartite graphs. This is achieved in the

hybrid approach, HybridOptimal, where the source-vertices are processed in a

global-order, as well as, ordering all the potential augmenting paths like the local

approach. We will now discuss the three proposed algorithms in detail.

III.3.1 Algorithm GlobalOptimal

The first proposed algorithm, shown in Algorithm 11, is based on processing the

vertices according to a global order. We first decompose the given bipartite graph

G = (S, T,E), with weights associated with both S and T vertices, into two sub-

graphs, the restricted bipartite graphs, by ignoring the weights on the T vertices and

then on the S vertices. Construction of the restricted bipartite graphs is represented

in Algorithm 11 by Lines 5 and 6 for S vertices, and Lines 15 and 16 for T vertices.

For the first matching subproblem, we will compute the matching MS by find-

ing shortest augmenting paths starting from unmatched S vertices, considered in

decreasing order of weights. Lines 7− 14 represent the computation of MS. A sim-

ilar approach is used to compute the matching MT where weights are associated

only with the T vertices is represented by Lines 17− 24 in GlobalOptimal. The

final matching will be obtained by merging the two matchings MS and MT using

Mendelsohn-Dulmage technique. Execution of GlobalOptimal on a simple bipar-

tite graph with weights associated with S vertices is shown in Figure 21. For this

discussion, we will only consider positive weights. We will later show how to compute

an MVM in bipartite graphs with negative weights.

49

Algorithm 11 Input: a bipartite graph G. Output: a matching M . Associated
Data Structures: sets S̃ and T̃ are stored as stack data structures. The elements
in the stack follow a precedence order ≺, with the top of the stack being the heaviest
element at any given time. Effect: computes a maximum vertex-weight matching
M in G
1: procedure GlobalOptimal(G = (S, T,E), wS : S → R+, wT : T → R+, M)
2: M ← φ;
3: MS ← φ;
4: MT ← φ;
5: S̃ ← S in increasing order of weights wS;
6: T̃ ← T with weights set wT to zero;
7: while S̃ 6= φ do . Compute MS

8: s←top of S̃;
9: S̃ ← S̃ \ s;

10: Find a shortest augmenting path P starting at s;
11: if P found then
12: MS ←MS ⊕ P ;
13: end if
14: end while
15: T̃ ← T in increasing order of weights wT ;
16: S̃ ← S with weights wS set to zero ;
17: while T̃ 6= φ do . Compute MT

18: t←top of T̃ ;
19: T̃ ← T̃ \ t;
20: Find a shortest augmenting path P starting at t;
21: if P found then
22: MT ←MT ⊕ P ;
23: end if
24: end while
25: M ←MendelsohnDulmage(MS,MT ,M); . Compute M
26: end procedure

50

FIG. 21: Execution of Algorithm GlobalOptimal. (a) The input graph G =
(S, T,E) before execution, weights are associated only with the S vertices. (b)-
(e) The intermediate states of execution. Bold lines represent matched edges, and
matched vertices are colored black. The shaded edges highlight the shortest aug-
menting path from a given S vertex. Vertices colored Violet represent the vertex
processed at a given step, and the end-point of an augmenting path if one exists.
The arrows indicate the S vertex that is being processed at a given step.

III.3.2 Algorithm LocalOptimal

For the second algorithm we adopt a strategy based on search within a restricted

neighborhood of the graph, and is shown in Algorithm 12. The vertices are arbitrarily

chosen as sources for augmenting paths, but the paths themselves are chosen for

augmentation in an order. We again decompose the bipartite graph G = (S, T,E),

with weights associated with both S and T vertices, into two restricted bipartite

graphs (Lines 5 and 14).

In the first matching subproblem a matching MS is computed as follows: arbitrar-

ily start from an unmatched S vertex si and enumerate all possible augmenting paths

Pi with respect to the current matching Mi. Then choose the best augmenting path

from si to augment the current matching. A best augmenting path is a path that

maximizes the weight of Mi ⊕ Pi, in other words the path ending with the heaviest

vertex. Repeat the process until all the S vertices have been processed. Lines 6− 13

represent the computation of MS. A similar procedure can be used to compute the

51

matching MT on the second restricted bipartite graph. This is represented by Lines

17 − 24 in LocalOptimal. The final matching will be obtained by merging the

two matchings MS and MT using the Mendelsohn-Dulmage technique. Execution of

LocalOptimal on a simple bipartite graph with weights associated with S vertices

is shown in Figure 22.

Algorithm 12 Input: a bipartite graph G. Output: a matching M . Effect:
computes a maximum vertex-weight matching M in G.

1: procedure LocalOptimal(G = (S, T,E), wS : S → R+, wT : T → R+, M)
2: M ← φ;
3: MS ← φ;
4: MT ← φ;
5: T̃ ← T with weights wT set to zero ;
6: while T̃ 6= φ do . Compute MS

7: t← any element of T̃ ;
8: T̃ ← T̃ \ t;
9: Find all augmenting paths Pt s = {P1, P2, ..} starting at t;

10: if Pt s 6= φ then
11: MS ←MS ⊕ Pbest; . Pbest is the path with largest s that will be

matched
12: end if
13: end while
14: S̃ ← S with weights wS set to zero ;
15: while S̃ 6= φ do . Compute MT

16: s← any element of S̃;
17: S̃ ← S̃ \ s;
18: Find all augmenting paths Ps t = {P1, P2, ..} starting at s;
19: if Ps t 6= φ then
20: MT ←MT ⊕ Pbest; . Pbest is the path with largest t that will be

matched
21: end if
22: end while
23: M ←MendelsohnDulmage(MS,MT ,M); . Compute M
24: end procedure

III.3.3 Algorithm HybridOptimal

While GlobalOptimal and LocalOptimal computed matchings in bipartite

graphs, Algorithm 13 combines the two strategies to compute maximum vertex-

weight matchings in general graphs. The given set of vertices are sorted in an in-

creasing order of their weights and stored in a stack data structure, such that the

52

FIG. 22: Execution of Algorithm LocalOptimal. (a) The input graph G =
(S, T,E) before execution, weights are associated only with the S vertices. (b)-
(d) The intermediate states of execution, (e) the final state. Bold lines represent
matched edges, and matched vertices are colored black. The shaded edges highlight
all the augmenting paths that exist from a given T vertex. The arrows indicate the
T vertex that is being processed at a given step.

53

top element is the current heaviest vertex. The vertices are then retrieved from the

stack one at a time. All possible augmenting paths starting from this vertex are

discovered and ordered based on the weight of the last vertex, which is also the only

unmatched vertex in the path. The current matching is augmented with the path

with the heaviest weight of the last vertex. The algorithm processes each vertex

only once and terminates when it processes every vertex in the graph. Note that

the implementation of this algorithm should be capable of processing cycles of odd

length (Blossoms).

Algorithm 13 Input: a graph G. Output: a matching M . Associated Data
Structures: set Ṽ is a stack data structure. The elements in the stack follow a
precedence order ≺, with the top of the stack being the heaviest element at any
given time. Effect: computes a maximum vertex-weight matching M in G.

1: procedure HybridOptimal(G = (V,E), w : V → R+)
2: M ← φ;
3: Ṽ ← V in increasing order of weights;
4: while Ṽ 6= φ do . Compute M
5: v ← top of Ṽ ;
6: Ṽ ← Ṽ \ v;
7: Find all augmenting paths Pv w = {P1, P2, ..} starting at v;
8: if Pv w 6= φ then
9: M ←M ⊕ Pbest; . Pbest is the path with largest w that will be

matched
10: Ṽ ← Ṽ \ w;
11: end if
12: end while
13: end procedure

III.3.4 Negative Weights

Spencer and Mayr provide a method to handle negative weights. Given a graph

G = (V,E) and weight function w : V → R, for each vertex vi ∈ V that has a

negative weight, add a new vertex v
′
i and an edge e(vi, v

′
i). Also set w(vi) = 0 and

w(v
′
i) = abs(w(vi)), the absolute value of the original weight. This will result in a

new graph G
′
(V
′
, E
′
) and weight function w :→ (R+ ∪ {0}). An MVM M in G

′
will

also be an MVM in G. While M will also be a maximum cardinality matching in G
′
,

the same is not necessarily true in G.

For the proposed algorithms GlobalOptimal and LocalOptimal, we can

54

adopt a similar technique. Given a bipartite graph G = (S, T,E) and weight func-

tions wS : S → R, wT : T → R, for each si ∈ S that has a negative weight, add a

new T vertex t
′
i and an edge e(si, t

′
i). Also set wS(si) = 0 and wT (t

′
i) = abs(wS(si)).

Perform similar transformations for all the T vertices with negative weights. This

will result in a new graph G
′
(S
′
, T
′
, E
′
) with weight functions wS : S → (R+ ∪ {0}),

wT : T → (R+ ∪ {0}). The transformation is illustrated in Figure 23. Both the al-

gorithm GlobalOptimal and LocalOptimal will compute an MVM in the new

graph G
′
.

FIG. 23: Transformation of graphs with negative weights. (a) The input graph G =
(S, T,E) with some negative weights associated with the vertices, (b) the new graph
G
′
(S
′
, T
′
, E
′
) with zero or positive weights. The new vertices are filled with Black

color.

55

III.4 PROOF OF CORRECTNESS

In this section we provide the proof of correctness for the proposed algorithms. We

will first discuss the proof for the two bipartite graph algorithms and then extend it

to the algorithm for the general graph. In Section III.2 we provided the necessary

and sufficient condition to prove the optimality of an MVM in a graph. In this sec-

tion, we will provide an alternative method to prove the correctness of the proposed

algorithms. The bipartite algorithms decompose the given problem into two match-

ing problems on the restricted bipartite graphs. We will prove the correctness for an

MVM computed in the first restricted bipartite graph, which can then be trivially

extended to the second subgraph. The correctness of an MVM in the original graph

can be proved subsequently using the Mendelsohn-Dulmage technique as stated in

Theorem III.1.1. However, there is no such decomposition in the case of general

graphs.

We will adapt the definitions of the lexicographical sets for the restricted bipartite

cases. We will generally consider the first restricted bipartite case: a bipartite graph

G = (S, T,E) and weight function w : S → R+ (we would have specifically set the

weights on the T vertices to zero). In all lexicographic comparisons, we will consider

only the S vertices. Recall that MS is a matching in this restricted bipartite graph

that has weights only on the S vertices. The S vertices matched by MS, the S-vertex

set of MS, will be represented as S(MS).

The proof for the correctness for GlobalOptimal is straight-forward, however,

the proof for the correctness of Algorithm LocalOptimal is nontrivial. In order

to provide a uniform method of proof for both these algorithms, we introduce the

concept of reachability property, which can be defined as:

Definition III.4.1 (Reachability Property). Consider a graph G = (V,E) with

weight function w : V → R+, and any matching M in G. The matching M satisfies

the reachability property if for any M-unmatched vertex v, and any M-matched vertex

v
′

reachable by an M-alternating path from v, the condition that v ≺ v
′

holds.

As illustrated in Figure 25, the alternating path for a reachability test starts

with an unmatched vertex and ends with a matched vertex. This path is always of

even length with an equal number of matched and unmatched edges, and has only

one unmatched vertex. We use the concept of reachability to prove of correctness

of all the proposed algorithms. Existence of the reachability property is a sufficient

56

condition for optimality, this is stated in Theorem III.4.1.

FIG. 24: Illustration of the reachability property. Bold lines represent the matched
edges and matched vertices are colored black.

Theorem III.4.1. Consider a graph G = (V,E) with weight function w : V → R+,

and a maximum cardinality matching M in G. If M satisfies the reachability property,

then it is also a maximum vertex-weight matching in G.

Proof. LetML represent a lexicographically largest matching of maximum cardinality

in G, and therefore, a maximum vertex-weight matching (MVM) as follows from

Theorem III.2.2. In order to prove that M is an MVM in G, we only need to

prove that w(V (M)) = w(V (ML)). Assume, by contradiction, that w(V (M)) ≤
w(V (ML)).

We will make an argument similar to the one provided in the proof of Theorem

III.2.2. Consider the matched vertices in ML and M in decreasing order of weights.

Let vi ∈ V be the first vertex where the two matched sets differ. The symmetric

difference ML ⊕ M will result in an alternating path P starting at vi, matched

only by ML. The alternating path P must contain the same number of edges from

(ML \M) and (M \ML), if not, we would have an augmenting path for one of the

matchings (which, we know is not true). Hence the path P ends with some vertex

vj, matched only by M . Note that the vertex vj is matched by M , but not by

ML, due to it being the last vertex on the alternating path P . Since vi is the first

vertex in the decreasing order that is different, its weight is larger than the weight

of vj, w(vi) > w(vj). However, from the reachability property for M , the weight vj

cannot be smaller than the weight of vi and this contradicts the assumption that

w(V (M)) ≤ w(V (ML)).

57

If w(vi) = w(vj), then replace M by M ⊕ P . This will not affect the weight of

matching M . Continue considering the vertices in the decreasing order of weights

until the next differing vertex is found. We can repeat the above argument for such

a vertex. When there are no more vertices to be considered, then both ML and M

have the same weights. Thus w(V (M)) = w(V (ML)).

The reachability property provides a sufficient condition to prove the optimality

of a maximum vertex-weight matching in a graph. We will now prove that the

proposed algorithms will satisfy the reachability property, and thus compute optimal

vertex-weight matchings. These are stated in Theorems III.4.2, III.4.3 and III.4.4.

Theorem III.4.2. Consider a graph G = (S, T,E) with weight function w : S →
R+, and a matching MG

S computed by algorithm GlobalOptimal. The matching

MG
S satisfies the reachability property.

Proof. We will prove the theorem by using mathematical induction. We will con-

sider those steps when Algorithm GlobalOptimal augments the current matching,

called the augmenting steps. Let M i
S correspond to a matching at some intermediate

step in the algorithm. We will prove that the theorem holds true at each augmenting

step, and therefore at the end of the execution of GlobalOptimal.

Base case: Let s1 ∈ S be the first matched vertex. Since GlobalOptimal

considers the S vertices for augmentation in the decreasing order of weights, s1 will

precede all other S vertices from which s1 is reachable through an M i
S alternating

path. Thus the base case holds true. For simplicity, assume that there are no isolated

vertices in G.

Step k : Assume that the reachability property holds true after the k-th augmen-

tation.

Step (k+1): Let the (k + 1)-th augmentation be performed along the M i
S-

augmenting path Pk+1 from sk+1 ∈ S to tk+1 ∈ T . In order to prove the theorem, we

need to show that for any M i
S-unmatched vertex si, and any M i

S-matched vertex s
′
i

reachable through an M i
S-alternating path, the condition that si ≺ s

′
i holds after the

(k + 1)-th augmentation. Note that the vertices s
′
i and sk+1 can be the same.

When the (k + 1)-th augmenting path Pk+1 and any M i
S-alternating path be-

tween si and s
′
i are vertex disjoint, the (k + 1)-th augmentation has no affect on

the reachability of s
′
i from si. However, if s

′
i becomes reachable after the (k + 1)-th

augmentation, then the alternating path between si and s
′
i, and the augmenting path

58

Pk+1 have at least one vertex (and one edge) in common. This is illustrated in Figure

25. Now, there are only two alternatives: (i) the two vertices s
′
i and sk+1 are the

same. In such a case, there was at least one augmenting path from si to tk+1, but

sk+1 was preferred, and the condition si ≺ s
′
i holds; or (ii) the two vertices s

′
i and

sk+1 are different. In which case we know that all the matched s ∈ S vertices succeed

sk+1, and the condition si ≺ s
′
i holds.

FIG. 25: Illustrates that reachability property holds for Algorithm GlobalOptimal.
Bold lines represent the matched edges and matched vertices are colored black. (a)
State before (k + 1)-th augmentation, (b) state after (k + 1)-th augmentation.

Theorem III.4.3. Given a graph G = (S, T,E) with weight function w : S → R+,

and a matching ML
S computed by algorithm LocalOptimal. The matching ML

S

satisfies the reachability property.

Proof. Similar to the proof of Theorem III.4.3, we will induct on the ML
S augmenting

steps. We will show that at the end of any given iteration of the algorithm, ML
S

will satisfy the reachability property such that for any ML
S -matched vertex s

′ ∈ S

reachable via an ML
S -alternating path P originating at any ML

S -unmatched vertex

s ∈ S, s ≺ s
′
.

Base case: LocalOptimal will arbitrarily start from a T vertex, say t1, and

process all S vertices adjacent to t1, S1 = adj(t1). It will then select the largest

s ∈ S1, say s1. After matching s1 to t1, s1 will be reachable via an ML
S alternating

path only from the vertices in S1 \ {s1}. Since s1 is heaviest vertex in S1, the

reachability property will hold true for the base case.

59

Step k : Assume that the reachability property holds true after the k-th augmen-

tation.

Step (k+1): Given that the reachability property holds true at step k, we will

prove that it also holds true for step (k + 1). Let the two vertices matched at step

(k + 1) be tk+1 ∈ T and sk+1 ∈ S. LocalOptimal will consider all the unmatched

S vertices reachable via an ML
S -augmenting path from tk+1, let this set be Sk+1 ⊂ S.

Vertex sk+1 is selected by Algorithm LocalOptimal because it is the largest among

all the vertices in the set Sk+1.

Again, in order to have an impact any ML
S -matched vertex s

′ ∈ S reachable via

an ML
S -alternating path P , after the (k + 1)-th augmentation, originating at any

ML
S -unmatched vertex s ∈ S, should contain tk+1 in the path (Figure 25). The

two possibilities are: (i) s /∈ Sk+1, in which case nothing changes with respect to

s from the augmentation at step (k + 1). Therefore, from the assumption at step

k, s ≺ s
′
; or (ii) s ∈ Sk+1 \ {sk+1}: for these S vertices there are two possibilities

- an ML
S -matched vertex s

′
reachable via an alternating path was reachable either

before the (k+ 1)-th augmentation, and therefore s ≺ s
′
, or becomes reachable after

the (k + 1)-th augmentation. In the latter case, we know that LocalOptimal will

select the largest vertex, and therefore, s ≺ sk+1. From step k, we also know that

sk+1 ≺ s
′

(since sk+1 will also be available for matching until step k + 1 for all s
′

vertices reachable via sk+1). Thus, s ≺ s
′
, and the property holds true for step

(k + 1).

We will now prove that the reachability property holds true for a matching com-

puted by HybridOptimal in Theorem III.4.4.

Theorem III.4.4. Given a graph G = (V,E) with weight function w : V → R+, and

a matching M computed by algorithm HybridOptimal. The matching M satisfies

the reachability property.

Proof. Similar to two earlier proofs, we will again induct on the M -augmenting steps.

Base case: HybridOptimal will start from the heaviest vertex, say v1, and

process all vertices adjacent to v1, V1 = adj(v1). It will then select the largest

vertex in V1, say w1, for matching. After matching the edge v1 to w1, there are two

possibilities: (i) vertex v1 will be reachable via an M -alternating path from vertices

in Vw ∈ adj(w1). But, we already know that v1 is the heaviest vertex, and therefore,

reachability property holds; and (ii) vertex w1 will be reachable via an M -alternating

60

path from vertices in Vv ∈ adj(v1). But, HybridOptimal has already processed

all vertices in Vv and, w1 is the heaviest vertex in this set. Thus, the reachability

property holds for the base case.

Step k : Assume that the reachability property holds true after the k-th augmen-

tation.

Step (k+1): Let the two vertices matched at step (k + 1) be vk+1 and wk+1.

HybridOptimal will start with the current heaviest vertex vk+1, and process all

vertices reachable via an M i-augmenting path from it, let this set be Pk+1 ⊂ V .

Vertex wk+1 is selected by because it is the heaviest among all the vertices in Pk+1.

Again, we are only concerned with the vertices that become reachable via ver-

tices vk+1 and wk+1. (Figure 25). However, we are not worried about vertex vk+1

becoming reachable to any unmatched vertex after (k+ 1)-th augmentation because

we know that it is the current heaviest vertex. Therefore, we are only concerned

about the vertex wk+1, and other matched vertices becoming reachable through it.

Let v represent the unmatched vertices and v
′

represent the matched vertices that

are reachable via an M i-alternating path from v.

The two possibilities are: (i) v /∈ Pk+1, in which case nothing changes with respect

to v from the augmentation at step (k + 1). Therefore, from the assumption at step

k, v ≺ v
′
; or (ii) v ∈ Pk+1 \ {wk+1}: for these vertices there are two possibilities - a

matched vertex v
′

reachable via an M i-alternating path was reachable either before

the (k + 1)-th augmentation, and therefore, v ≺ v
′
, or becomes reachable after the

(k + 1)-th augmentation. In the latter case, we know that HybridOptimal will

select the largest vertex, and therefore, v ≺ wk+1. From step k, we also know that

wk+1 ≺ v
′

(since wk+1 will also be available for matching before step k + 1 for all

v
′

vertices reachable via wk+1). Thus, v ≺ v
′
, and the property holds true for step

(k + 1).

From Theorems III.4.1, III.4.2, III.4.3 and III.4.4, the optimality of GlobalOp-

timal, LocalOptimal and HybridOptimal immediately follows, and is stated

in Corollary III.4.1.

Corollary III.4.1. Given a graph G = (S, T,E) with weight function w : S → R+,

Algorithms GlobalOptimal and LocalOptimal will compute maximum vertex-

weight matchings MS in G.

61

III.5 A REACHABILITY-BASED ALGORITHM

A conceptually similar algorithm to compute maximum vertex weighted matching

was proposed by Tabatabaee, Georgiadis and Tassiulas [71]. The authors use the

reachability property not only to provide a proof of correctness, but also to design

their algorithm. Our goal of this discussion is to demonstrate the power of expressing

optimality of a matching using the existence of reachability property in the graph

with respect to a matching. The algorithm is sketched in Algorithm 14.

Algorithm 14 Input: a graph G. Output: a matching M . Effect: computes a
maximum vertex-weight matching M in G. Associated Data Structures: set U
is a stack data structure. The elements in the stack follow a precedence order ≺,
with the top of the stack being the heaviest element at any given time.

1: procedure ReachabilityBasedAlg(G = (V,E), w : V → R+)
2: M ←M∗, a maximum (cardinality) matching;
3: U ← V \ V (M) in decreasing order of weights;
4: while U 6= φ do
5: u← top element of U ;
6: U ← U \ {u};
7: Find an alternating path Pu w starting at u, such that w ≺ v;
8: if Pu w 6= φ then
9: M ←M ⊕ Pu w;

10: U ← U ∪ {w};
11: end if
12: end while
13: end procedure

The first step is to compute a maximum (cardinality) matching by ignoring all

the weights on the vertices. Let U ← V \ V (M) represent the unmatched vertices

in decreasing order of weights. Consider the current heaviest vertex v ∈ U . If there

exist an alternating path P between v and any vertex w such that w ≺ v, then switch

(M ←M ⊕ P)the matched edges of this path to match vertex v instead of w. Note

that since M is a maximum matching there cannot exist any augmenting paths in

G with respect to M . Add w to the set U , and repeat. If no such path is found,

then remove vertex v from U and continue with the next heaviest vertex in U . The

algorithm terminates when set U becomes empty. Note that for every unmatched

vertex the algorithm attempts to satisfy the reachability property with respect to the

current matching. The computational cost for satisfying the reachability property for

a vertex can be bounded by O(|E|) (a breadth-first search can be used). The number

62

of unmatched vertices can be bounded by O(|V |), and therefore, the complexity of

Algorithm 14 is O(|V ||E|). It can be noted that the reachability-based algorithm is

a less sophisticated than the algorithm proposed by Spencer and Mayr [69].

The proof of correctness can be easily shown by demonstrating that Algorithm 14

computes a matching that satisfies the reachability property, and therefore, computes

a maximum vertex-weight matching as provided by Theorem III.4.1.

III.6 CHAPTER SUMMARY

In this chapter we introduced three new algorithms, GlobalOptimal, LocalOpti-

mal and HybridOptimal for computing maximum vertex-weight matchings. Proof

of correctness for the proposed algorithms were also discussed. We developed the con-

cept of reachability property as a necessary condition to establish optimality of an

MVM.

The proposed algorithms are easy to understand and simple to implement. How-

ever, there are limitations to the proposed algorithms, in that we can neither perform

greedy initializations nor grow multiple paths. Although the greedy initializations do

not have a bound on the approximation ratio, for practical purposes greedy initial-

ization is very important. In some of our preliminary experiments on matrices from

applications downloaded from the University of Florida Sparse Matrix Collection,

greedy initializations tend to match a substantial percentage of edges. Therefore, we

consider that inability to perform greedy initializations for vertex-weighted matching

algorithms is a limitation. In Figure 26, we show why greedy initialization fails. A

vertex once matched cannot be unmatched in an augmentation-based algorithm. For

example, vertex T3 gets matched in the greedy initialization phase, but should not

be matched in a maximum vertex-weight matching. Note that this does not apply

to Algorithm ReachabilityBasedAlg.

The multiple-path approach discussed in Chapter 2 has the best time complexity

for maximum cardinality matching. However, for the proposed algorithms we will

not be able to implement the multiple-path approach. We will encounter the same

problem illustrated in Figure 26.

63

FIG. 26: Greedy initialization. Bold lines represent matched edges, and matched
vertices are colored black. (a) The input graph G = (S, T,E), weights are associated
only with the T vertices, (b) a greedy initialization that picks best augmenting paths
of length one, and (c) an optimal matching.

64

CHAPTER IV

APPROXIMATION ALGORITHMS

“Although this may seem a paradox, all exact science is dominated by

the idea of approximation.” - Bertrand Russell [3]

IV.1 INTRODUCTION

Approximation algorithms are generally developed for computationally intractable

problems [35]. For some applications such as the multi-level algorithm for graph par-

titioning, matchings are computed a large number of times within the algorithm [40].

For other applications such as algorithms used in the design of VLSI devices, match-

ings are computed on very large-scale graphs [74]. The need for fast approximation

matching algorithms arise from both types of applications, especially when the need

for speed overrides the need for accuracy. Some of these applications are discussed in

[24, 64]. We provided an introduction to approximation algorithms for edge-weighted

matching problem in Chapter II. In this chapter we propose new algorithms that

guarantee approximation ratios of 1
2

and 2
3

for the maximum vertex-weight matching

(MVM) problem. The 1
2
-approx algorithms have linear runtimes with respect to the

number of edges in the graphs and log-linear in terms of the number of vertices.

The log term arising due to sorting for the global approximation algorithm. The
1
2
-approx algorithm is log-linear with respect to the number of vertices for degree-

bounded graphs. The proposed approximation algorithms are conceptually similar

to the exact algorithms discussed in Chapter III, and can be classified into global

and local approaches for computing the matchings. We refer the reader to Chapter

III for a basic introduction on the vertex-weighted matching problem. Table 6 has

been reproduced here for the ease of reading.

We begin the discussion with the 1
2
-approx algorithms, and proceed to the 2

3
-

approx algorithm. The general structure of the approximation algorithms is similar

to the exact algorithms discussed earlier.

IV.2 NEW 1
2
-APPROX ALGORITHMS

We propose three new algorithms for computing 1
2
-approx to the MVM problem.

65

Name Type Description Complexity

Exact Algorithms
GlobalOptimal B Sort-based O(n log n+ nm)
LocalOptimal B Search-based O(nm)
HybridOptimal G Sort and search-based O(n log n+ nm)

Approximation Algorithms
GlobalHalf B 1

2
-approx; Sort-based O(n log n+m)

LocalHalf B 1
2
-approx; Search-based O(m)

HybridHalf G 1
2
-approx; Sort and search-based O(n log n+m)

GlobalTwoThird B 2
3
-approx; Sort-based O(n log n+ nd3)

TABLE 7: A summary of algorithms proposed for vertex weighted matchings. Bipar-
tite and general graphs are represented with B and G respectively. For a bipartite
graph G = (S, T,E), n = (|S|+ |T |) represents the number of vertices, m = |E| the
number the edges, and dk is a generalization of the vertex degree that denotes the
average number of distinct alternating paths of length at most k edges starting at a
vertex in G.

The first proposed algorithm, GlobalHalf, is based on processing the vertices

in a global order of decreasing weights. Given a bipartite graph G = (S, T,E) with

weights associated with the S and T vertices, we will decompose it into two restricted

bipartite graphs by first ignoring the weights on T vertices, and then on S vertices.

The problem decomposition is represented in Algorithm 15 by Lines 5 and 6 for the

S vertices, and by Lines 15 and 16 for the T vertices.

Consider the first restricted bipartite graph with weights on only S vertices.

Algorithm 15 processes the S vertices in a succeeding order (s1 � s2 � s3 . . .). From

a given vertex si ∈ S, search for any unmatched vertex ti ∈ T adjacent to si. If

such a vertex is found, then add it to the current matching and proceed with the

next unmatched S vertex in succeeding order. Computation of MS in Algorithm

15 is represented by Lines 7 − 14. A similar approach to compute the matching

MT for the second restricted graph is represented by Lines 17− 24 in Algorithm 15.

The final matching is obtained by merging the two matchings MS and MT using the

Mendelsohn-Dulmage technique. Execution of Algorithm GlobalHalf on a simple

bipartite graph with weights associated only to the S vertices is shown in Figure 27.

For the second 1
2
-approx algorithm, LocalHalf, we adopt a strategy based

on searching for an unmatched edge from the unweighted vertices in arbitrary order;

66

Algorithm 15 Input: A bipartite graph G. Output: a matching M . Associated
Data Structures: sets S̃ and T̃ are stored as stack data structures. The elements
in the stack follow a precedence order ≺, with the top of the stack being the heaviest
element at any given time. Effect: computes a 1

2
-approx to maximum vertex-weight

matching.

1: procedure GlobalHalf(G = (S, T,E), wS : S → R+, wT : T → R+, M)
2: M ← φ; . Initialization
3: MS ← φ;
4: MT ← φ;
5: S̃ ← S in descending order of weights wS;
6: T̃ ← T with weights wT set to zero ;
7: while S̃ 6= φ do . Compute MS

8: s←top of S̃;
9: S̃ ← S̃ \ s;

10: Find an unmatched edge est incident on s;
11: if est exists then
12: MS ←MS ∪ {est};
13: end if
14: end while
15: T̃ ← T in descending order of weights wT ;
16: S̃ ← S with weights wS set to zero ;
17: while T̃ 6= φ do . Compute MT

18: t←top of T̃ ;
19: T̃ ← T̃ \ t;
20: Find an unmatched edge ets incident on t;
21: if ets exists then
22: MT ←MT ∪ {ets};
23: end if
24: end while
25: M ←MendelsohnDulmage(MS,MT ,M); . Compute M
26: end procedure

67

FIG. 27: Execution of Algorithm GlobalHalf. (a) The input graph G = (S, T,E)
with weights associated only with the S vertices, (b)-(e) the intermediate states of
execution. Bold lines represent matched edges, and matched vertices are colored
black. The shaded edges mark the augmenting paths of length one (an unmatched
edge) from a given S vertex, (f) the final state.

however, we will need to find an edge that leads to the heaviest vertex on the weighted

side. This approach does not depend on a global order but, on a local search. The

input graph is divided into two restricted bipartite graphs by first ignoring the weights

on the T vertices and then on the S vertices. The decomposition is represented in

Algorithm 16 by Lines 5 and 14.

For the first restricted bipartite graph, a matching MS is computed as follows:

arbitrarily start from an unmatched vertex ti ∈ T , and enumerate all the unmatched

edges incident on the vertex ti. If such edges exist, then choose the best edge from

this set and augment the current matching. We define the best edge as the edge

that leads to a heaviest weighted vertex. Repeat the process until all the T vertices

have been processed. Lines 6 − 13 in Algorithm 16 represent the computation of

MS. A similar procedure can be used to compute the matching MT for the second

restricted bipartite graph. This is represented by Lines 15−22 in Algorithm 16. The

final matching will be obtained by merging the two matchings MS and MT using

the Mendelsohn-Dulmage technique. The execution of Algorithm LocalHalf on a

68

Algorithm 16 Input: a bipartite graph G. Output: a matching M . Associated
Data Structures: sets S̃ and T̃ are stored as stack data structures. The elements
in the stack can be in any arbitrary order. Effect: computes a 1

2
-approx MVM.

1: procedure LocalHalf(G = (S, T,E), wS : S → R+, wT : T → R+, M)
2: M ← φ; . Initialization
3: MS ← φ;
4: MT ← φ;
5: T̃ ← T with weights wT set to zero ;
6: while T̃ 6= φ do . Compute MS

7: t←top of T̃ ;
8: T̃ ← T̃ \ t;
9: Find all unmatched edges ets incident on t;

10: if unmatched edges exist then
11: MT ←MT ∪ {ebest}; . ebest is ets with largest w(s)
12: end if
13: end while
14: S̃ ← S with weights wS set to zero ;
15: while S̃ 6= φ do . Compute MT

16: s←top of S̃;
17: S̃ ← S̃ \ s;
18: Find all unmatched edges est incident on s;
19: if unmatched edges exist then
20: MS ←MS ∪ {ebest}; . ebest is est with the largest w(t)
21: end if
22: end while
23: M ←Mendelsohn-Dulmage(MS,MT ,M); . Compute M
24: end procedure

69

simple bipartite graph with weights associated with S vertices is shown in Figure 28.

FIG. 28: Execution of Algorithm LocalHalf. (a) The input graph G = (S, T,E)
with weights associated only with the S vertices, (b)-(d) the intermediate states
of execution, (e) the final state. Bold lines represent matched edges, and matched
vertices are colored black. The shaded edges mark all the augmenting paths of length
one (unmatched edges) that exist from a given T vertex.

The third 1
2
-approx algorithm, HybridHalf, is designed to compute matchings

in general graphs where the problem cannot be decomposed into two subgraphs. We

combine the global and local strategies to form a hybrid approach, where the vertices

are processed in a global order of decreasing weight. The search for an unmatched

edge incident on the current heaviest vertex is made by processing all the adjacent

edges, but picking the edge with the heaviest vertex incident on it. Algorithm 17

sketches the hybrid approach.

A 1
2
-approx matching M is computed as follows: consider vertices in decreasing

order of weights. Enumerate all the unmatched edges incident on the current heaviest

vertex vi ∈ V . If such edges exist, then choose the best edge from this set and augment

the current matching. We define the best edge as the edge that leads to the heaviest

neighboring vertex. Repeat the process until all the vertices have been processed.

We now discuss the correctness of the proposed 1
2
-approx algorithms.

70

Algorithm 17 Input: a graph G. Output: a matching M . Associated Data
Structures: set Ṽ is a stack data structure. The elements in the stack follow a
precedence order ≺, with the top of the stack being the heaviest element at any
given time. Effect: computes a 1

2
-approx MVM.

1: procedure HybridHalf(G = (V,E), w : V → R+)
2: M ← φ;
3: Ṽ ← V in increasing order of weights;
4: while Ṽ 6= φ do . Compute M
5: v ← top of Ṽ ;
6: Ṽ ← Ṽ \ v;
7: Find all unmatched edges evx incident on v;
8: if unmatched edges exist then
9: M ←M ∪ {ebest}; . ebest is evw with largest w(x)

10: Ṽ ← Ṽ \ w;
11: end if
12: end while
13: end procedure

71

IV.3 PROOF OF CORRECTNESS

The proofs of correctness of the 1
2
-approx algorithms are fairly straightforward. The

main idea is to establish a relationship between the matched and the unmatched

vertices that reveal the correctness of the approximation ratio. In order to estab-

lish this relationship, we will introduce the concept of failed vertices. Consider a

graph G = (S, T,E) with weight function w : S → R+, a matching M∗ computed by

Algorithm GlobalOptimal, and a matching M2 computed by Algorithm Global-

Half A failed S-vertex is a vertex that is matched in M∗, but not in M2. The same

definition is extended to the T vertices for the second restricted bipartite graph, can

also be extended similarly for Algorithms LocalOptimal and LocalHalf, Hy-

bridOptimal and HybridHalf). No distinction between S and T vertices is made

for general graphs.

The intuition for the proof of correctness comes from the fact that for every

failed vertex, there will be at least one distinct vertex, at least as large as the failed

vertex, that will be matched by the 1
2
-approx algorithm. Thus, resulting in half

approximation to the optimal matching. This relationship is characterized by the

restricted reachability property, which can be defined as follows.

Definition IV.3.1 (Restricted Reachability Property). Consider a graph G = (V,E)

with weight function w : V → R+, and any matching M in G. The matching M

satisfies the restricted reachability property if for any M-unmatched vertex v, and

any M-matched vertex v
′

reachable from v by an M-alternating path of length two

edges, the condition v ≺ v
′

holds.

We show that if a given maximal matching satisfies the restricted reachability

property, then it is also a 1
2
-approx to the optimal matching. This is stated in

Lemma IV.3.1.

Lemma IV.3.1. Consider a graph G = (V,E) with weight function w : V → R+,

and a maximal matching M2 in G. If M2 satisfies the restricted reachability property,

then M2 is a 1
2
-approximation to a maximum vertex-weight matching in G.

Remark : The reader should note the requirement for a maximal matching in this

Lemma.

Proof. Let M∗ represent a maximum vertex-weight matching, and M2 represent any

72

maximal matching in G with the restricted reachability property. Consider the sym-

metric difference M∗ ⊕M2. This will result in a collection of paths and cycles. All

possibilities for bipartite graphs are enumerated in Figure 20. Note that even for

general graphs, there cannot be cycles of odd length, and therefore, Figure 20 also

holds true for general graphs (without the distinction of S and T vertex sets). The

edges that are matched in both the algorithms will not be represented in the symmet-

ric difference, and these edges will not have a negative impact on the approximation

ratio. The vertices in a cycle will be matched by both the matchings, and therefore,

will not affect the approximation ratio. For this lemma, we only need to consider the

paths, augmenting or alternating.

Consider the paths that start at failed vertices (matched in M∗, but not in M2).

Given that M2 is a maximal matching, paths of length one in M∗ ⊕ M2 cannot

exist. Consider an alternating path of length two, of form [v, w, v
′
], in M∗ ⊕ M2.

Since, M2 satisfies the restricted reachability property, v ≺ v
′
. Such an alternating

path would contradict the optimality of a maximum vertex-weight matching, and

therefore, cannot exist.

Now let us consider paths of length greater than two in M∗ ⊕ M2. Consider

an M2-augmenting path of length three, of form [v1, v2, v3, v4], where v1 and v4 are

matched only in M∗. From the restricted reachability property in M2, v1 ≺ v3

and v4 ≺ v2. The same arugment will hold for all augmenting paths of length five

or more. Consider an M2-alternating path of length four, of form [v1, v2, v3, v4, v5],

where v1 is matched only in M∗, and v5 is matched only in M2. From the restricted

reachability property in M2, v1 ≺ v3 and all other vertices are matched in M2. Thus,

for alternating paths of any even-length Pi, except the very first vertex, M2 matches

all other vertices in Pi, irrespective of the length of Pi. Let V (M) represent the

vertices matched in M . From the restricted reachability property, on the path Pi,

for a vertex v
′
i at a distance two edges from vi, the following relation holds vi ≺ v

′
i.

Summing over all the failed vertices (N), we obtain:

N∑
i=1

w(vi) ≤
N∑
i=1

w(v
′

i). (4)

The weight of the maximum vertex-weight matching can be represented as follows.∑
v∈V (M∗)

w(v) =
∑

vi∈V (M∗\M2)

w(vi) +
∑

vj∈V (M∗∩M2)

w(vj). (5)

73

The set V (M∗ \M2) represents the set of failed vertices. Therefore, we can rewrite

the first term on the right-hand-side of Equation 5 with respect to the failed vertices

as ∑
v∈V (M∗)

w(v) =
N∑
i=1

w(vi) +
∑

vj∈V (M∗∩M2)

w(vj). (6)

Substituting from Equation 4 we get

∑
v∈V (M∗)

w(v) ≤
N∑
i=1

w(v
′

i) +
∑

vj∈V (M∗∩M2)

w(vj). (7)

Each of two sets on the right-hand-side of the equation above are subsets of the

matched vertices in M2, and thus we have∑
v∈V (M∗)

w(v) ≤
∑

vi∈V (M2)

w(vi) +
∑

vj∈V (M2)

w(vj). (8)

Rewriting the equation above, we have∑
v∈V (M2)

w(v) ≥ 1

2

∑
v∈V (M∗)

w(v). (9)

With the result from Lemma IV.3.1, we only need to show that a given 1
2
-approx

algorithm satisfies the restricted reachability property. We will use mathematical

induction and show that Algorithms GlobalHalf, LocalHalf and HybridHalf

satisfy the restricted reachability property. This is stated in Theorems IV.3.1, IV.3.2

and IV.3.3 respectively.

Theorem IV.3.1. Consider a graph G = (S, T,E) with weight function w : S →
R+. A maximal matching M2 in G computed by Algorithm GlobalHalf satisfies

the restricted reachability property.

Proof. A necessary condition for the theorem is that the matching M2 be a maximal

matching. We will first prove that GlobalHalf will compute a maximal matching.

Consider step k during the execution of GlobalHalf when vertex sk ∈ S is pro-

cessed. If at step k no augmenting path of length one, starting at sk exists, then it

means that all the adjacent vertices ti ∈ adj(sk) have already been matched before

step k. In order to create a new augmenting path of length one from sk at a future

step, one of the adjacent T vertices must be unmatched. However, we also know that

74

a vertex (ad edge) once matched will always remain matched during the course of

this algorithm. Thus, if none exist at a given step, no new augmenting path of length

one can become available at a future step. GlobalHalf searches all the S vertices

for augmenting paths of length one. Thus, GlobalHalf will compute a maximal

matching in G.

Let Mk
2 represent a matching computed by GlobalHalf at the end of step k.

We will induct on the steps when M2 matches a new S vertex, and show that the

theorem holds true at each augmenting step, and therefore, at the end of execution

of Algorithm GlobalHalf.

Base case: Let s1 ∈ S be the first matched vertex. Since Algorithm Global-

Half will consider the S vertices for augmentation in decreasing order of weights, s1

will succeed all other S vertices from which s1 is reachable through an M1
2 -alternating

path. Thus, the base case holds true.

Step k : Assume that the restricted reachability property holds true after the k-th

augmentation.

Step (k+1): Let GlobalHalf process vertex sk+1 ∈ S at step (k + 1), and let

sk+1 be matched to tk+1 ∈ T . Consider an Mk+1
2 -unmatched vertex s ∈ S, and an

Mk+1
2 -matched vertex s

′ ∈ S reachable via an Mk+1
2 -alternating path of length two

edges from s. The two possibilities are: (i) s
′
was reachable from s before the (k+1)-

th augmentation, in which case, s ≺ s
′
from step k, or (ii) s

′
becomes reachable from

s after the (k + 1)-th augmentation, which means that s
′

and sk+1 represent the

same vertex. Also, s is one of the unmatched S vertices adjacent to tk+1. However,

we know that sk+1 succeeds all the unmatched S vertices adjacent to tk+1. By the

structure of GlobalHalf, s ≺ sk+1. Thus, the theorem holds true.

Theorem IV.3.2. Consider a graph G = (S, T,E) with weight function w : S →
R+. A maximal matching M2 in G computed by Algorithm LocalHalf satisfies

the restricted reachability property.

Proof. This proof is similar to the proof of restricted reachability property for Glob-

alHalf as discussed in Theorem IV.3.1.

A necessary condition for the theorem is that the matching M2 is a maximal

matching. We will first prove that LocalHalf will compute a maximal matching.

Consider step k during the execution of LocalHalf when vertex tk ∈ T is processed.

If at step k no augmenting path of length one starting at vertex tk exists, then all the

adjacent vertices si ∈ adj(tk) have already been matched before this step. In order

75

to create a new augmenting path of length one from tk at a future step, one of the

adjacent S vertices must be unmatched. However, we also know that a vertex (and

edge) once matched will always remain matched during the course of this algorithm.

Thus, no new augmenting path of length one can become available at a future step,

if none exists at a given step. LocalHalf searches all the T vertices for augmenting

paths of length one. Thus, LocalHalf will compute a maximal matching in G.

Let Mk
2 represent a matching computed by LocalHalf at the end of step k.

We will induct on the steps when M2 matches a new S vertex, and show that the

theorem holds true at each augmenting step, and therefore, at the end of execution

of Algorithm LocalHalf.

Base case: Let the first edge matched by LocalHalf be (t1, s1) ∈ E. We know

that LocalHalf will consider all the si ∈ S adjacent to t1, before matching it to

s1. Therefore, the restricted reachability property holds true for the base case.

Step k : Assume that the restricted reachability property holds true after the k-th

augmentation.

Step (k+1): Let (tk+1, sk+1) ∈ E be the edge matched by Algorithm LocalHalf

at step (k + 1). Consider an Mk+1
2 -unmatched vertex s ∈ S, and an Mk+1

2 -matched

vertex s
′ ∈ S reachable via an Mk+1

2 -alternating path of length two edges from s. The

two possibilities are: (i) s
′

was reachable from s before the (k+ 1)-th augmentation,

in which case, s ≺ s
′

from step k, or (ii) s
′

becomes reachable from s after the

(k + 1)-th augmentation, which means that both s
′

and sk+1 represent the same

vertex. Also, s will have to be one of the unmatched S vertices adjacent to tk+1.

Since LocalHalf processes all the unmatched S vertices adjacent to tk+1 we have

s ≺ sk+1. Thus, the theorem holds.

Theorem IV.3.3. Consider a graph G = (V,E) with weight function w : V → R+.

A maximal matching M2 in G computed by Algorithm HybridHalf satisfies the

restricted reachability property.

Proof. This proof is similar to the proofs of restricted reachability property for the

bipartite graphs.

Again, a necessary condition for the theorem is that the matching M2 is a maximal

matching. From the earlier proofs that argue that no new augmenting paths of length

one can become available at a future step, if none exists at a given step, it can be

easily shown that HybridHalf will compute a maximal matching.

76

Let Mk
2 represent a matching computed by HybridHalf at the end of step k.

Again, we will induct on the steps when M2 matches a new vertex and show that the

theorem holds true at each augmenting step, and therefore, at the end of execution.

Base case: Let the first edge matched by HybridHalf be (v1, w1) ∈ E, while

processing vertex v1. For the restricted reachability property to hold, we need to show

that all the v1-adjacent vertices (reachable to w1), and all the w1-adjacent vertices

(reachable to v1) will satisfy the required property. We already know that v1 is the

heaviest vertex, and HybridHalf will consider all the wi ∈ V adjacent to v1, before

matching it to w1. Therefore, the restricted reachability property holds true for the

base case.

Step k : Assume that the restricted reachability property holds true after the k-th

augmentation.

Step (k+1): Let (vk+1, wk+1) ∈ E be the edge matched by HybridHalf at step

(k + 1), while processing vertex vk+1.

Consider an Mk+1
2 -unmatched vertex v, and an Mk+1

2 -matched vertex v
′
reachable

via an Mk+1
2 -alternating path of length two edges from v. The two possibilities are:

(i) v
′

was reachable from v before the (k+ 1)-th augmentation, in which case, v ≺ v
′

from the assumption at induction-step k, or (ii) v
′

becomes reachable from v after

the (k + 1)-th augmentation. This means that both v
′

can either be vk+1 or wk+1.

Therefore, we only need to consider the vertices adjacent to vertices vk+1 or wk+1.

We know that vk+1 is the heaviest vertex among all the unmatched vertices at this

stage, and therefore, all the unmatched wk+1-adjacent vertices will be lighter that it.

We also know that HybridHalf considered all the unmatched wi ∈ V adjacent to

vk+1, and wk+1 was the heaviest of all. Thus, the theorem holds.

For the bipartite graphs where the final matching M is computed by merging the

matchings MS and MT using the Mendelsohn-Dulmage technique (Theorem III.1.1).

It is not guaranteed that M be maximal. However, the matching MS is already
1
2
-approx with respect to the S vertices and this approximation ratio also holds for

S-vertices matched in M . It can similarly be extended to the T vertices.

From Lemma IV.3.1, and Theorems IV.3.1, IV.3.2 and IV.3.3, the optimality of

Algorithms GlobalHalf and LocalHalf immediately follows, and is stated in

Corollary IV.3.1.

Corollary IV.3.1. Given a graph G = (V,E) with weight function w : V → R+,

77

Algorithm HybridHalf will compute 1
2
-approx to a maximum vertex-weight match-

ing in G. Given a bipartite graph G = (S, T,E) with weight function w : S, T → R+,

Algorithms GlobalHalf and LocalHalf will compute 1
2
-approx to a maximum

vertex-weight matching in G.

The time complexities for the 1
2
-approx algorithms are stated in Theorems IV.3.4

and IV.3.5.

Theorem IV.3.4. Given a graph G = (S, T,E) with weight functions wS : S → R+

and wT : T → R+, let n = (|S|+ |T |) represent the number of vertices and m = |E|
represent the number of edges. A 1

2
-approx matching M2 in G can be computed in

O(n log n + m) time by Algorithm GlobalHalf and in O(m) time by Algorithm

LocalHalf.

Proof. Algorithm GlobalHalf processes the vertices in a global order. The given

set of vertices can be sorted in decreasing order of vertex weights in time O(n log n).

From each set of vertices S and T , GlobalHalf will consider the adjacent edges

and will therefore compute a matching MS and MT bounded by O(m), resulting in

a total time complexity of O(n log n + m). The two matchings, MS and MT can

be merged using the Mendelsohn-Dulmage technique in linear time, O(m). Since

Algorithm LocalHalf does not need to process the vertices in a global order, it is

bounded by O(m).

Theorem IV.3.5. Given a graph G = (V,E) with weight functions w : V → R+

let n = (|V |) represent the number of vertices and m = |E| represent the number of

edges. A 1
2
-approx matching M2 in G can be computed in O(n log n + m) time by

Algorithm HybridHalf.

Proof. HybridHalf processes the vertices in a global order. The given set of vertices

can be sorted in decreasing order of vertex weights in timeO(n log n). For each vertex,

HybridHalf will process all the adjacent edges and will therefore incur a cost of by

Θ(m) =
∑

v∈V δ(v), where δ(v) is the degree of vertex v. Thus, the total complexity

is O(n log n+m).

We will now proceed to the 2
3
-approx algorithms.

78

IV.4 GLOBAL 2
3
-APPROX ALGORITHM

The first proposed algorithm for 2
3
-approx GlobalTwoThird is similar to the half-

approximation Algorithm GlobalHalf. The main idea is to process the vertices

according to a global order of weights associated with the vertices. For Algorithm

GlobalTwoThird, we first decompose the given bipartite graph G = (S, T,E),

with weights associated with both S and T vertices, into two restricted bipartite

graphs by first ignoring the weights on T vertices and then on S vertices. This

process is represented in Algorithm 18 by Lines 5 and 6 for the S vertices, and by

Lines 15 and 16 for the T vertices.

Consider the first restricted bipartite graph G = (S, T,E) with weight function

w : S → R+. A 2
3
-approx matching MS is computed by considering the S vertices

in succeeding order. From a given S vertex si, find a shortest augmenting path P of

length ≤ 3. If such an augmenting path is found, then augment the current matching

with the symmetric difference MS ⊕ P and continue with the next S vertex in suc-

ceeding order. Computation of MS is represented by Lines 7−14. A similar approach

to compute the matching MT , when weights are associated only with the T vertices,

is the second subproblem and is represented by Lines 17−24 in GlobalTwoThird.

The final matching will be obtained by merging the two matchings MS and MT using

the Mendelsohn-Dulmage technique. Execution of Algorithm GlobalTwoThird

on a simple bipartite graph with weights associated with the S vertices is shown in

Figure 29.

IV.4.1 Proof of Correctness

While the proof of correctness for the 1
2
-approx algorithms is straightforward, the

proof of correctness for the 2
3
-approx algorithms is nontrivial. The concept of reach-

ability that was used to build the proofs for exact and 1
2
-approx algorithms will not

be sufficient for the current task. We will now show why the previous arguments

fail for the 2
3
-approx algorithms. Consider the symmetric difference of the match-

ings computed by Algorithms GlobalOptimal and GlobalTwoThird, M∗⊕M3.

The result will be a set a distinct paths and cycles. Note that the paths will always

start and end with vertices that are matched only by one of the algorithms, however,

all the intermediate vertices will be matched by both. Let us consider those paths

that start with an S vertex matched only by Algorithm GlobalOptimal; we call

79

Algorithm 18 Input: A bipartite graph G. Output: a matching M . Associated
Data Structures: sets S̃ and T̃ are stored as stack data structures. The elements
in the stack follow a precedence order ≺, with the top of the stack being the heaviest
element at any given time. Effect: computes a 2

3
-approx to a maximum vertex-

weight matching.

1: procedure GlobalTwoThird(G = (S, T,E), wS : S → R+, wT : T → R+,
M)

2: M ← φ; . Initialization
3: MS ← φ;
4: MT ← φ;
5: S̃ ← S in descending order of weights wS;
6: T̃ ← T with weights wT set to zero ;
7: while S̃ 6= φ do . Compute MS

8: s←top of S̃;
9: S̃ ← S̃ \ s;

10: Find a shortest augmenting path P of length ≤ 3 starting at s;
11: if P found then
12: MS ←MS ⊕ P ;
13: end if
14: end while
15: T̃ ← T in descending order of weights wT ;
16: S̃ ← S with weights wS set to zero ;
17: while T̃ 6= φ do . Compute MT

18: t←top of T̃ ;
19: T̃ ← T̃ \ t;
20: Find a shortest augmenting path P of length ≤ 3 starting at t;
21: if P found then
22: MT ←MT ⊕ P ;
23: end if
24: end while
25: M ←MendelsohnDulmage(MS,MT ,M); . Compute M
26: end procedure

80

FIG. 29: Execution of Algorithm GlobalTwoThird. (a) The input graph G =
(S, T,E) before the execution, weights are associated only with S vertices, (b)-(e) the
intermediate states of execution. Bold lines represent matched edges, and matched
vertices are colored black. The shaded edges highlight the shortest augmenting path
from a given S vertex, and (f) the final state.

such vertices as the failed vertices, since the approximation algorithm failed to match

them. While it can be shown that the failed vertex is lighter than the M3-matched

S vertex at a distance of two edges from it, such a relationship between the failed

vertex and the M3-matched S vertex at a distance of four edges from it cannot be

established. This failure is illustrated with a simple example in Figure 30.

Albeit this shortfall, the intuition for the proof is still to show that for each

failed vertex there are at least two vertices, as heavy as the failed vertex, that will

be matched by Algorithm GlobalTwoThird. This association will immediately

result in the 2
3
-approximation. Figure 31 captures this association.

With this intuition, we will now build the proof. We will discuss the proof for

the first restricted bipartite graph where the weights are associated only with the S

vertices. The same proof can be trivially extended to the second restricted bipartite

graph with weights associated with the T vertices. Consider the concurrent execution

of Algorithms GlobalOptimal and GlobalTwoThird on the restricted bipar-

tite graph G = (S, T,E) with weight function w : S → R+. Both the algorithms

81

FIG. 30: Symmetric difference. (a) Input graph, weights are associated only with
the S vertices such that s1 � s2 � s3 � s4; (b) an optimal matching M∗ computed
by Algorithm GlobalOptimal. Bold lines represent matched edges. At step one,
edge e(s1, t3) is matched; at step two, edge e(s2, t2) is matched; at step three, the
matching is augmented via path [s3, t2, s2, t3, s1, t1]; no path exists at step four; (c)
a 2

3
-approx matching M3 computed by Algorithm GlobalTwoThird, Wavy lines

represent matched edges; At step one, edge e(s1, t3) is matched; at step two, edge
e(s2, t2) is matched; at step three, no augmenting path of length three exists; at
step four, the matching is augmented via path [s4, t3, s1, t1]; and (d) the symmetric
difference M∗ ⊕M3. The bold lines denote edges matched in M∗, and wavy lines
denote edges matched in M3.

will consider the S vertices in succeeding order of weights. While Algorithm Glob-

alOptimal searches for a shortest augmenting path without any restrictions on the

length of the path, the search in Algorithm GlobalTwoThird is restricted to aug-

menting paths of at most three edges. However, at any step k, both the algorithms

will consider the same vertex sk ∈ S for matching.

A failed vertex is a vertex that is matched in the optimal matching, but not in

the approximation matching. For the current discussion, we will consider only the

failed S vertices, since the weights are associated only with them. The time step of

execution is an important parameter for the proof. Therefore, to accommodate the

time step, we will introduce a new notation. The failed vertex at step k is represented

as sk,k ∈ S. The other failed vertices in S at this step are represented as si,k, for

1 ≤ i ≤ k. Our objective is to associate two unique M3-matched S vertices with each

failed vertex si. We will use subscripts to represent such vertices, si,ka and si,kb . The

rationale to use two indices (i, k) to represent the past and current steps is due to the

82

FIG. 31: Intuition for proof of 2
3
-approx algorithm GlobalTwoThird. For each

failed S vertex, Algorithm GlobalTwoThird will match two S vertices that are
at least as heavy as the failed vertex. Note that the association of matched vertices
with failed vertices is dynamic. The figure is representative of a state at a particular
step of execution.

fact that the association of vertices could change during the execution. Let Mk
∗ and

Mk
3 represent the matchings at step k as computed by Algorithms GlobalOptimal

and GlobalTwoThird.

We will now proceed further. First, we will show that we need to process a vertex

only once. This is stated in Lemma IV.4.1.

Lemma IV.4.1. Consider the execution of Algorithm GlobalTwoThird on a

restricted bipartite graph G = (S, T,E) with weight function w : S → R+. If at any

step k, there exists no augmenting path of length ≤ 3 starting at a vertex sk ∈ S, then

there will be no augmenting path of length ≤ 3 from sk at a later stage of execution.

Proof. Consider the execution of Algorithm GlobalTwoThird at the beginning

of step k, let the S vertex currently being processed be sk. We will denote the T

vertices at a distance of one edge from sk as ti,k1 , and those at a distance of three

edges from sk as ti,k3 . Since we are considering a bipartite graph, the S vertices will

be at an even distance from each other. Let the S vertices at a distance of two edges

from sk be denoted as si,k2 , and that at a distance of four edges be si,k4 .

Let us first consider the augmenting paths of length one edge. If there exists no

augmenting path of length one from vertex sk, then all the adjacent T vertices, ti,k1 ,

have already been matched. In order for a new augmenting path of length one to

become available from sk at a later stage of execution, one of these T vertices should

83

get unmatched. However, we know that during the execution of Algorithm Glob-

alTwoThird, once a vertex is matched it will always remain matched. Therefore,

the lemma holds true for augmenting paths of length one.

Now we consider paths from the vertex sk. Since there is no augmenting path of

length three from the vertex sk, these paths can be of two different kinds. The first

kind of path has the form [sk, ti,k1 , si,k2 , ti,k3 , si,k4 · · ·], where ti,k1 is matched to si,k2 , and ti,k3

is matched to si,k4 and so on. The second kind of path has the form [sk, ti,k1 , sj,k2 , tj,k3],

where the first two vertices are the same as the first two vertices from the path of

the first kind, and the last two vertices, sj,k2 and tj,k3 are unmatched. These two kinds

of paths are illustrated in Figure 32 as P1 and P2 respectively.

An augmenting path of length three beginning at sk can exist at a later step

because either (i) ti,k3 becomes unmatched, or (ii) sj,k2 becomes matched to ti,k1 . The

first case cannot occur since a vertex once matched is always matched in a matching

algorithm based on augmentations. In the second case, sj,k2 becomes matched in

a previous augmentation step (but after the k-th step) involving the augmenting

path [sj,k2 , ti,k1 , si,k2 , t`,k3], where the last vertex is an unmatched vertex. But such an

augmenting path would imply an augmenting path at the k-th step from sk consisting

of [sk, ti,k1 , si,k2 , t`,k3]. This contradiction completes the proof.

FIG. 32: New augmenting paths. Bold lines represent the matched edges and matched
vertices are colored black. The two kinds of paths in Lemma IV.4.1 are shown as P1

and P2.

We will now argue for the correctness of the claimed approximation ratio of 2
3
.

Consider the concurrent execution of Algorithms GlobalOptimal and GlobalT-

woThird on the first restricted bipartite graph with weights on the S vertices. We

will consider the steps when a vertex sk ∈ S gets matched by Algorithm Glob-

alOptimal, but not by Algorithm GlobalTwoThird. We define these vertices

as the failed vertices. An important relationship between the failed and the matched

vertices is stated in Lemma IV.4.2.

84

Lemma IV.4.2. Consider the restricted bipartite graph G = (S, T,E) with weight

function w : S → R+. Let Mk
∗ represent the matching computed by Algorithm

GlobalOptimal at the end of step k, and let Mk
3 represent the matching computed

by Algorithm GlobalTwoThird at the end of step k. (i) For each failed vertex

that exists at the end of step k, si,k, 1 ≤ i ≤ k, there are two distinct vertices si,ka and

si,kb that are matched in Mk
3 . (ii) At the end of step k, the following relation holds:

sk,k ≺ sk,ka and sk,k ≺ sk,kb .

Proof. We consider the proof of (i). Consider the symmetric difference Mk
∗ ⊕Mk

3 .

Each failed vertex si,k is matched in the first, but not in the second of these matchings,

and hence begins an alternating path in the symmetric difference. This alternating

path cannot have length two, of the form si,k, ti,k1 , si,ka . If this is true, then only one

of the vertices si,k and si,ka can be matched to ti,k1 . If si,k ≺ si,ka , then the optimal

algorithm made a wrong choice, and therefore, contradicts. If otherwise, then the

approximate algorithm made a wrong choice and contradicts again.

If the alternating path is of length three, then it is an Mk
3 -augmenting path of

length three and the approximation algorithm would have matched along this path.

Therefore, the alternating path must be of length at least four. If the alternating

path has even length (greater than or equal to four), then it ends with a terminal

S-vertex that is matched in Mk
3 but not in Mk

∗ . Hence this terminal vertex cannot

be another failed S-vertex. If the alternating path is of odd length, then it termi-

nates with a T -vertex. From these two cases, we conclude that every failed vertex

begins a vertex-disjoint alternating path of length four or more, and has the form

[si,k, ti,k1 , si,ka , t
i,k
3 , si,kb , · · ·].

Part (ii) follows from three observations:

1. Both the exact and approximation matching algorithms consider S-vertices in

a succeeding order for matching;

2. sk,k is the last failed vertex (which happens at step k); and

3. the vertices sk,ka and sk,kb have been matched in earlier steps.

We provided a conclusive relationship between the failed and the matched ver-

tices in for a given step in Lemma IV.4.2. However, in order to provide an overall

85

approximation ratio of 2
3
, we will induct on the failed steps. Theorem IV.4.1 provides

this argument.

Theorem IV.4.1 (Counting Technique). Consider a bipartite graph G = (S, T,E)

with weight function w : S → (R)+, a matching M∗ computed by Algorithm Glob-

alOptimal, and a matching M3 computed by Algorithm GlobalTwoThird. For

every failed vertex si ∈ S, there are two distinct vertices sia and sib that are matched

by M3, such that si ≺ sia and si ≺ sib.

Proof. The proof is based on induction. Consider the failed S vertices during the

concurrent execution of Algorithms GlobalOptimal and GlobalTwoThird. We

will reuse the notation from proof of Lemma IV.4.2.

Base case: Consider the step when the first failed vertex s1,1 ∈ S is encountered.

We know from Lemma IV.4.2 that at the end of this step, there are two vertices

s1,1
a and s1,1

b , matched in M1
3 , such that s1,1 ≺ s1,1

a and s1,1 ≺ s1
b . Let s1

a = s1,1
a and

s1
b = s1,1

b .

Step k: Assume true for the first k failures, 1 ≤ i ≤ k.

Step k+1: At the end of the step when the (k+1)-th failed vertex is encountered,

from Lemma IV.4.2 we know that there are at least two distinct vertices matched in

Mk+1
3 such that sk+1,k+1 ≺ sk+1,k+1

a and sk+1,k+1 ≺ sk+1,k+1
b .

A potential conflict arises when the Mk+1
3 -matched vertices sk+1,k+1

a and sk+1,k+1
b

had already been associated with a failed vertex si, i < k, in a previous step. They

are now being reused at step (k + 1). We will show how to address such a case.

From the inductive assumption at step k, we know that for every failed vertex

si, 1 ≤ i ≤ k, there are two vertices sia and sib, such that the relations si ≺ sia and

si ≺ sib hold. Now consider two sets S1 = ∪k+1
i=1 {si,k+1

a , si,k+1
b } and S2 = ∪ki=1{sia, sib}.

The cardinalities are given by |S1| ≥ 2(j + 1) and |S2| ≥ 2(j). This follows from

Lemma IV.4.2. Thus, |S1 \S2| ≥ 2. Therefore, there are at least two distinct vertices

in {S1 \ S2} that can be associated with sk+1 as sk+1
a = sk+1,k+1

a and sk+1
b = sk+1,k+1

b .

Since we know that sk+1 is the most current vertex processed, all the matched S

vertices will be at least as large as this vertex. Thus the theorem holds.

From Theorem IV.4.1, the approximation follows immediately, and is stated in

Corollary IV.4.1.

Corollary IV.4.1. Given a bipartite graph G = (S, T,E), w : S → R+, algorithm

86

GlobalTwoThird computes a 2
3
-approximation to maximum vertex-weight match-

ing.

Proof. Let M∗ denote the optimal matching, and M3 denote the matching computed

by Algorithm GlobalTwoThird. We will consider the first restricted bipartite

graph with weights associated only to S vertices. Let S(M) denote the S vertices

matched in M , and N the number of failed vertices with respect to M3. From Theo-

rem IV.4.1, it immediately follows that for every failed vertex si GlobalTwoThird

matches at least two heavier vertices, sia and sib. Therefore,

N∑
i=1

w(si) ≤ 1

2

N∑
i=1

w(sia) + w(sib). (10)

The weight of the optimal matching M∗ can be represented as∑
s∈S(M∗)

w(s) =
∑

si∈S(M∗\M3)

w(si) +
∑

sj∈S(M∗∩M3)

w(sj). (11)

We know that the set S(M∗\M3) represents the set of failed vertices. We can rewrite

the first term of right-hand-side in Equation 11 as

∑
s∈S(M∗)

w(s) ≤
N∑
i=1

w(si) +
∑

sj∈S(M∗∩M3)

w(sj). (12)

Using the results from Equation 10, we have

∑
s∈S(M∗)

w(s) ≤ 1

2
.
N∑
i=1

w(sia) + w(sib) +
∑

sj∈S(M∗∩M3)

w(sj). (13)

We can simplify the first term of R.H.S., in Equation 13 that results in∑
s∈S(M∗)

w(s) ≤ 1

2
.
∑

si∈S(M3)

w(si) +
∑

sj∈S(M∗∩M3)

w(sj). (14)

The set S(M∗ ∩M3) in the second term of R.H.S., can be simply replaced with a set

S(M3). Therefore, we have∑
s∈S(M∗)

w(s) ≤ 1

2
.
∑

si∈S(M3)

w(si) +
∑

sj∈S(M3)

w(sj). (15)

Therefore, ∑
s∈S(M∗)

w(s) ≤ 3

2

∑
si∈S(M3)

w(si). (16)

87

Rewriting the equation above, we have∑
s∈S(M3)

w(s) ≥ 2

3

∑
s∈S(M∗)

w(s).

The time complexity for Algorithm GlobalTwoThird is stated in Theorem

IV.4.2.

Theorem IV.4.2. Given a graph G = (S, T,E) with weight functions wS : S → R+

and wT : T → R+, let n = (|S|+ |T |) represent the number of vertices and m = |E|
represent the number of edges. Algorithm GlobalTwoThird computes a matching

M3 in G in O(n log n + nd3), where d3 is the vertex degree that denotes the average

number of distinct alternating paths of length at most three edges starting at a vertex

in G.

Proof. Algorithm GlobalTwoThird processes the vertices in a global order. The

given set of vertices can be sorted in decreasing order of vertex weights in time

O(n log n). From each set of vertices S and T , GlobalTwoThird will search for

shortest augmenting paths of length at most three. In order to find augmenting

paths of length one edge, we only need to process all the edges incident on the

given vertex and is therefore bounded by O(m). An augmenting path of length

three edges is of the form [s1, t1, s2, t2], where vertices t1 and s2 are matched by

an edge (t1, s2). In order to search augmenting paths of length up to three edges,

Algorithm GlobalTwoThird will incur a cost of at most (deg(s1).deg(s2)). Due to

the matched edge, vertex s2 can be directly reached from vertex t1. Let us represent

this search operation as d3, where d3 is the vertex degree that denotes the average

number of distinct paths of length at most three edges starting at a vertex. Thus, the

run time of Algorithm GlobalTwoThird can be bounded by O(n log n+nd3). The

two matchings, MS and MT can be merged using the Mendelsohn-Dulmage technique

in linear time O(m).

We will now proceed to the describe a potential local-approach to compute a
2
3
-approx VWM in a bipartite graph.

88

IV.5 POTENTIAL LOCAL 2
3
-APPROX ALGORITHM

For the second potential algorithm for computing a 2
3
-approx matching we adopt

a strategy based on restricting the search to a limited length of augmenting path

from a given vertex. Therefore, we name it as LocalTwoThird1. The vertices are

chosen for matching based on a local order. We first decompose the given bipartite

graph G = (S, T,E), with weights associated with both S and T vertices, into two

restricted bipartite graphs by ignoring the weights on the S vertices and then on the

T vertices. This is represented in LocalTwoThird by Lines 5 and 14.

Algorithm 19 Input: a bipartite graph G. Output: a matching M . Effect:
computes a 2

3
-approx to maximum vertex-weight matching.

1: procedure LocalTwoThird(G = (S, T,E), wS : S → R+, wT : T → R+, M)
2: M ← φ;
3: MS ← φ;
4: MT ← φ;
5: S̃ ← S with weights wS set to zero ;
6: while S̃ 6= φ do . Compute MS

7: s←top of S̃;
8: S̃ ← S̃ \ s;
9: Find all augmenting paths Ps t = (P1, P2, ..) of length ≤ 3 starting at s;

10: if P found then
11: MS ←MS ⊕ Pbest; . Pbest is the path with largest t that will be

matched
12: end if
13: end while
14: T̃ ← T with weights wT set to zero ;
15: while T̃ 6= φ do . Compute MT

16: t←top of T̃ ;
17: T̃ ← T̃ \ t;
18: Find all augmenting paths Pt s = (P1, P2, ..) of length ≤ 3 starting at t;
19: if P found then
20: MT ←MT ⊕ Pbest; . Pbest is the path with largest s that will be

matched
21: end if
22: end while
23: M ←Mendelsohn-Dulmage(MS,MT ,M); . Compute M
24: end procedure

In the first matching subproblem a matching MS is computed as follows: arbi-

trarily start from an unmatched S vertex si and enumerate all alternating paths Pi,

1The proof of correctness for Algorithm LocalTwoThird has not been completed.

89

of length at most three, with respect to the current matching Mi. Pick the best aug-

menting path from si and augment the current matching. A best augmenting path

is a path that maximizes Mi ⊕ Pi. Repeat the process until all the S vertices have

been processed. Lines 6−13 represent the computation of MS. Similarly a matching

MT can be computed when weights are associated only with the S vertices. This is

the second subproblem and is represented by Lines 15 − 22 in LocalTwoThird.

The final matching will be obtained by merging the two matchings MS and MT using

the Mendelsohn-Dulmage technique. Execution of LocalTwoThird on a simple

bipartite graph with weights associated with S vertices is shown in Figure 33.

FIG. 33: Execution of Algorithm LocalTwoThird. (a) The input graph G =
(S, T,E) before the execution, weights are associated only with S vertices, (b)-(d)
the intermediate states of execution, and (e) the final state. Bold lines represent
matched edges, and matched vertices are colored black. The shaded edges highlight
all the augmenting paths that exist from a given T vertex.

IV.5.1 Correctness of Algorithm LocalTwoThird

We have not been successful to prove the the correctness of LocalTwoThird. A

critical part of the proof for GlobalTwoThird was Theorem IV.4.1, where for the

induction step (k+ 1) we could safely state that all the matched vertices at that step

were heavier than the (k + 1)-th failed vertex. We could state such a fact because

the vertices were considered in a decreasing order of weight. However, we will not

90

be able to state the same for a matching computed by LocalTwoThird where

vertices are processed in an arbitrary order. We will therefore leave the proof of

LocalTwoThird as an open problem.

91

IV.6 EXPERIMENTAL RESULTS

In this section we present experimental results from our implementation of matching

algorithms in a toolkit called MatchBox. The two types of experiments done

are serial and parallel. The goals for serial experiments are to demonstrate the

efficiency of approximation algorithms in terms of execution time, cardinality and

weight of matching as compared to those of the exact algorithms. The experiments

are conducted on a system equipped with four 2.4 GHz Intel quad core processors

and 32 GB RAM at Old Dominion University.

The graphs used for experiments are representations of regular sparse matrices

downloaded from the University of Florida Sparse Matrix Collection. A matrix is

stored as a bipartite graph, where rows and columns of the matrix represent ver-

tices, and the nonzero elements represent edges. The absolute value of a nonzero

element in the matrix is considered as the weight of the edge that connects the ver-

tices representing the row and the column of the nonzero element. In the following

experiments, the degrees of vertices are used as the weights of the vertices. A similar

model is used to represent symmetric matrices. Since the files downloaded from the

University of Florida Sparse Matrix Collection store only the lower triangle of the

matrix, we explicitly add edges to represent both the upper and lower triangles of

the matrix. The matrices used in the experiments are listed in Table 8.

The performance of global algorithms is presented in Table 9. It can be noted

that the 1
2
-approx algorithms are very fast and the 1

2
-approx algorithms are relatively

fast. As mentioned earlier, the degree of the vertices are used as weights for both the

S and T vertex sets for a given graph. The two matchings, MS and MT are computed

separately and the final matching is obtained by merging the two matchings using

the Mendelsohn-Dulmage technique.

Comparision between the Global and Local-based algorithms is presented in Ta-

ble 10. For the 1
2
-approx algorithms, it can be noted that Algorithm LocalHalf is

faster than the Algorithm GlobalHalf in many cases, except for largest graph in

the collection. However, for 2
3
-approx algorithms, the Global-based algorithm almost

always beats the Local-based algorithm. Note that we did not prove the correctness

of Algorithm LocalTwoThird, and the data is provided here for comparision. The

Local-based algorithms are forced to enumerate all possible paths of certain length

and are therefore inefficient. For the same reason, we do not provide results for

Algorithm LocalOptimal, which we believe is not a practical algorithm.

92

Name #S-Vertices #T-Vertices #Edges

nemsemm 3,945 75,352 1,053,986
dbic1 43,200 226,317 1,081,843
pds-100 156,243 514,577 1,096,002
dbir2 18,906 45,877 1,158,159
lp-osa-60 10,280 243,246 1,408,073
lp-nug 52,260 379,350 1,567,800
karted 46,502 133,115 1,770,349
watson-2 352,013 677,224 1,846,391
stat96v2 29,089 957,432 2,852,184
stat96v3 33,841 1,113,780 3,317,736
stormG2 528,185 1,377,306 3,459,881
cont11 1,468,599 1,961,394 5,382,999
rail2586 2,586 923,269 8,011,362
degme 185,501 659,415 8,127,528
rail4284 4,284 1,096,894 11,284,032
tp-6 142,752 1,014,301 11,537,419
spal-004 10,203 321,696 46,168,124

TABLE 8: Matrix Instances. Downloaded from University of Florida Matrix Collec-
tion.

Name Exact 1
2
-approx 2

3
-approx

nemsemm1 0.05 0.02 0.07
dbic1 0.04 0.04 0.05
pds-100 0.82 0.12 0.29
dbir2 0.07 0.01 0.09
lp-osa-60 0.01 0.01 0.02
lp-nug30 25.48 0.03 0.26
karted 3.31 0.04 0.18
watson-2 0.62 0.26 0.66
stat96v2 0.33 0.12 0.4
stat96v3 0.37 0.15 0.45
stormG2-1000 1.34 0.64 1.44
cont11-l 24.52 0.83 1.5
rail2586 0.04 0.05 0.05
degme 10.17 0.27 0.92
rail4284 0.06 0.06 0.07
tp-6 6.49 0.3 1.39
spal-004 733.36 0.14 26.69

TABLE 9: Performance of Global-based Algorithms. The numbers represent compute
time in seconds.

93

Name Global1
2

Local1
2

Global2
3

Local2
3

nemsemm1 0.02 0.01 0.07 0.07
dbic1 0.04 0.01 0.05 0.16
pds-100 0.12 0.03 0.29 0.28
dbir2 0.01 0.01 0.09 0.41
lp-osa-60 0.01 0.01 0.02 0.1
lp-nug30 0.03 0.02 0.26 1.32
karted 0.04 0.02 0.18 3.03
watson-2 0.26 0.03 0.66 0.69
stat96v2 0.12 0.02 0.4 0.91
stat96v3 0.15 0.03 0.45 1.08
stormG2-1000 0.64 0.06 1.44 23.1
cont11-l 0.83 0.07 1.5 1.5
rail2586 0.05 0.07 0.05 0.76
degme 0.27 0.09 0.92 7.94
rail4284 0.06 0.11 0.07 1.14
tp-6 0.3 0.12 1.39 9.81
spal-004 0.14 0.29 26.69 1495.95

TABLE 10: Relative Performance of Global and Local-based Algorithms. The num-
bers represent compute time in seconds.

The quality of a matching can be measured in terms of the cardinality (the number

of edges in the matching) and the weight (sum of weights of the matched edges) of

the matching. We present the cardinality of the matchings computed by the different

algorithms in Figure 34, and the weight of the matchings in Figure 35. The exact

algorithm used in these comparision is Algorithm GlobalOptimal. It can be noted

that the approximation algorithms compute matchings of high quality in terms of

both cardinality and weight of the matchings.

94

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
at

io
 o

f
C

ar
d

in
al

it
y

=
(|

M
ap

p
ro

x|
/|

M
e

xa
ct

|)
*1

0
0

Test Instances

GlobalHalf

LocalHalf

GlobalTwoThird

LocalTwoThird

FIG. 34: Performance of Approximation Algorithms. Cardinality of matchings of the
approximation algorithms as a ratio of the cardinality of the exact algorithm.

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
at

io
 o

f
W

ei
gh

ts
 =

 (
W

(M
ap

p
ro

x)
/W

(M
ex

ac
t)

)*
1

0
0

Test Instances

GlobalHalf

LocalHalf

GlobalTwotThird

LocalTwoThird

FIG. 35: Performance of Approximation Algorithms. Weight of matchings of the
approximation algorithms as a ratio of the weight of the exact algorithm.

95

IV.7 CHAPTER SUMMARY

In this chapter we introduced three new 1
2
-approx algorithms and two new 2

3
-approx

algorithms to MVM problem. Proof of correctness for all the proposed 1
2
-approx

and one of the 2
3
-approx algorithms were also discussed. We introduced the con-

cept of the restricted reachability property to provide the correctness of 1
2
-approx

Algorithms GlobalHalf, LocalHalf and HybridHalf. We also introduced the

concept of a counting technique in order to provide the correctness of 2
3
-approx Al-

gorithm GlobalTwoThird. While we did not succeed to prove the correctness

of LocalTwoThird algorithm, this approach, if proved correct, will also provide

us an algorithm to compute 2
3
-approx matchings in general graphs. We concluded

the chapter by providing experimental results highlighting the effectiveness of the

approximation algorithms, both in execution time and the quality of the matchings.

There are a few limitations to our current approach. The proposed techniques,

global and local, fail to generalize for a (k
k+1

)-approx, for k > 3. As illustrated in

Figure 36, an augmenting path of length five starting at a vertex s1 ∈ S could appear

at a later stage, while none existed when s1 was processed the first time. Therefore

with the current approaches, we cannot guarantee an approximation ratio better

than (4
5
). However, we cannot say anything conclusively about a 3

4
-approx ratio for

the proposed algorithms, and will study this in the follow-up work.

FIG. 36: New augmenting paths. (a) No augmenting path of length less than or equal
to five exist starting at vertex s1 in graph G at step k; (b) an augmenting path of
length five is available from s1 at a step after k.

96

Similar to the exact algorithms discussed in Chapter III, the proposed approxima-

tion algorithms also suffer from the same limitations: (i) absence of greedy initializa-

tions, and (ii) inability to grow multiple paths, both for 1
2

and 2
3
-approx algorithms.

97

CHAPTER V

PARALLEL APPROXIMATE ALGORITHMS

“While petascale architectures certainly will be held as magnificent feats

of engineering skill, the community anticipates an even harder challenge

in scaling up algorithms and applications for these leadership-class

supercomputing systems.” - David Bader [6]

V.1 INTRODUCTION

Parallelizing the augmentation-based algorithms for matching is nontrivial. While

parallelizing the exact algorithms is hard, the approximation algorithms also pose a

challenge. For example, consider a simple algorithm for computing half approxima-

tion to the maximum weighted matching problem. The algorithm proceeds by first

sorting the edges based on their weights, and then matching them in a decreasing

order of these weights. The edges are processed in a certain order, and therefore,

the algorithm is serial in nature. In this chapter we will provide a parallel 1
2
-approx

algorithm for edge-weighted matching, due to Hoepman [36], and Manne and Bis-

seling [50]. We will discuss implementation details and experimental analysis of this

algorithm. Our contributions include a detailed description, efficient implementation

for distributed memory architectures, and a thorough experimental analysis of the

algorithm.

Existing literature on distributed algorithms for matching is predominantly based

on the PRAM (Parallel Random Access Machine [44]) model. We refer the reader

to a monograph on parallel algorithms for matching for a detailed discussion on the

subject [39]. Some of the recent work has focussed on alternative models such as BSP

(Bulk Synchronous Parallel [15, 17]) and CGM (Coarse Grained Multicomputer [20]),

for example, [16, 50]. These approaches are different from the fine-grain approaches

in the PRAM model [70], and are more suited for modern architectures with a clus-

ter of computers with fast interconnects. Approximation algorithms have also been

proposed [27, 38, 47, 68, 72]. Auction-based algorithms for computing matchings in

bipartite graphs have been parallelized [7, 12, 13, 14, 18, 61, 75]. Parallel approxi-

mate algorithms have also been proposed in the context of application in high-speed

network switches [30, 51, 56].

98

In the following discussions we will assume data structures for graph represen-

tations that store vertex-adjacency sets, and that the graphs are distributed among

the processors via vertex partitioning. We will start the discussion by presenting

a modified version of Preis’s algorithm [64] that builds an intuition for the parallel

algorithm. A distributed scheme of Preis’s algorithm was developed by Hoepman.

Manne and Bisseling show that this is a variant of Luby’s parallel algorithm for

computing maximal independent sets in a graph [49].

We introduced Preis’s algorithm, Algorithm LAM, in Chapter II and refer the

reader to [64] for details. The algorithm computes a half-approx matching by finding

locally dominant edges and adding them to the set of matched edges. However, the

search for locally dominant edges involves traversing through the graph. Thus, this

algorithm is sequential in nature. Alternatively, the same matching can be computed

by using a pointer-based technique that was proposed by Manne [50]. The pointer-

based technique works as follows. Let each vertex set a pointer to the vertex that is

the end point of a heaviest edge incident on it. If two vertices point to each other,

then the edge connecting them is a locally dominant edge. Therefore, add this edge

to the set of matched edges. Remove all edges that are incident on the matched

vertices. Reset the pointers of those vertices that are affected by the changes and

match the dominating edges. Repeat the process until all edges have been removed.

A basic step in the pointer-based algorithm is to set a pointer for a given vertex.

A simple way of doing this is to traverse through the adjacency set S(v) of a given

vertex that contains unmatched neighboring vertices, find a heaviest neighbor and

set the pointer to point this vertex. This is described in Algorithm 20. In case of ties,

the indices of vertices are used to break ties (Line 5). The lowest numbered heaviest

end-point of the edge incident on vertex v is chosen. Note that since each vertex sets

its pointer independent of other vertices, breaking the ties in a consistent manner

is an important task. In the absence of a deterministic scheme to break ties, the

algorithm may not function correctly when cycles of equal edge-weights exit. Also,

note that the running time for this procedure can be improved by maintaining a

sorted list of adjacent vertices so that the current heaviest vertex can be determined

in constant time.

Once the pointer for a vertex v, represented by candidateMate(v), has been set,

the next step is to check if the vertex being pointed to by v also points back to v.

If so, we have successfully identified a locally dominant edge, and this edge can be

99

Algorithm 20 Compute Candidate Mate. Input: A vertex v and its adjacency set.
Output: The end point, vertex, of the heaviest edge incident on v. Associated
data structures: A set S(v) of unmatched vertices adjacent to vertex v. Effect:
Find a candidate-mate for the given vertex v.

1: procedure ComputeCandidateMate(v)
2: w ← 0;
3: maxWt ← −∞;
4: for z ∈ S(v) do . The weight of an edge (x, y) is denoted by w(exy).
5: if (maxWt < w(evz)) or (maxWt = w(evz) and w < z) then
6: w ← z;
7: maxWt ← w(evz);
8: end if
9: end for

10: return w;
11: end procedure

added to the set of matched edges. This process is shown in Algorithm 21. Once an

edge is matched, all the edges incident on the matched vertices are removed. This

is done by modifying the adjacency sets, S(v), of vertices as shown in Line 6 of the

algorithm. However, only those vertices that are pointing to the matched vertices

need to reset their pointers. Therefore, the matched vertices are added to set QM , a

set of matched vertices, for further processing (Line 8).

The complete pointer-based algorithm is shown in Algorithm 22. It can be ob-

served that Algorithm 22 can be divided into three distinct phases: (i) initialization,

(ii) processing all vertices independent of current matching, and (iii) processing spe-

cific vertices based on the current matched edge(s). Initialization of data structures

is shown in Lines 2 through 7. The pointer for each vertex is set (Line 9) by a call

to the function ProcessExposedVertex, which also tests if a dominant edge has

been found that could be matched. Processing all the exposed vertices will result in

at least one edge (the heaviest edge) being matched. All the matched vertices from

this phase are added to the set QM . Only those vertices that were pointing to the

matched vertices will be processed. This is done in the while loop over set QM (Line

11 through Line 21). If a vertex is pointing to a matched vertex then the pointer for

this vertex needs to be reset. This is done by a call to the function ProcessEx-

posedVertex. The loop exits when all the matched vertices are processed. At this

stage, no other edges can be matched, and therefore, the algorithm terminates. We

100

Algorithm 21 Process Exposed Vertex. Input: A vertex v and its adjacency set.
Associated data structures: A set S(v) of unmatched vertices adjacent to vertex
v, a set QM of matched vertices, a vector candidateMate of pointers, and set M
of matched edges. Effect: Processes an exposed vertex - find candidate-mate and
match if possible.

1: procedure ProcessExposedVertex(v)
2: candidateMate(v)← ComputeCandidateMate(v);
3: c← candidateMate(v);
4: if c 6= 0 and candidateMate(c) = v then
5: M ←M ∪ {(v, c)};
6: S(v)← S(v) \ {c};
7: S(c)← S(c) \ {v};
8: QM ← QM ∪ {v, c};
9: end if

10: end procedure

will follow a similar three phase distinction to simplify the description and analysis

of the parallel approximation algorithm. We refer the reader to [50] for a proof of

correctness of the pointer-based algorithm.

Execution of Algorithm 22 on a simple graph is shown in Figure 37. It can be ob-

served that in Step (c) of the figure, two edges,(1, 3) and (2, 5), concurrently become

eligible for matching. This provides an intuition for the potential of parallelism in

the pointer-based approach for computing approximate matchings.

V.1.1 Complexity Analysis

We will use the following notation for this analysis. Let the degree of a vertex v be

denoted by d(v), which represents the number of edges incident on a vertex v. The

maximum degree of a graph G is represented by ∆(G), or simply ∆, which is the

maximum number of edges incident on any vertex in G.

The complexity of Algorithm 22 is essentially determined by the complexity of

finding a candidate-mate described in Algorithm 20, and the number of times this

function will be called for a vertex. In a simple implementation, a linear search

is performed to find the heaviest edge incident on a vertex v, and therefore, the

compute time is given by Θ(d(v)). The procedure to find a candidate-mate of a

vertex v can be invoked at most the number of edges incident on v. The total time

can be obtained by the summation of work done for each vertex, O(
∑

v∈V d(v)2).

101

Algorithm 22 Pointer-based Matching Algorithm. Input: A graph G(V,E)
with weights associated with the edges. Output: A 1

2
-approx matching M in G.

Associated data structures: A set S(v) of unmatched vertices adjacent to vertex
v, a set QM of matched vertices, a vector candidateMate of pointers, and a set M of
matched edges.

1: procedure PointerBasedMatching(G = (V,E),M)
2: for v ∈ V do
3: candidateMate(v)← 0;
4: S(v)← adj (v);
5: end for
6: M ← ∅;
7: QM ← ∅;
8: for v ∈ V do
9: ProcessExposedVertex(v);

10: end for
11: while QM 6= ∅ do
12: u← pick from QM ;
13: QM ← QM \ {u};
14: for v ∈ S(u) do
15: S(v)← S(v) \ {u};
16: if candidateMate(v) = u then
17: ProcessExposedVertex(v);
18: end if
19: end for
20: S(u)← ∅;
21: end while
22: return M ;
23: end procedure

102

FIG. 37: Execution of Algorithm 22. (a) The input graph G = (V,E) with weights
associated with the edges; (b) an intermediate step of execution where the pointers
are set for each vertex in the graph; (c) an intermediate step where vertices that are
pointing to each other are matched. Bold lines represent matched edges. Dashed
lines represent the edges removed from the graph; (d) reset pointers for vertices 4
and 6; (e) edge (4, 5) is matched; (d) the final state. Matched vertices are colored
black.

Since |E| =
∑

v∈V d(v), complexity can be expressed as O(|E|∆).

The running time of Algorithm 22 can be improved by maintaining the adjacency

set of each vertex in a decreasing order of weights. The status of a vertex, matched or

not, can also maintained in constant time. With a sorted adjacency set, candidate-

mate of a vertex can be computed in constant time. However, building the sorted

adjacency set for a vertex v will cost O(d(v) log d(v)). The total time can be obtained

by the summation of work done for each vertex, O(
∑

v∈V d(v) log d(v)), which can

be expressed as

O(|E| log ∆). (17)

Note that if a vertex v is matched, only those vertices that are at a distance two

from v and pointing to it need to reset their pointers. Therefore, a tighter bound

can be expressed by O(|V |d2), where dk(G) is a generalization of the vertex degree

that denotes the average number of distinct paths of length at most k edges starting

at a vertex in graph G. For example, consider the graph in Figure 38. It can be

observed that there are eight distinct paths from vertex 9, for example, paths {(9, 1)},

103

{(9, 1), (1, 5)}, etc. Therefore, d2(9) = 8. It can also be observed that for the internal

vertices (1, 2, 3, 4), d2(v) = 5; and for external vertices (5, 6, 7, 8), d2(v) = 2. Thus,

d2(G) = (8 + 20 + 8)/9 = 4.

FIG. 38: Complexity analysis. A sample graph G with weights associated with the
edges such that (w(e1) > w(e2) > · · · > w(e8)).

When the edge-weights are distributed uniformly randomly, the probability for

any edge being removed from the adjacency set of a vertex is uniform. With this

assumption, Manne and Bisseling show that the expected time can be bounded by

O(|E|). We refer the reader to [50] for details.

104

V.2 DISTRIBUTED ALGORITHM OF HOEPMAN

The intuition for parallelism using pointers was provided in the previous section. In

this section we will discuss how this scheme can be implemented in a distributed

manner. Hoepman [36] provides a distributed algorithm that assigns one vertex per

processor. A processor is capable of computing as well as communicating with other

processors, and has independent memory that is not accessible by other other pro-

cessors. Hoepman’s algorithm provides the necessary understanding for the parallel

algorithm that we have implemented where each processor is assigned a set of vertices

for processing.

Hoepman’s algorithm is described in Algorithm 23. The algorithm starts by

assigning each processor a unique vertex and its adjacency set. In order to simplify,

we will assign the same index to both the processor and the vertex. Thus, from

the adjacency set, each processor will also know the identities of its neighboring

processors. Each processor will maintain a set S that is initialized with the adjacency

set of the vertex it owns. Every time a processor receives a message from its neighbors,

it removes the identity of that neighbor from set S. Similarly, each processor also

maintains a set QR to store the requests received from its neighbors. We will reuse

Algorithm 20, introduced in Section 1, to compute the candidate-mate of a vertex.

The algorithm loops until set S becomes empty (Lines 9 through 28). There

are two possibilities for this to happen: (i) either a processor receives a message

from all its neighbors, or (ii) it finds a mate. We will use two types of messages -

REQUEST and UNAVAILABLE. A REQUEST message is sent when a processor wants to

match with one of its neighboring processors. When a REQUEST message is matched

with a corresponding REQUEST message, it means that a locally dominant edge has

been identified (similar to two vertices pointing to each other). This will result in an

edge being matched. An UNAVAILABLE message is sent when a processor successfully

matches its vertex and is not interested in the matching process anymore (Lines 23

through 25). Execution of Algorithm 23 on a simple graph with three vertices is

shown in Figure 39.

105

Algorithm 23 Distributed Algorithm of Hoepman. Input: A graph G(V,E) with
weights associated with the edges. Output: A 1

2
-approx matching M . Data dis-

tribution: Processor Pi owns vertex vi and stores edges incident on vi, adj(vi).
Associated data structures: A set S of processor identities that share an edge
with Pi, a set QR of requests received on Pi, a scalar c that identifies the mate.

1: procedure DistributedMatchingAlgorithm(G = (V,E), M)
2: loop on each processor Pi, i ∈ I = {1, . . . , |V |} . One vertex per processor.
3: S ← adj(vi);
4: QR ← ∅;
5: c← ComputeCandidateMate(vi);
6: if c 6= null then
7: send REQUEST to c;
8: end if
9: while S 6= ∅ do

10: receive message from u ∈ S;
11: if message = REQUEST then
12: QR ← QR ∪ {u};
13: else if message = UNAVAILABLE then
14: S ← S \ {u}; . Processor Pu has found a mate elsewhere
15: if c = u then
16: c← ComputeCandidateMate(vi); . Reset the pointer.
17: if c 6= 0 then
18: send REQUEST to c;
19: end if
20: end if
21: end if
22: if c 6= null and c ∈ QR then
23: for all w ∈ S \ {c} do
24: send UNAVAILABLE to w;
25: end for
26: S ← ∅;
27: end if
28: end while
29: return c;
30: end loop
31: Compute M based on the c values received from all processors;
32: return M ;
33: end procedure

106

FIG. 39: Execution of Hoepman’s Algorithm. (a) The input graph G = (V,E)
with weights associated with the edges, vertices {1, 2, 3} are assigned to proces-
sors {P1, P2, P3} respectively; (b) an intermediate step of execution when REQUEST

messages are sent by each processor to their neighbors of choice; (c) an intermediate
step when edge (2, 3) is matched. (d) A possible intermediate step when processors
P2 and P3 send UNAVAILABLE messages to P1 in that order, (d’) an alternative situ-
ation when P1 gets an UNAVAILABLE message from P3, and sends a REQUEST to P2.
Eventually, P1 will also receive an UNAVAILABLE message from P2. (e) The final state.
Matched vertices are colored black.

107

V.2.1 Complexity Analysis

The number of messages a processor Pi sends is Θ(d(vi)), where d(vi) is the degree of a

vertex vi that Pi owns. Let us define one time step as the time it takes for a processor

to compute a candidate-mate and send a REQUEST message to the processor that owns

the candidate-mate. If each processor can independently perform this task, then the

computational time of Hoepman’s algorithm will be determined by the number of

time steps it takes before every vertex either has a candidate-mate of its choice or

has processed all the edges incident on the vertex it owns.

Similar to Algorithm 22 the complexity of finding a candidate-mate, as described

in Algorithm 20, is given by Θ(|S(v)|) using a linear search for the heaviest edge,

where S(v) represents the set of unmatched vertices adjacent to vertex v. This can

be bounded by O(∆), where ∆ is the maximum degree of any vertex in the graph.

In each step a processor either sends a REQUEST message to a particular processor

or UNAVAILABLE messages to one or more processors. The number of messages sent by

any given processor is the number of edges incident on the vertex it owns, Θ(|S(v)|).
This can again be bounded by O(∆).

Algorithm 23 has (2|E|) messages communicated before completion. Manne and

Bisseling [50] show that Hoepman’s algorithm can complete in O(log |E|) rounds

when the weights of edges are random. Thus, the expected time for Hoepman’s

algorithm with |V | processors can be expressed as

O(∆ log |E|). (18)

We will now present a parallel 1
2
-approx algorithm where each processor gets a

set of vertices and the associated edges. The main idea is to combine Algorithms 22

and 23 to develop an efficient algorithm for the given problem.

108

V.3 PARALLEL 1
2
-APPROX ALGORITHM

We now present a parallel 1
2
-approx algorithm for computing matchings in graphs.

The main idea is to adapt the serial pointer-based algorithm into a distributed al-

gorithm by using communication techniques from Hoepman’s algorithm to match

edges whose end-points are not owned by the same processor. We call these edges as

cross-edges or cut-edges, and edgecut represents the number of cross-edges.

Note that the data structures for graph representation store vertex adjacencies

and the graph is distributed via vertex partitioning. Given a graph G(V,E) and p

processors, the vertex set V is partitioned into p subsets V1, . . . , Vp. Processor Pi

owns the vertex subset Vi. In addition to the vertices that the processor owns, it also

stores some of the vertices that are owned by other processors. We will represent the

subgraph on processor Pi as G
′
i(V

′
i , E

′
i). The vertex set V

′
i = Vi ∪ V G

i , where the set

V G
i represents the vertices in G

′
i that are not owned by Pi - the ghost vertices. The

edge set E
′
i = Ei∪EG

i , where Ei represents the edges between two vertices in Vi (the

internal edges), and EG
i represents the edges with one end-point in Vi and the other

in V G
i (the cross-edges). This is shown in Figure 40. The ghost vertices are colored

purple and the cross-edges are shown with dashed lines. Note that a processor Pi

will not store edges connecting two vertices in V G
i . Processor Pi will also store the

identities of processors that own the ghost vertices. It can be observed that storing

the ghost vertices will have implications on the memory usage and is suitable for

sparse graphs that have partitions with a small number of edges cut.

We now present a framework for computing approximate weighted-matching in

parallel. The framework is sketched in Algorithm 24. This framework can be eas-

ily extended to compute approximation matchings with different objectives such as

maximizing the cardinality or vertex-weight of a matching. The parallel algorithm

has three distinct phases - (i) initialization, (ii) independent computation, and (iii)

shared computation. The algorithm follows the SPMD (Single Program Multiple

Data) model targeted for implementation using MPI standards for distributed mem-

ory architectures.

The given graph is partitioned and distributed among p processors as described

earlier. The associated data structures used in the algorithm are as follows. A set

QG, initialized with ghost vertices V G
i , represents the set of ghost vertices that still

need to be processed in some manner. A set QM , which is initially empty, stores

the matched vertices as the algorithm proceeds. A vector counter , initialized with

109

FIG. 40: Data distribution among processors. (a) The input graph G = (V,E) with
weights associated with the edges; (b) The vertex set V is partitioned among two
processors P0 and P1. Processor P0 owns vertices {0, 3, 4} and Processor P1 owns
vertices {1, 2, 6}. (c) Data storage on the processors. Along with internal edges, each
processor will also store the endpoints of the edges that get cut (cross-edges). These
vertices are called the ghost vertices and are colored purple in the figure.

the number of edges in E
′
i incident on each ghost vertex, represents the number

of messages that need to be sent (and received) with respect to a ghost vertex.

A vector candidateMate stores the desired mate (pointer) for each vertex in V
′
i .

The sets Sl(v) and Sg(v), initialized with the adjacency sets for local and ghost

vertices respectively, represent the unmatched adjacent vertices of vertex v in V
′
i .

All these data structures are initialized in the initialization phase represented by

Lines 4 through 15 in Algorithm 24.

In Phase-1, each processor attempts to match as many edges as possible with-

out having to depend on information from the neighboring processors. Therefore,

we call this phase independent computation. The computation in Phase-1 is similar

to the serial pointer-based algorithm. The two main tasks in Phase-1 are to pro-

cess all the (unmatched or exposed) vertices once, and process the vertices that get

matched in the first task. Calls to functions ProcessExposedVertexParallel

and ProcessMatchedVerticesParallel are made to complete these tasks. We

will describe these functions soon. The calls to these two functions will initiate some

communication among processors. There are three types of messages - REQUEST,

110

Algorithm 24 Framework for parallel approximate matching. Input: A graph
G(V,E) with weights associated with the edges. Output: A 1

2
-approx matching

M . Data distribution: Given p processors, vertex set V is partitioned into p
subsets V1, . . . , Vp. Processor Pi owns Vi; stores a set of ghost vertices V G

i and the
edges incident on these two vertex subsets. Associated data structures: Set QG

represents the ghost vertices that need to be processed in some manner, a set QM

of matched vertices, a vector counter represents the number of messages that need
to be sent with respect to each ghost vertex, a vector candidateMate represents the
desired mate for each vertex, sets Sl(v) and Sg(v) represent the unmatched local and
global vertices adjacent to v resp., and a set of matched edges Mi.

1: procedure ParallelMatchingFramework(G = (V, E), M)
2: loop on each processor Pi, i ∈ I = {1, . . . , p}
3: *** Initialization ***
4: for v ∈ Vi ∪ V G

i do
5: candidateMate(v)← 0;
6: end for
7: QG ← V G

i ; . Set of ghost vertices.
8: Mi ← ∅;
9: for v ∈ Vi do

10: Sl(v)← adj (v) ∩ Vi; . Set of adjacent local vertices.
11: Sg(v)← adj (v) ∩ V G

i ; . Set of adjacent ghost vertices.
12: end for
13: for v ∈ V G

i do
14: counter(v)← |adj (v) ∩ Vi|; . Local degree of a ghost vertex
15: end for
16: *** Phase 1: Independent Computation ***
17: QM ← ∅;
18: for v ∈ Vi do
19: ProcessExposedVertexParallel(v);
20: end for
21: ProcessMatchedVerticesParallel();
22: *** Phase 2: Shared Computation ***
23: while QG 6= ∅ do
24: ProcessMessage();
25: ProcessMatchedVerticesParallel();
26: end while
27: return Mi;
28: end loop
29: Compute M based on Mi from all processors;
30: return M ;
31: end procedure

111

UNAVAILABLE and FAILURE, descriptions of which will soon follow. All the REQUEST

and UNAVAILABLE messages originating in this phase can be queued (bundled or ag-

gregated), and sent at the end of this phase. There cannot be any FAILURE messages

originating in this phase.

In Phase 2, computation can only proceed based on the information received

from the neighboring processors, and therefore, the name - shared computation. The

basic tasks in this phase can be grouped as communication-based and computation-

based. The computation begins when a message from a neighboring processor is

received. Communication is handled in function ProcessMessage, which is called

within a while loop (Line 24). Appropriate action, based on the type of message,

is taken within this function. If the message results in edges being matched, then a

call to function ProcessMatchedVerticesParallel is made (Line 25). Detailed

descriptions of these two functions will soon follow. The tasks are looped until the set

QG becomes empty. As will be described soon, a ghost vertex g is removed from QG

only when its counter(g) becomes zero. This implies that all computations related

to this vertex are complete. Matchings on each processor, Mi, can be gathered on

the master process, or consumed locally, depending on the needs of the applications.

We will now present the details of different functions that are used in Algorithm 24.

All the communication involved in the algorithm is handled by three types of

messages - REQUEST, UNAVAILABLE and FAILURE. Messages are asynchronous point-

to-point messages sent by one processor to another. Each message contains identities

of two vertices that represent a cross-edge. The meaning of a message is determined

by the type of the message, as follows. A REQUEST message conveys a positive intent

of matching a cross-edge sent by the owner-processor of one endpoint to the owner-

processor of the other endpoint. An UNAVAILABLE message sent by a processor means

that the local vertex identified in the message has already been matched, and there-

fore, a request to match this vertex by a neighboring processor cannot be satisfied.

A FAILURE message sent by a processor means that the local vertex identified in the

message could not be matched and that its owner-processor has finished all compu-

tation related to this vertex. Note the minor difference between the UNAVAILABLE

and FAILURE types - the local vertex identified in the message is matched in the

former and unmatched in the latter; although, both types imply a negative response

to match a cross-edge as identified in the message.

We mentioned that computation in Phase-1 is similar to the serial pointer-based

112

algorithm. We will now present the modified versions of the algorithms that we

discussed for the serial pointer-based algorithm in Section 1. Algorithm Compute-

CandidateMate(v) will remain the same except for a small modification on Line

4 to reflect the local and ghost vertex sets on a processor. This is shown in Al-

gorithm 25. Again, ties from duplicate weights are resolved based on the vertex

indices.

Algorithm 25 Compute candidate-mate in parallel. Input: A vertex v and its
adjacency set. Output: The candidate-mate for a given vertex v. Associated
data structures: Sets Sl(v) and Sg(v) represent the unmatched local and global
vertices adjacent to v resp.

1: procedure ComputeCandidateMateParallel(v)
2: w ← 0;
3: maxWt ← −∞;
4: for z ∈ {Sl(v) ∪ Sg(v)} do . Weight of an edge (x, y) is denoted by w(exy).
5: if (maxWt < w(evz)) or (maxWt = w(evz) and w < z) then
6: w ← z;
7: maxWt ← w(evz);
8: end if
9: end for

10: return w;
11: end procedure

The other function used in the serial algorithm is Algorithm ProcessExposed-

Vertex. A similar function for the parallel algorithm is described in Algorithm 26.

Since the parallel algorithm needs the capability to process cross-edges, it should

also be capable of communicating with its neighbors. Algorithm 26 shows the pro-

cessing of an unmatched vertex. The first step in processing an unmatched vertex is

to find the candidate-mate. If the candidate-mate is a ghost vertex, then a REQUEST

message is sent to the owner of the ghost vertex. If the candidate-mate also points

back to the exposed vertex, then a locally dominating edge has been discovered and

can be matched. Note that the candidateMate(g) of a ghost vertex will be set based

on the REQUEST message from its owner. Once an edge is matched (Line 9), the

endpoints are added to the set QM for further processing (Line 16). If an exposed

vertex cannot be matched, FAILURE messages are sent to all the owner processors of

cross-edges incident on this vertex (Lines 19 to 21). The adjacency sets Sl and Sg

also need to modified. There are also additional computations that are done by a

call to the function ProcessCrossEdge (Line 14) that will be described next.

113

Algorithm 26 Process an exposed vertex in parallel. Input: A vertex v and its
adjacency set. Associated data structures: A setQM of matched vertices, a vector
candidateMate represents the desired mate for each vertex, set Sl(v) represents the
unmatched local vertices adjacent to v, and a set of matched edges Mi. Effect:
Processes an exposed vertex - find candidate-mate, match if possible, update message
counters and send messages if needed.

1: procedure ProcessExposedVertexParallel(v)
2: candidateMate(v)← ComputeCandidateMateParallel(v);
3: c← candidateMate(v);
4: if c 6= 0 then
5: if c ∈ V G

i then . c is a ghost vertex.
6: send REQUEST(v, c);
7: end if
8: if candidateMate(c) = v then . Both vertices point to each other.
9: Mi ←Mi ∪ {(v, c)};

10: if c ∈ Vi then
11: Sl(v)← Sl(v) \ {c};
12: Sl(c)← Sl(c) \ {v};
13: else
14: ProcessCrossEdge(v, c); . c is a ghost vertex.
15: end if
16: QM ← QM ∪ {v, c};
17: end if
18: else
19: for w ∈ adj (v) ∩ V G

i do . w is a ghost vertex.
20: send FAILURE(v, w);
21: end for
22: end if
23: end procedure

114

We observe that there is a shortcoming in Hoepman’s algorithm described in Al-

gorithm 23. A processor Pi will ignore all messages that it receives as soon as it

successfully finds a mate and sends UNAVAILABLE messages to its remaining active

neighbors. Once the UNAVAILABLE messages are received by these neighbors they

will not send any message to Pi. However, there can be a situation when a processor

Pk sends a REQUEST message to Pi before it receives an UNAVAILABLE message, but

after Pi has found a mate. This case is illustrated in Figure 39 in step (d’). Thus,

the REQUEST message from Pk will be lost, or not acknowledged, by Processor Pi

(Processor P1 in Figure 39). The message passing interface MPI standard stipulates

that every send be matched with a corresponding receive. Therefore, techniques

that prevent message losses in the algorithm will facilitate implementation, espe-

cially using the MPI standards for distributed memory systems. We address this

unacknowledged-message problem by providing two data structures to keep track of

messages - (i) a set QG of ghost vertices that need to be processed in some manner,

and (ii) a vector counter that stores a number for each ghost vertex. The value for

a ghost vertex in counter is initialized with the number of cross-edges incident on

it (the local degree). The counting of messages can now be done by keeping track

of each cross-edge and modifying the counters each time a communication happens.

When all the cross-edges incident on a given ghost vertex g are processed in some

manner its counter(g) becomes zero, it can then be removed from the set QG. This

is shown in Algorithm 27.

Algorithm 27 Process a cross-edge. Input: Two vertices that represent a cross-
edge. Associated data structures: Set QG represents the ghost vertices that need
to be processed in some manner, a vector counter represents the number of messages
that need to be sent with respect to each ghost vertex, and sets Sg(v) represents
the unmatched ghost vertices adjacent to v. Effect: Modifies the adjacency set of a
ghost vertex, decrements its counter and modifies the set QG if needed.

1: procedure ProcessCrossEdge(l, g) . g is ghost, and l is a local vertex.
2: Sg(l)← Sg(l) \ {g};
3: counter(g)← counter(g)− 1;
4: if counter(g) = 0 then
5: QG ← QG \ {g}; . All computation for vertex g is complete.
6: end if
7: end procedure

The call to function ProcessExposedVertexParallel will result in some

edges (at least the heaviest edge) getting matched. The vertices that point to matched

115

vertices should reset their pointers to point to other potential mates. This is done in

function ProcessMatchedVerticesParallel, described by Algorithm 28. This

is similar to the processing in Algorithm 22 done in Lines 11 through 21. Again, the

function loops through the matched vertices in set QM . If the vertex being processed

is a ghost vertex, then it can simply be ignored (Lines 5 through 7). Adding ghost

vertices to QM can be avoided, but is shown here for simplicity. Note that only those

vertices that were pointing to the matched vertices need to be processed, since these

vertices must find new candidate-mates (Lines 8 through 13). Ghost vertices that

are pointing to the matched vertices (via REQUEST messages) will be set to null (Line

17) and an UNAVAILABLE message is sent to the owners of these ghost vertices (Line

19). Accordingly, those owners will have to find new candidate-mates.

Algorithm 28 Process matched vertices in parallel. Input: A set of matched
vertices. Associated data structures: A set QM of matched vertices, a vector
candidateMate represents the desired mate for each vertex, set Sl(v) represents the
unmatched local vertices adjacent to v, and a set of matched edges Mi. Effect: Re-
sets the pointers of the vertices pointing to matched vertices. Modifies the adjacency
sets, and sends messages if needed.

1: procedure ProcessMatchedVerticesParallel
2: while QM 6= ∅ do
3: u← pick from QM ;
4: QM ← QM \ {u};
5: if u ∈ V G

i then . Ignore ghost vertices.
6: continue;
7: end if
8: for v ∈ Sl(u) do . Unmatched local vertices.
9: Sl(v)← Sl(v) \ {u};

10: if candidateMate(v) = u then
11: ProcessExposedVertexParallel(v);
12: end if
13: end for
14: Sl(u)← ∅;
15: for v ∈ (adj (u) \ V (Mi)) ∩ V G

i do . Ghost vertices pointing to v; V (Mi)
represents matched vertices.

16: if candidateMate(v) = u then
17: candidateMate(v)← 0; . Reset the pointer to null.
18: end if
19: send UNAVAILABLE(u, v); . v is a ghost vertex.
20: end for
21: end while
22: end procedure

116

Computation in Phase-2 can start only when a message is received. This is done

by calling function ProcessMessage until the set QG becomes empty. Function

ProcessMessage is described in Algorithm 29. Since there are only three types

of messages exchanged between processors, the actions that need to performed upon

receiving messages can be organized based on the type of messages received.

When a REQUEST(g, l) message is received on Processor Pi, it means that

candidateMate(g) for the ghost vertex g can be set to the local vertex l. If the

candidateMate(l) equals g, then a locally dominant edge has been found and can be

matched (Line 9). If matched, the adjacency sets and counters are modified (Line

10), and the matched vertices are added to the set QM .

An UNAVAILABLE(g, l) message conveys that the owner of the ghost vertex does

not intend to match this cross-edge. Thus, a new candidate-mate for l, if not already

matched, has to be found (Line 19). If the local vertex has already been matched,

then an UNAVAILABLE message would have already been sent (Algorithm 28, Line

19), and therefore, no further action needs to be taken and the function terminates

(Line 16).

A FAILURE(g, l) message means that all computation related to this cross-edge

is complete (the ghost vertex could not be matched). The counters are modified

accordingly (Line 22). Note that a FAILURE message can be received only in response

to an UNAVAILABLE message, and never as a response to a REQUEST message. Thus,

nothing has to be done with respect to setting pointers for the local vertex l.

In Algorithm 29, messages are processed one at a time. However, messages can be

aggregated for better performance. If a bundled message is received, we can simply

loop through the bundle, processing one message at a time.

In the given scheme, there are limited possibilities of message exchanges for a

cross-edge. These are illustrated in Figure 41. Note that a REQUEST message will

never be responded to with a FAILURE message (a request means that there is at

least one eligible edge for matching). Also, a processor will send a FAILURE message

only when it has received UNAVAILABLE messages from all its neighbors.

This completes the description of all the functions that are used in the parallel

approximation algorithm. Execution of Algorithm 24 on a simple graph is shown in

Figure 42.

117

Algorithm 29 Process a message. Input: A message that contains identities of
two vertices. Associated data structures: A set QM of matched vertices, a vector
candidateMate represents the desired mate for each vertex, and a set of matched
edges Mi. Effect: Processes a message and act accordingly.

1: procedure ProcessMessage
2: receive message; . g is a ghost, and l is a local vertex.
3: if message = REQUEST(g, l) then . Case 1.
4: if l ∈ V (Mi) then . V (Mi) is a set of matched vertices on Pi.
5: return;
6: end if
7: candidateMate(g)← l;
8: if candidateMate(l) = g then
9: Mi ←Mi ∪ {(l, g)}; . Add an edge to the matching.

10: ProcessCrossEdge(l, g);
11: QM ← QM ∪ {l, g};
12: end if
13: else if message = UNAVAILABLE(g, l) then . Case 2.
14: ProcessCrossEdge(l, g);
15: if l ∈ V (Mi) then
16: return;
17: end if
18: if candidateMate(l) = g then
19: ProcessExposedVertexParallel(l);
20: end if
21: else if message = FAILURE(g, l) then . Case 3.
22: ProcessCrossEdge(l, g);
23: end if
24: end procedure

FIG. 41: Possible communication patterns. Message types are denoted by R for
REQUEST, U for UNAVAILABLE, and F for FAILURE. (a) When two requests match, it
results in a matched edge. An UNAVAILABLE message from P1 to P0 can be responded
by an UNAVAILABLE message (b), or a FAILURE message (c) from P0 to P1. (d) An
UNAVAILABLE message from P0 can either be responded with an UNAVAILABLE or a
FAILURE message by P1.

118

FIG. 42: Execution of parallel approximation algorithm. (a) The input graph
G = (V,E) with weights associated with the edges, vertices {0, 3, 4} are assigned
to processor {P0}, and vertices {1, 2, 6} are assigned to processor {P1}. (b) an
intermediate step of execution when local computations are done. REQUEST(4, 1)
message is sent from P0 to P1; (c) Processor P0 matches edge (0, 3) and sends mes-
sages: UNAVAILABLE(0, 6) and REQUEST(4, 6) to P1. Processor P1 matches edge (1, 2)
and sends messages: UNAVAILABLE(1, 4) and REQUEST(6, 4) to P0. (d) Processor
P0 matches edge (4, 6) and sends message UNAVAILABLE(4, 1) to P1. Processor P1

matches edge (6, 4) and sends message UNAVAILABLE(6, 0) to P0.

119

V.3.1 Complexity Analysis

Given a graph G(V,E) with weight function w : E → R+, and p processors, let

n = |V | and m = |E| be the number of vertices and edges respectively. Recall that

G is distributed on p processors as follows. The vertex set V is partitioned into

p subsets V1, . . . , Vp and Processor Pi owns the vertex subset Vi. Let m
′

= |Ecut|
represent the total edgecut, and m

′
Pi

represent the number of cross-edges incident

on the vertices owned by Processor Pi. Let ∆ represent the maximum degree of any

vertex in G, and d(v) represent the degree of a vertex v.

We make the following assumptions in this analysis:

• The adjacency list of a vertex is maintained in a sorted order (we note that

this does not increase the complexity of the algorithm);

• The weights of the edges are distributed uniformly randomly. Therefore, the

expected number of rounds for completion is O(logm) [49, 50]; and

• The input graph has good separators resulting in well balanced partitions. Let

α represent the load imbalance in the (interior) edges incident on the vertices

owned by the same processor (ratio of the maximum number of interior-edges to

the average number of interior-edges over all processors), β represent a similar

imbalance factor in the edges incident on the boundary vertices, and γ represent

the imbalance factor in the cut-edges. The imbalance factors are illustrated in

Figure 43.

FIG. 43: Illustration of different imbalance factors on Processor Pi.

The compute time for Phase-1 on Processor Pi is given by O(
∑

v∈Vi d(v) log d(v)),

where the log factor comes from sorting the adjacency sets. This can be relaxed to

O((log ∆)
∑

v∈Vi d(v)). This can be generalized to any processor as

O(
αm log ∆

p
). (19)

120

The total communication cost, including that at the end of Phase-1 and during

Phase-2, on Processor Pi is at most (3|m′Pi |). This can be generalized to any processor

as

O(
γm

′

p
). (20)

The computation in Phase-2 is communication dependent. A cross-edge can only

be matched after receiving a matching intent from the owner-processor of the other

end-point of the cross-edge. Once a cross-edge is matched, or removed as a potential

for matching, it can have a ripple effect on the interior edges or other cross-edges.

However, the assumption of random edge-weights is critical in limiting the ripple

effect and analyzing the expected complexity for Phase-2.

The computation in Phase-2 on Processor

Pi is given by O(
∑

v∈V (m
′
Pi

) d(v) log d(v)), where V (m
′
Pi

) represents the vertices in

the set of cross-edges on Pi. The log factor arises from sorting the adjacency sets of

vertices. The imbalances in the number of cross-edges (γ), as well as, imbalances in

the internal edges incident on the boundary vertices (β) will affect the generalization

of the computation cost in Phase-2. Thus, the computational complexity for Phase-2

for any processor is given by

O(
γβm

′
log ∆

p
). (21)

Thus, the total complexity for parallel 1
2
-approx algorithm is given by

O(
αm log ∆

p
+
γm

′

p
+
γβm

′
log ∆

p
). (22)

The complexity analysis provides us an insight for expected speedup on a parallel

architecture. Recall that the complexity for the serial algorithm is O(m log ∆). Under

the stated assumptions of random edge-weights and good separators, the speedup

obtained can be expressed as:

p

F (α, αβ(m′

m log ∆
), G(γm

′

p
))
. (23)

Where G is a function on the communication cost depending the underlying architec-

ture and F is an overall function depending the graph structure, imbalance factors

and the architecture of the parallel system. While the load balance factors (α, β, γ)

are important, also important is the edgecut, which directly influences the amount

of communication that needs to be performed. On modern architectures such as

121

compute clusters with fast processors and relatively slow communication, edgecut is

the most influential factor in determining performance. We also make an important

assumption about the random distribution of edge-weights that directly influences

the number of rounds of execution O(logm) instead of O(m). We will now present

experimental results on the parallel 1
2
-approx algorithm.

122

V.4 EXPERIMENTAL RESULTS

In this section we present experimental results from our implementation of matching

algorithms in a toolkit called MatchBox-P. The two types of experiments done are

serial and parallel. The goals for serial experiments are to demonstrate the efficiency

of approximation algorithms in terms of execution time, cardinality and weight of

matching as compared to those of exact algorithms. We will also demonstrate the

efficiency of the pointer-based algorithm as compared to other approximation algo-

rithms. For the parallel experiments we will try to identify classes of graphs for which

the proposed algorithm, in its current implementation, is effective, and in the process

expose the shortcomings and suggest improvements. The parallel experiments are

conducted on a Cray XT4 system, Franklin, at NERSC with 9, 660 compute nodes.

Each compute node has a 2.3 GHz AMD Opteron quad core processor with 8 GB

RAM. The nodes are interconnected using SeaStar2 router with a 3D torus topol-

ogy. The details can be obtained from www.nersc.gov. The serial experiments are

conducted on a system equipped with four 2.4 GHz Intel quad core processors and

32 GB RAM at Old Dominion University.

V.4.1 Data Set for Experiments

The graphs used for experiments can be broadly classified into two types: (i) graph

representations of regular sparse matrices downloaded from the University of Florida

Sparse Matrix Collection, and (ii) synthetic and model graphs. A matrix is stored

as a general graph, where rows and columns of the matrix represent vertices, and

the nonzero elements represent edges. The absolute value of a nonzero element

in the matrix is considered as the weight of the edge that connects the vertices

representing the row and the column of the nonzero element. A similar model is

used to represent symmetric matrices. Since the files downloaded from the University

of Florida Sparse Matrix Collection store only the lower triangle of the matrix, we

explicitly add edges to represent both the upper and lower triangles of the matrix.

Two types of synthetic graphs are used - random geometric graphs and scalable

synthetic compact application (SSCA#2) graphs. Generation of random geometric

graphs is implemented in MatchBox-P, and SSCA#2 graphs are generated with

GT-Graph generator [5]. In order to eliminate self-loops, the SSCA#2 graphs are

stored as bipartite graphs. Two-dimensional five-point and nine-point grid graphs

123

are used as the model graph problems. The matrices used in the experiments are

listed in Table 11, and the associated structures are illustrated in Figure 44.

Name #Vertices #Edges Type Details

ASIC-680 1, 365, 424 1, 693, 767 Unsymm Circuit simulation matrix
Hamrle3 2, 894, 720 5, 514, 242 Unsymm Circuit simulation matrix
Rajat31 9, 380, 004 20, 316, 253 Unsymm Circuit simulation matrix
Cage14 3, 011, 570 27, 130, 349 Unsymm DNA electrophoresis
Ldoor 1, 904, 406 84, 035, 431 Symm INDEED Test Matrix
Audikw-1 1, 887, 390 154, 359, 999 Symm Crankshaft model

TABLE 11: Matrix Instances downloaded from University of Florida Matrix Col-
lection. Unsymm represents unsymmetric matrices and Symm represents symmetric
matrices.

FIG. 44: Visualization of matrix structures.

A d-dimensional random geometric graph (RGG), represented as G(n, r(n)), is a

graph generated by randomly placing n vertices in a d-dimensional space and con-

necting pairs of vertices whose Euclidean distance is less than or equal to r(n). In

our experiments we only consider two-dimensional RGGs contained in a unit square,

[0, 1]2, and the Euclidean distance between two vertices is used as the weight of the

edge connecting them. Our primary objective is to generate RGGs that have good

separators. Therefore, we generate RGGs that are as sparse as possible, but with-

out generating too many isolated vertices or too many disconnected components.

Connectivity, a monotonic property of RGG, in 2d unit-square RGGs has a sharp

threshold at rc =
√

lnn
πn

[21]. The connectivity threshold is also the longest edge

length of the minimum spanning tree in G [58]. The thermodynamic limit when a

giant component appears with high probability is given by rt =
√

λc
n

[21, 32]. Em-

pirically, the value of λc is given by 2.0736 for 2d unit-square RGGs. The particular

value of r(n) that we have used in the experiments is rct = (rc + rt)/2. We refer the

reader to [21, 23, 22, 32, 58] for details. A 2d RGG with 1, 000 vertices visualized

with Pajek [10] is shown in Figure 45. Note that along with a few isolated vertices,

124

there are also a few disconnected components. The details of RGGs used in the

experiments are provided in Table 12.

FIG. 45: Random geometric graph. A random geometric graph with 1, 000 vertices
as visualized with Pajek.

The SSCA#2 graphs were generated with the GTgraph generator [5]. For conve-

nience, we eliminate self-loops by considering the original graph as a bipartite graph

by simply representing every vertex in the original graph with two vertices (one in

each set) in the bipartite graph. We generated SSCA#2 graphs with the following

properties. For a particular value of λ, the graph has 2λ vertices; the maximum size

of random-sized cliques is 2
λ
3 ; initial probability of interclique edges is set to 0.5; and

the weights of edges are uniformly randomly assigned with a maximum value of 2λ.

We refer the reader to [5] for details. Visualization of an SSCA#2 graph of 1, 024

vertices with Pajek is shown in Figure 46. The details of SSCA#2 graphs used in

the experiments are provided in Table 12.

Model graphs used in the experiments are five-point and nine-point grid graphs.

The grid graphs are generated within MatchBox-P and the edge weights are assigned

uniformly randomly in the range 0 through RAND MAX. Visualization of sample five-

point and nine-point graphs with Pajek are provided in Figures 47 and 48, and the

details of the grid graphs used in the experiments are provided in Table 12.

125

FIG. 46: SSCA#2 graph. An SSCA#2 graph with 1, 024 vertices as visualized with
Pajek.

Name #Vertices #Edges

RGG-1 320, 000 63, 148, 387
RGG-2 8, 388, 608 404, 249, 646
SSCA#2-1 2, 097, 152 63, 148, 387
SSCA#2-2 8, 388, 608 404, 249, 646
FivePtGrid4k 16, 000, 000 31, 992, 000

TABLE 12: Synthetic and Model Graphs. SSCA#2 graphs are generated using GT-
Graph generator. The number of vertices in the original graph are doubled to convert
it into a bipartite graph to eliminate self-loops; duplicate edges, if any, are also
eliminated. RGGs and grid graphs are generated with MatchBox-P and have random
edge weights.

126

FIG. 47: Five-point grid graph. A 10 X 10 five-point grid graph visualized with
Pajek.

FIG. 48: Nine-point grid graph. A 10 X 10 nine-point grid graph visualized with
Pajek.

127

V.4.2 Performance of Serial Matching Algorithms

In this section we show experimental results from serial implementation of the match-

ing algorithms. The goal for these experiments is to highlight the performance of

approximation algorithms not only in the execution time but also for computing

matching of good quality. We present the quality as a ratio of cardinality and weight

of approximation matchings to those of exact matchings. Our implementation of ex-

act matching algorithm is based on the primal-dual algorithm [57] using array data

structures. For large graphs, we also observe empirically that the performance of

binary-heap-based implementation is only incrementally better than the array-based

implementation of the exact algorithm. The results are summarized in Table 13.

It can be observed that the approximation algorithms generate matchings of high

quality with huge gains in compute time.

Instance Wgt-Ratio Card-Ratio Time-Approx(s) Time-Exact(s)

ASIC-680 1.00 0.99 0.13 46, 639
Hamrle3 0.99 0.81 0.28 170, 059
Rajat31 1.00 1.00 0.58 1, 361, 146
Cage14 1.00 1.00 0.55 409, 250
Ldoor 1.00 1.00 0.46 178, 004
Audikw1 1.00 1.00 0.72 242, 591

TABLE 13: Performance of serial approx algorithm. The second column represents
the ratio of weights of approximate and exact matchings. Similarly, the third column
represents the ratio of cardinality of the two matchings. Fourth and fifth columns
show the time in seconds to compute approximate and exact matchings respectively.

We will now present the relative performance of different half approximation algo-

rithms. The two main categories of approximation algorithms are the sorting-based

algorithms of Avis [4] and Preis [64], and path growing algorithms of Vinkemeier

and Hougardy [24, 74]. The path growing algorithm finds simple paths of heaviest

weight in a graph, alternatively adding edges to two sets of potential matchings.

While in PG-1 the two sets of potential matching are compared at the very end, the

two potential sets are compared for each distinct path in PG-2, and therefore, PG-2

is a better algorithm. PG-3 merges the two potential matching sets using Dynamic

Programming techniques, and thus, has the best results, with respect to the weight

of the matching, as compared to PG-1 and PG-2. Since the pointer-based algorithm

is a version of Preis’s algorithm, which in turn is a version of Avis’s algorithm, we

will only present the results for the pointer-based algorithm. Weight and cardinality

128

of the approximation matchings are shown in Figures 49 and 50 as a ratio to those of

exact algorithm. The execution time for different algorithms is shown in Figure 51.

0.5

0.6

0.7

0.8

0.9

1

ASIC-680 Hamrle3 Rajat31 Cage14 Ldoor Audikw1

R
at

io
 =

 W
(M

½
)

/
W

(M
*)

PG1

PG2

PG3

Ptr-Based

FIG. 49: Performance of Serial Approximation Algorithms: Weight. The path grow-
ing algorithms are represented by PG1, PG2, and PG3.

From the experimental results it can be observed that the pointer-based algo-

rithm computes matchings of high quality at high speed. We will now present the

performance results for the parallel half-approximation algorithm.

129

0.5

0.6

0.7

0.8

0.9

1

ASIC-680 Hamrle3 Rajat31 Cage14 Ldoor Audikw1

R
at

io
 =

 |
M

½
|/

|M
*|

PG1

PG2

PG3

Ptr-Based

FIG. 50: Performance of Serial Approximation Algorithms: Cardinality.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ASIC_680k Hamrle3 Rajat31 Cage14 Ldoor Audikw_1

C
o

m
p

u
te

 t
im

e
in

 s
e

co
n

d
s

PG1

PG2

PG3

Pointer-Based

FIG. 51: Performance of Serial Approximation Algorithms: Compute Time.

130

V.4.3 Performance of Parallel Matching Algorithm:

The parallel half-approximation algorithm has been implemented in C++ and uses

Message Passing Interface (MPI) libraries for communication between processors.

The implementation also uses the Standard Template Library (STL) data structures

such as Vectors and Maps. We use multi-level K-way partitioning algorithm in Metis

[41] for distributing input data among participating processors. As described in Al-

gorithm ParallelMatchingFramework, the implementation has three distinct

phases:

• Initialization: The actions performed in this phase are initialization of asso-

ciated data structures such as the adjacency structures for the ghost vertices,

mapping of ghost vertex indices to zero-based indices, allocation of memory for

communication (based on the edgecut), etc.

• Phase-1 : In this phase, candidate mates are set for all local vertices, and

an attempt to match is performed. At the end of Phase-1, all the resulting

communication is sent. Individual messages to a processor are aggregated and

sent as one packet of information using MPI constructs for immediate messages

(MPI Isend()) [67].

• Phase-2 : Computation in Phase-2 is communication dependent, and can only

start once a message is received. It can be broadly classified into two super-

steps - computation and communication. In our current implementation, we do

not aggregate individual messages, but send (non-blocking) them immediately

as needed. Given the fact that we have a bound on the number of messages that

will be communicated, we have implemented asynchronous messaging using the

MPI constructs for buffered messages (MPI Bsend()) [67]. We note that the

current implementation can be improved by performing message aggregation in

Phase-2, while acknowledging that there will be a certain amount of overhead

for message aggregation and potentially longer idle times as processors wait for

messages.

We will now present details from parallel experiments for synthetic and model

graphs for up to 8, 192 processors on Franklin.

131

Five-Point Grid Graph of 4k x 4k Size

The graph representing the 4k x 4k grid has 16, 000, 000 vertices and 31, 992, 000

edges. Since the amount of communication is directly dependent on the edgecut,

existence of good separators is important to obtain good performance for the parallel

algorithm. For the following experiments we used multi-level K-way partitioning

algorithm in Metis [41]. In Figure 52, we plot the edgecut as a function of number

of vertices. An ideal partitioning of a square grid (2D block distribution) will be

proportional to (2
√
|V |(
√
P − 1)), where |V | is the number of vertices and P is

the number of partitions. We observe a similar pattern in the partitions that were

obtained from Metis giving us an expectation for good performance.

4

8

16

32

64

128

256

512

1024

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Th
o

u
sa

n
d

s

of partitions

Actual EdgeCut

2(Sqrt(P)-1)*Sqrt(N)

FIG. 52: 4k grid graph: Edgecut as a function of number of vertices. Actual edgecut
for different number of partitions using multi-level K-way partitioning algorithm in
Metis, and ideal edgecut given by (2

√
|V |(
√
P − 1)), where V is the number of

vertices and P is the number of partitions.

The maximum time is the longest time taken by any given processor in the group

of processors used to compute a matching. Alternatively, it is the time taken by

the slowest processor. The difference in the compute time of different processors can

be due to various reasons including load imbalance, heterogeneous capacities, graph

structure, and unusual behavior of different processors that is time dependent. This

become an important factor when the number of processors used for a given job is very

132

large. Therefore, we also provide the average (mean) compute time for computing the

matching. Ideally, the experiments should be repeated for a large number of times,

but given limited resources we have not repeated similar experiments, especially for

experiments with large number of processors. Maximum and average execution times

for the 4k grid graph are shown in Figures 53 and 54 respectively. For each type,

the execution time of different phases of the computation are shown separately. The

speedup obtained is shown in Figure 55.

2.44E-04

4.88E-04

9.77E-04

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2.00E+00

4.00E+00

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

C
o

m
p

u
te

 T
im

e
 (

M
ax

im
u

m
)

in
 s

e
co

n
d

s

of processors

Initztn.

Phase-1

Phase-2

Total

FIG. 53: 4k grid graph: Compute time (maximum). Maximum time is the time in
seconds of the slowest processor in the group of processors used to solve the problem.

It can be observed that while the execution time for Initialization and Phase-1

scale with the number of processors, the execution time for Phase-2 does not scale

well, and drastically increases for 4, 096 and 8, 192 processors. It should be noted

that the messages are aggregated only in Phase-1 of our current implementation. It

should also be noted that for larger number of processors the amount of work done

per processor is very small. In order to explore further, we plot the cardinality of the

matching at the end of Phase-1 in Figure 56. It can be observed that close to 100

per cent cardinality is obtained at the end of Phase-1 in most cases. As the number

of partitions are increased, the cardinality of matching at the end of Phase-1 also

decreases resulting in more work during Phase-2. The edgecut as a function of the

number of edges is also plotted in Figure 56. It can be observed that a very small

133

2.44E-04

4.88E-04

9.77E-04

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2.00E+00

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

C
o

m
p

u
te

 t
im

e
 (

A
ve

ra
ge

)
in

 s
e

co
n

d
s

of processors

Initztn.

Phase-1

Phase-2

Total

FIG. 54: 4k grid graph: Compute time (average). Average time is the sum of compute
time on each processor in the group divided by the number of processors in that group.

1

2

4

8

16

32

64

128

256

512

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Sp
e

e
d

u
p

 =
 T

im
e-

2
-p

ro
cs

 /
 T

im
e-

N
-p

ro
cs

of processors

FIG. 55: Speedup for 4k x 4k grid graph.

134

fraction of edges get cut.

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

(1
)

%
 C

ar
d

-P
1

 =
 |

M
_P

h
as

e
-1

|
/

|M
|

*
1

0
0

(2

)
%

 E
d

ge
s

cu
t

=
Ed

ge
cu

t
/

|E
|

*
1

0
0

of processors

%EdgeCut

%Card-P1

FIG. 56: 4k grid graph: Cardinality after Phase-1.

Weak Scaling for Five Point Grid Graphs

We now present weak scaling studies on the five-point grid graphs. The largest graph

is the graph with 16 million vertices, and we solve it on 2, 048 and 1, 024 processors

as two separate series. For each subsequent data point, we will reduce the number

of vertices and the number of processors by half. The test set is summarized in

Table 14.

If the total compute time remains fairly constant for different graph size and

number of processor combinations, then we demonstrate the weak scalability of the

parallel 1
2
-approx algorithm. We plot the execution times for the two series in Fig-

ures 57 and 58. It can be observed that the total execution time remains fairly

constant. In particular, initialization and Phase-1 show good scalability. However,

Phase-2 does not scale proportionally, especially for smaller graph sizes. We plot

edgecut and number of messages sent for each grid-size and number of processor

combinations in Figure 59. The two curves are edgecut divided by the number of

processors and messages sent divided by the number of processors. From this figure

we can observe that the edgecut increases, and therefore, the total time for Phase-2

135

Vertices Grid Dimension #P-Series1 #P-Series2

16,000,000 4000 X 4000 2048 1024
8,000,000 2828 X 2828 1024 512
4,000,000 2000 X 2000 512 256
2,000,000 1414 X 1414 256 128
1,000,000 1000 X 1000 128 64

500,000 707 X 707 64 32
250,000 500 X 500 32 16
125,000 354 X 354 16 8
62,500 250 X 250 8 4
31,250 177 X 177 4 2
15,625 125 X 125 2 -NA-

TABLE 14: Grid graphs for weak scalability studies. Columns three and four repre-
sent the number of processors used to solve the grid graphs of a given size.

also increases accordingly.

Random Geometric Graph With 320k Vertices

The 2d unit-square random geometric graph used for this experiment was generated

with 320, 000 vertices and an r(n) value of 0.003. The resulting graph has 1, 490, 855

edges with an average degree of 9.32, maximum degree of 24, and 28 isolated vertices.

The graph was partitioned using the K-way partitioning algorithm in Metis. In Figure

60 we plot the edgecut as a function of the number of vertices. We observe that as

the number of partitions increase the edgecut also increases, thus our expectation of

good performance decreases for large number of partitions. Note that the given graph

is rather small for large number of partitions. For example, with 8, 192 processors,

each processor will be responsible for only about 40 vertices. We restricted the size

of the graph in order to preserve the computational time used on Franklin.

Maximum and average execution times for the 320k RGG are shown in Figures 61

and 62 respectively. For each type, the execution time of different phases of the

computation are shown separately. The speedup obtained is shown in Figure 63.

It can be observed that while the execution time for initialization and Phase-1

scale with the numbers of processors, the execution time for Phase-2 does not scale

well, and drastically increases for processors greater that 1, 024. It should be noted

that the messages are aggregated only in Phase-1 of our current implementation,

136

1.22E-04

2.44E-04

4.88E-04

9.77E-04

1.95E-03

3.91E-03

7.81E-03

2 4 8 16 32 64 128 256 512 1024 2048

C
o

m
p

u
te

 t
im

e
 (

m
ax

im
u

m
)

in
 s

e
co

n
d

s

of processors (different graph problems)

Initztn.

Phase-1

Phase-2

Total

FIG. 57: Weak scaling for grid graphs: Series-1 uses the graph size and processor
combinations as shown in Table 14.

1.22E-04

2.44E-04

4.88E-04

9.77E-04

1.95E-03

3.91E-03

7.81E-03

1.56E-02

2 4 8 16 32 64 128 256 512 1024

C
o

m
p

u
te

 t
im

e
 (

m
ax

im
u

m
)

in
 s

e
co

n
d

s

of processors (different graph problems)

Initztn.

Phase-1

Phase-2

Total

FIG. 58: Weak scaling for grid graphs: Series-2 uses the graph size and processor
combinations as shown in Table 14.

137

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

2 4 8 16 32 64 128 256 512 1024 2048

(1
)

Ed
ge

cu
t/

P
 =

 E
d

ge
cu

t
/

p

ro
cs

(2

)
M

sg
/P

 =
 #

 M
e

ss
ag

e
s

/

p
ro

cs

of processors

EdgeCut/P

Msg/P

FIG. 59: Edgecut and number of messages for different grid graphs: The graph size
and processor combinations are shown in Table 14.

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

1.8E+05

2.0E+05

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

of partitions

FIG. 60: 320k RGG: Edgecut as a function of number of vertices. Actual edgecut
for different number of partitions using multi-level K-way partitioning algorithm in
Metis.

138

2.44E-04

4.88E-04

9.77E-04

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

C
o

m
p

u
te

 T
im

e
 (

M
ax

im
u

m
)

in
 s

e
co

n
d

s

of processors

Initztn.

Phase-1

Phase-2

Total

FIG. 61: 320k RGG: Compute time (maximum). Maximum time is the time in
seconds of the slowest processor in the group of processors used to solve the problem.

1.22E-04

2.44E-04

4.88E-04

9.77E-04

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

C
o

m
p

u
te

 T
im

e
 (

A
ve

ra
ge

)
in

 s
e

co
n

d
s

of processors

Initztn.

Phase-1

Phase-2

Total

FIG. 62: 320k RGG: Compute time (average). Average time is the sum of compute
time on each processor in the group divided by the number of processors in that
group.

139

1

2

4

8

16

32

64

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Sp
e

e
d

u
p

 =
 T

im
e

-2
-p

ro
cs

 /
 T

im
e

-P
-p

ro
cs

of processors

FIG. 63: 320k RGG: Speedup.

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

(1
)

%
C

ar
d

-P
1

=(
|M

_p
1

|
/

|M
|)

*1
0

0

(2
)

 %
Ed

ge
C

u
t

=
(E

d
ge

cu
t

/|
E|

)*
1

0
0

of processors

%Card-P1

%EdgeCut

FIG. 64: 320k RGG: Cardinality after Phase-1.

140

and the amount of work done per processor becomes very small for larger number

of processors. The cardinality of the matching at the end of Phase-1 is plotted in

Figure 64. It can be observed that close to 100 per cent cardinality is obtained at the

end of Phase-1 for up to 32 processors. As the number of partitions are increased, the

cardinality of matching at the end of Phase-1 also decreases resulting in more work

during Phase-2. The edgecut as a function of the number of edges is also plotted in

Figure 64. It can be observed that the fraction of edges cut increase as the number

of partitions increase indicating that amount of communication will grow at large

number of partitions.

SSCA#2 Graph With 524k Vertices

The SSCA#2 graph used for this experiment is generated with with a λ value of 19,

and therefore, has 219 = 524, 288 vertices. The number of edges is 10, 008, 022. The

graph is partitioned using the multi-level K-way partitioning algorithm in Metis. In

Figure 65 we plot edgecut as a function of number of partitions. It can be observed

that the edgecut drastically increases as the number of partitions increases, and

therefore, good performance cannot be expected for larger number of partitions.

1.0E+01

2.0E+01

4.0E+01

8.0E+01

1.6E+02

3.2E+02

6.4E+02

1.3E+03

2.6E+03

5.1E+03

1.0E+04

2.0E+04

4.1E+04

8.2E+04

1.6E+05

3.3E+05

6.6E+05

1.3E+06

2.6E+06

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Lo
g

o
f

e
d

ge
cu

t

of partitions

FIG. 65: 524k SSCA#2: Edgecut as a function of number of vertices. Actual edgecut
for different number of partitions using K-way partitioning algorithm in Metis.

Maximum and average execution times for the 524k SSCA#2 graph are shown

141

in Figures 66 and 67 respectively. For each type, the execution time of different

phases of the computation are shown separately. The speedup obtained is shown in

Figure 68.

4.88E-04

9.77E-04

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

C
o

m
p

u
te

 t
im

e
 (

M
ax

im
u

m
)

in
 s

e
co

n
d

s

of processors

Initztn.

Phase-1

Phase-2

Total

FIG. 66: 524k SSCA#2: Compute time (maximum). Maximum time is the time in
seconds of the slowest processor in the group of processors used to solve the problem.

The cardinality of the matching at the end of Phase-1 is plotted in Figure 69.

It can be observed that close to 100 per cent cardinality is obtained at the end of

Phase-1 for up to 512 processors, but it drastically decreases for partitions greater

than 512, especially, for 8, 192 partitions. The edgecut as a function of the number

of edges is also plotted in Figure 69. It can be observed that the fraction of edges

cut increase drastically for 4, 096 and 8, 192 partitions.

142

2.44E-04

4.88E-04

9.77E-04

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

C
o

m
p

u
te

 T
im

e
 (

A
ve

ra
ge

)
in

 s
e

co
n

d
s

of processors

Initztn.

Phase-1

Phase-2

Total

FIG. 67: 524k SSCA#2: Compute time (average). Average time is the sum of
compute time on each processor in the group divided by the number of processors in
that group.

1

2

4

8

16

32

64

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

of processors

FIG. 68: 524k SSCA#2: Speedup.

143

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

(1
)

%
Ed

ge
cu

t
=

Ed
ge

cu
t

/
|E

|
*

1
0

0

(2
)

%
C

ar
d

-P
1

 =
 |

M
_P

h
as

e
1

|
 /

 |
M

|
*

1
0

0

of processors

%EdgeCut

%Card-P1

FIG. 69: 524k SSCA#2: Cardinality after Phase-1.

144

V.4.4 Performance of Parallel Matching on Graphs from Applications

We will now provide experimental results of the parallel approximation algorithm for

the graphs representing matrices selected randomly from the University of Florida

Matrix Collection. Communication in Algorithm ParallelMatchingFrame-

work is directly dependent on the edge-cut for a given number of partitions. There-

fore, in order to predict the performance of the algorithm, we will present the edgecut,

for different numbers of partitions, as a percentage of the total number of edges for

a graph in Figure 70. It can be observed that edgecut for Rajat31 and Hamrle3 are

under ten per cent, but are relatively high for ASIC-680k, Audikw1 and Cage14.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Pe
rc

en
ta

ge
 =

 E
d

ge
C

u
t

/
N

u
m

b
er

 o
f

ed
ge

s

of partitions

ASIC-680k

Audikw1

Cage14

Hamrle3

Ldoor

Rajat31

FIG. 70: Edgecut for graphs from applications. Percentage of edges cut is a ratio of
edgecut to the number of edges in the graph.

We will now present the execution time on Franklin for up to 4, 096 processors

(Figures 71 and 72). There are a few missing data points in the plots when a

particular problem could not be solved for a particular number of processors. For

example, Cage14 could not be solved for 512 processors. A major cause of failure

has the restriction on the number of messages that a processor can send. Another

cause of failure has been the limitation on memory usage, usually during the graph

partitioning phase.

145

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

C
o

m
p

u
te

 t
im

e
 in

 s
e

co
n

d
s

(l
o

g2
 s

ca
le

)

of processors

(a) ASIC-680k

Max(s)

Avg(s)

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

16 32 64 128 256 512 1024 2048 4096

C
o

m
p

u
te

 t
im

e
 in

 s
e

co
n

d
s

(l
o

g2
 s

ca
le

)

of processors

(b) Audikw1

Max(s)

Avg(s)

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2.00E+00

2 4 8 16 32 64 256 1024 4096

C
o

m
p

u
te

 t
im

e
 in

 s
e

co
n

d
s

(l
o

g2
 s

ca
le

)

of processors

(c) Cage14

Max(s)

Avg(s)

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

C
o

m
p

u
te

 t
im

e
 in

 s
e

co
n

d
s

(l
o

g2
 s

ca
le

)

of processors

(d) Hamrle3

Max(s)

Avg(s)

FIG. 71: Graphs from Applications: Compute time for different matrices with dif-
ferent number of processors. Compute time in seconds (log2 scale) is plotted on the
Y-axis, and the number of processors is plotted on the X-axis. Max is the maximum
time on any given processor in the set, and Avg is the average time for a given set
of processors.

146

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2.00E+00

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

C
o

m
p

u
te

 t
im

e
 in

 s
e

co
n

d
s

(l
o

g2
 s

cl
ae

)

of processors

(a) Ldoor

Max(s)

Avg(s)

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2.00E+00

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

C
o

m
p

u
te

 t
im

e
 in

 s
e

co
n

d
s

(l
o

g2
 s

ca
le

)

of processors

(b) Rajat31

Max(s)

Avg(s)

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

C
o

m
p

u
te

 t
im

e
 in

 s
e

co
n

d
s

(l
o

g2
 s

ca
le

)

of processors

(c) SSCA#2-1

Max(s)

Avg(s)

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2.00E+00

4.00E+00

8.00E+00

1.60E+01
C

o
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s
(l

o
g2

 s
ca

le
)

of processors

(d) SSCA#2-2

Max(s)

Avg(s)

FIG. 72: Graphs from Applications: Compute time for different matrices with dif-
ferent number of processors. Compute time in seconds (logarithmic scale with base
two) is plotted on the Y-axis, and the number of processors is plotted on the X-axis.
Max is the maximum time on any given processor in the set, and Avg is the average
time for a given number of processors. The Figure also has results for two instances
of SSCA#2 graphs.

147

V.4.5 Analysis of Communication

In this section we will present details about the communication involved in computing

the approximation matchings. The total number of messages is bounded between

twice and thrice the edgecut. This is plotted in Figures 73 and 74.

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05

4.00E+05

4.50E+05

5.00E+05

(a) ASIC-680k

Msg Sent

2 X EdgeCut

3 X Edgecut

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

1.00E+08

16 32 64 128 256 512 1024 2048 4096

(b) Audikw1

Msg Sent

2 X EdgeCut

3 X Edgecut

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

A
xi

s
Ti

tl
e

(c) Cage14

Msg Sent

2 X EdgeCut

3 X Edgecut

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

(d) Hamrle3

Msg Sent

2 X EdgeCut

3 X Edgecut

FIG. 73: Communication. Total number of messages sent are bounded between twice
and thrice the edge cut.

Message Bundling

Message bundling greatly influences performance. Here we show the performance of

the message bundling that we have implemented only for Phase 1 of the algorithm.

It can be observed that the number of messages that can be bundled in Phase 1,

MB can be given by the relation (|Edgecut| ≤ MB ≤ 2|Edgecut|). We also know

that a lower bound on the total number of messages sent is given by (2|EdgeCut|).
Thus, in a best possible scenario all the messages can be bundled resulting in at most

O(P 2) messages, where P is the number of processors. The worst case results from

a situation when every processor sends messages to every other processor. However,

for graphs with good partitions the communication can be limited to a few processors

resulting in a O(P) bound on the number of messages. In Figures 75 and 76, we

show the percentage of messages that could be bundled, and the actual number of

148

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

(a) Ldoor

Msg Sent

2 X EdgeCut

3 X Edgecut

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

(b) Rajat31

Msg Sent

2 X EdgeCut

3 X Edgecut

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

(c) SSCA#2-1

Msg Sent

2 X EdgeCut

3 X Edgecut

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

(d) SSCA#2-2

Msg Sent

2 X EdgeCut

3 X Edgecut

FIG. 74: Communication. Total number of messages sent are bounded between twice
and thrice the edge cut.

messages sent (bundled, as well as unbundled) as a percentage of total messages

that would have been sent if no bundling was performed. It should be noted that

the communication time for bundled messages will be proportional to the number

of messages bundled. Thus, bundled messages are sensitive to both latency and

bandwidth of the underlying communication system. In the implementation, bundled

messages are sent using the MPI construct MPI Isend(), and unbundled messages

are sent using MPI construct MPI Bsend().

149

0.00

20.00

40.00

60.00

80.00

100.00

120.00

(a) ASIC-680k

%Bundled

%Sent

0.00

20.00

40.00

60.00

80.00

100.00

120.00

16 32 64 128 256 512 1024 2048 4096

(b) Audikw1

%Bundled

%Sent

0.00

20.00

40.00

60.00

80.00

100.00

120.00

2 4 8 16 32 64 256 1024 4096

(c) Cage14

%Bundled

%Sent

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

(d) Hamrle3

%Bundled

%Sent

FIG. 75: Message Bundling. Percentage bundled represents the number of messages
that could be bundled in Phase 1, higher the better. Percentage sent represents the
actual number of messages that get sent due to bundling, lower the better.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

(a) Ldoor

%Bundled

%Sent

0.00

20.00

40.00

60.00

80.00

100.00

120.00

(b) Rajat31

%Bundled

%Sent

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

(c) SSCA#2-1

%Bundled

%Sent

0.00

20.00

40.00

60.00

80.00

100.00

120.00

(d) SSCA#2-2

%Bundled

%Sent

FIG. 76: Message Bundling. Percentage bundled represents the number of messages
that could be bundled in Phase 1, higher the better. Percentage sent represents the
actual number of messages that get sent due to bundling, lower the better.

150

V.5 CHAPTER SUMMARY

In this chapter we presented a parallel 1
2
-approx algorithm and discussed the ex-

perimental analysis on a distributed memory system. The proposed algorithm has

several limitations. The limitations that directly affect performance are the structure

of the graph and the edgecut resulting from partitioning the graph between multiple

processors. A worst case for the number of rounds of execution can be illustrated

by executing the pointer-based algorithm on a graph whose edges can be arranged

on a straight line with edge-weights in a sorted order as shown in Figure 77. The

number of rounds in this case is O(|E|). However, with the assumption of random

edge-weights, the expected number of rounds is O(log |E|), where E represents the

set of edges in a graph.

FIG. 77: Limitations of the pointer-based approach. (a) The input graph G = (V,E)
with weights associated with the edges; (b) an intermediate step of execution where
the pointers are set for each vertex in the graph; (c) an intermediate step where
vertices that are pointing to each other are matched. Bold lines represent matched
edges. Dashed lines represent the edges removed from the graph; (d) the final state.
Matched vertices are colored black.

There are numerous challenges in implementing and executing the algorithm on

current and future supercomputers with hundreds of thousands of processors. One

specific challenge is the edgecut that dictates the execution time for Phase-2. Spec-

ulative algorithms can help minimize communication and we will explore this in our

future work. We will also explore the benefits of alternative platforms with fast inter-

connects and slow processors. Better algorithms for unweighted and vertex-weighted

151

matching problems will also be explored in future work.

Acknowledgements: This research used resources of the National Energy Research

Scientific Computing Center, which is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC02-05CH11231.

152

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

“Art is never finished, only abandoned.” - Leonardo da Vinci

The work completed in this thesis lays the groundwork for future research. The goals

for this research were broadly organized into theory, implementation and applications.

We were able to accomplish many of the goals we set for ourselves. The following

list provides a summary of the contributions from this work:

1. Theory:

• New framework for developing proof of correctness for vertex weighted

matchings;

• New 1
2
-approx algorithms for vertex weighted matchings;

• New 2
3
-approx algorithm for bipartite vertex weighted matchings;

2. Experiments:

• Open-source library of C++ routines to compute various kinds of match-

ings;

• Open-source library of C++ and MPI routines to compute approximate

matchings in parallel.

• Extensive experimental study of various (serial) matching algorithms, and

scalability study of 1
2
-approx parallel algorithm with up to 8, 192 proces-

sors.

3. Applications:

• Study of applicability of vertex weighted matchings in solving the sparsest

basis problem.

• Study of approximation algorithms in sparse matrix computations.

153

Constrained by time and priorities we have also left many questions unanswered.

Some of the important open problems that will be addressed in the future work

include

• How to provide a proof of correctness for 2
3
-approx algorithm LocalT-

woThird?

• Is a 2
3
-approx algorithm possible for vertex weighted matching in general

graphs?

• Is a 3
4
-approx algorithm possible for vertex weighted matching in bipartite

and/or general graphs?

VI.1 FUTURE WORK

Preliminary work on a parallel approximate matching was completed as part of this

research. The need for efficient parallel implementations has never been greater than

now. As part of our future work we plan to continue to improve the current im-

plementation, develop new algorithms - exact as well as approximate, and conduct

scalability studies on different parallel architectures. Some specific goals for imme-

diate future include:

• Conduct scalability studies on IBM Bluegene/P system at Argonne Leadership

Computing Facility (ALCF), at the Argonne National Laboratory.

• Conduct scalability studies on SiCortex 5832 system Green at Rosen Center

for Advanced Computing, Purdue University.

• Study impact on performance from different partitioning schemes.

154

BIBLIOGRAPHY

[1] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, 1993.

[2] Ahuja, R. K., and Orlin, J. B. A faster algorithm for the inverse spanning

tree problem. J. Algorithms 34, 1 (2000), 177–193.

[3] Auden, W. H., and Kronenberger, L. The Viking Book of Aphorisms, A

Personal Selection. Dorset Press, 1981.

[4] Avis, D. A survey of heuristics for the weighted matching problem. Network

13 (1983), 475–493.

[5] Bader, D., and Madduri, K. Design and implementation of the hpcs graph

analysis benchmark on symmetric multiprocessors. In Lecture Notes in Com-

puter Science (2005), vol. 3769, pp. 465–476.

[6] Bader, D. A. Petascale Computing: Algorithms and Applications. Chapman

and Hall/CRC, New York, NY, USA, 2007.

[7] Bagherzadeh, N., and Hawk, K. Parallel implementation of the auction

algorithm on the intel hypercube. Parallel Processing Symposium, 1992. Pro-

ceedings., Sixth International (Mar 1992), 443–447.

[8] Ball, M., Magnanti, T., Monma, C., and Nemhauser, G. Network

Models, Handbooks in Operations Research and Management Science, vol. 7.

North Holland Press, Amsterdam, 1995, ch. Matching, pp. 135–224.

[9] Ball, M., Magnanti, T., Monma, C., and Nemhauser, G. Network Mod-

els, Handbooks in Operations Research and Management Science, vol. 7. North

Holland Press, Amsterdam, 1995, ch. Applications of Network Optimization.

[10] Batagelj, V., and Mrvar, A. Pajek - program for large network analysis.

Connections 21 (1998), 47–57.

[11] Bell, C. E. Weighted matching with vertex weights: An application to

scheduling training sessions in nasa space shuttle cockpit simulators. Euro-

pean Journal of Operational Research 73, 3 (March 1994), 443–449. available at

http://ideas.repec.org/a/eee/ejores/v73y1994i3p443-449.html.

155

[12] Bertsekas, D. P., and Castañon, D. A. Parallel synchronous and asyn-

chronous implementations of the auction algorithm. Parallel Computing 17, 6-7

(1991), 707–732.

[13] Bertsekas, D. P., and David A. Casta n. A generic auction algorithm

for the minimum cost network flow problem. Comput. Optim. Appl. 2, 3 (1993),

229–260.

[14] Bertsekas, D. P., and David A. Casta n. Parallel primal-dual methods

for the minimum cost flow problem. Comput. Optim. Appl. 2, 4 (1993), 317–336.

[15] Bisseling, R. H. Parallel Scientific Computation: A Structured Approach

Using BSP and MPI. Oxford University Press, 2004.

[16] Chan, A., Dehne, F., Bose, P., and Latzel, M. Coarse grained parallel

algorithms for graph matching. Parallel Comput. 34, 1 (2008), 47–62.

[17] Cheatham, T., Fahmy, A., Stefanescu, D. C., and Valiant, L. G.

Bulk synchronous parallel computing-a paradigm for transportable software. In

HICSS ’95: Proceedings of the 28th Hawaii International Conference on System

Sciences (HICSS’95) (Washington, DC, USA, 1995), IEEE Computer Society,

p. 268.

[18] Cohen, N., and Brassil, J. A parallel pruning technique for highly asym-

metric assignment problems. IEEE Trans. Parallel Distrib. Syst. 11, 6 (2000),

550–558.

[19] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Intro-

duction to Algorithms, 2nd ed. The MIT Press, 2001.

[20] Dehne, F., Fabri, A., and Rau-Chaplin, A. Scalable parallel geometric

algorithms for coarse grained multicomputers. In SCG ’93: Proceedings of the

ninth annual symposium on Computational geometry (New York, NY, USA,

1993), ACM, pp. 298–307.

[21] D́ıaz, J., Mitsche, D., and Pérez-Giménez, X. On the connectivity of

dynamic random geometric graphs. In SODA ’08: Proceedings of the nineteenth

annual ACM-SIAM symposium on Discrete algorithms (Philadelphia, PA, USA,

2008), Society for Industrial and Applied Mathematics, pp. 601–610.

156

[22] D́ıaz, J., Penrose, M. D., Petit, J., and Serna, M. Convergence theo-

rems for some layout measures on random lattice and random geometric graphs.

Comb. Probab. Comput. 9, 6 (2000), 489–511.

[23] D́ıaz, J., Penrose, M. D., Petit, J., and Serna, M. Approximating

layout problems on random geometric graphs. J. Algorithms 39, 1 (2001), 78–

116.

[24] Drake, D. E., and Hougardy, S. A simple approximation algorithm for

the weighted matching problem. Inf. Process. Lett. 85, 4 (2003), 211–213.

[25] Duff, I. S., and Koster, J. On algorithms for permuting large entries to the

diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl. 22, 4 (2000), 973–996.

[26] Duff, I. S., and Pralet, S. Strategies for scaling and pivoting for sparse

symmetric indefinite problems. SIAM J. Matrix Anal. Appl. 27, 2 (2005), 313–

340.

[27] Fischer, T., Goldberg, A. V., Haglin, D. J., and Plotkin, S. Approx-

imating matchings in parallel. Inf. Process. Lett. 46, 3 (1993), 115–118.

[28] Gabow, H. N. An efficient implementation of edmonds’ algorithm for maxi-

mum matching on graphs. J. ACM 23, 2 (1976), 221–234.

[29] Galil, Z. Efficient algorithms for finding maximum matching in graphs. ACM

Comput. Surv. 18, 1 (1986), 23–38.

[30] Giaccone, P., Shah, D., and Prabhakar, B. An implementable parallel

scheduler for input-queued switches. In HOTI ’01: Proceedings of the The Ninth

Symposium on High Performance Interconnects (HOTI ’01) (Washington, DC,

USA, 2001), IEEE Computer Society, p. 9.

[31] Glover, F., and Laguna, M. Tabu search. In Modern Heuristic Techniques

for Combinatorial Problems (Oxford, England, 1993), C. Reeves, Ed., Blackwell

Scientific Publishing.

[32] Goel, A., Rai, S., and Krishnamachari, B. Sharp thresholds for monotone

properties in random geometric graphs. In STOC ’04: Proceedings of the thirty-

sixth annual ACM symposium on Theory of computing (New York, NY, USA,

2004), ACM, pp. 580–586.

157

[33] Hendrickson, B. Combinatorial scientific computing: The role of discrete

algorithms in computational science and engineering, 2003.

[34] Hendrickson, B., and Pothen, A. Combinatorial scientific computing:

The enabling power of discrete algorithms in computational science. In Pro-

ceedings of the 7th International Meeting on High Performance Computing for

Computational Science (VECPAR’06) (2006), Springer-Verlag.

[35] Hochbaum, D. S., Ed. Approximation algorithms for NP-hard problems. PWS

Publishing Co., Boston, MA, USA, 1997.

[36] Hoepman, J.-H. Simple distributed weighted matchings. CoRR

cs.DC/0410047 (2004).

[37] Hopcroft, J., and Karp, R. A n
5
2 algorithm for maximum matchings in

bipartite graphs. SIAM J. Comput. 2 (1973), 225–231.

[38] Hougardy, S., and Vinkemeier, D. E. Approximating weighted matchings

in parallel. Inf. Process. Lett. 99, 3 (2006), 119–123.

[39] Karpinski, M., and Rytter, W. Fast parallel algorithms for graph matching

problems. Oxford University Press, Inc., New York, NY, USA, 1998.

[40] Karypis, G., and Kumar, V. Analysis of multilevel graph partitioning. In

Supercomputing ’95: Proceedings of the 1995 ACM/IEEE conference on Super-

computing (CDROM) (New York, NY, USA, 1995), ACM, p. 29.

[41] Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM J. Sci. Comput. 20, 1 (1998), 359–392.

[42] Keyes, D. A science-based case for large-scale simulation, the scales report,

2003. (http://www.pnl.gov/scales/).

[43] Kuhn, H. W. The Hungarian method for the assignment problem. Naval

Research Logistic Quarterly 2 (1955), 83–97.

[44] Kumar, V., Grama, A., Gupta, A., and Karypis, G. Introduction to

parallel computing: design and analysis of algorithms. Benjamin-Cummings

Publishing Co., Inc., Redwood City, CA, USA, 1994.

158

[45] Lawler, E. Combinatorial Optimization: Networks and Matroids. Dover Pub-

lications, Mineola, New York, 1976.

[46] Li, X. S., and Demmel, J. W. Making sparse gaussian elimination scalable

by static pivoting. In Supercomputing ’98: Proceedings of the 1998 ACM/IEEE

conference on Supercomputing (CDROM) (Washington, DC, USA, 1998), IEEE

Computer Society, pp. 1–17.

[47] Lotker, Z., Patt-Shamir, B., and Rosen, A. Distributed approximate

matching. In PODC ’07: Proceedings of the twenty-sixth annual ACM sympo-

sium on Principles of distributed computing (New York, NY, USA, 2007), ACM,

pp. 167–174.

[48] Lovasz, L. Matching Theory (North-Holland mathematics studies). Elsevier

Science Ltd, 1986.

[49] Luby, M. A simple parallel algorithm for the maximal independent set problem.

In STOC ’85: Proceedings of the seventeenth annual ACM symposium on Theory

of computing (New York, NY, USA, 1985), ACM, pp. 1–10.

[50] Manne, F., and Bisseling, R. H. A parallel approximation algorithm for the

weighted maximum matching problem. In The Seventh International Conference

on Parallel Processing and Applied Mathematics (2007), pp. 708–717.

[51] McKeown, N. The islip scheduling algorithm for input-queued switches.

IEEE/ACM Trans. Netw. 7, 2 (1999), 188–201.

[52] McKeown, N., Anantharam, V., and Walrand, J. C. Achieving 100%

throughput in an input-queued switch. In INFOCOM (1996), pp. 296–302.

[53] Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V. Adwords and

generalized online matching. J. ACM 54, 5 (2007), 22.

[54] Monien, B., Preis, R., and Diekmann, R. Quality matching and local

improvement for multilevel graph-partitioning. Parallel Comput. 26, 12 (2000),

1609–1634.

[55] Mulmuley, K., Vazirani, U. V., and Vazirani, V. V. Matching is as

easy as matrix inversion. In STOC ’87: Proceedings of the nineteenth annual

159

ACM conference on Theory of computing (New York, NY, USA, 1987), ACM,

pp. 345–354.

[56] Nong, G., Muppala, J. K., and Hamdi, M. Performance analysis of input

queueing atm switches with parallel iterative matching scheduling. In Proceed-

ings of the IFIP TC6 WG6.3/WG6.4 Fifth International Workshop on Perfor-

mance Modelling and Evaluation of ATM Networks (Deventer, The Netherlands,

The Netherlands, 2000), Kluwer, B.V., pp. 189–207.

[57] Papadimitriou, C. H., and Steiglitz, K. Combinatorial optimization:

algorithms and complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1982.

[58] Penrose, M. Random Geometric Graphs. Oxford University Press, 2003.

[59] Pettie, S., and Sanders, P. A simpler linear time 2
3
− ε approximation for

maximum weight matching. Inf. Process. Lett. 91, 6 (2004), 271–276.

[60] Pinar, A., Chow, E., and Pothen, A. Combinatorial algorithms for com-

puting column space bases that have sparse inverses. Electronic Transactions

on Numerical Analysis 22 (2006), 122–145.

[61] Polymenakos, L. C., and Bertsekas, D. P. Parallel shortest path auction

algorithms. Parallel Comput. 20, 9 (1994), 1221–1247.

[62] Pothen, A. Sparse null bases and marriage theorems. PhD thesis, Cornell

University, Ithaca, NY, USA, 1984.

[63] Pothen, A., and Fan, C.-J. Computing the block triangular form of a sparse

matrix. ACM Trans. Math. Softw. 16, 4 (1990), 303–324.

[64] Preis, R. Linear time 1
2
-approximation algorithm for maximum weighted

matching in general graphs. In 16th Ann. Symp. on Theoretical Aspects of

Computer Science (STACS) (1999), pp. 259–269.

[65] Schenk, O., Wächter, A., and Hagemann, M. Matching-based pre-

processing algorithms to the solution of saddle-point problems in large-scale

nonconvex interior-point optimization. Comput. Optim. Appl. 36, 2-3 (2007),

321–341.

160

[66] Schrijver, A. Combinatorial Optimization - Polyhedra and Efficiency.

Springer, 2003.

[67] Snir, M., and Otto, S. MPI-The Complete Reference: The MPI Core. MIT

Press, Cambridge, MA, USA, 1998.

[68] Spencer, T. Parallel approximate matching. System Sciences, 1993, Pro-

ceeding of the Twenty-Sixth Hawaii International Conference on ii (Jan 1993),

293–297 vol.2.

[69] Spencer, T. H., and Mayr, E. W. Node weighted matching. In Proceedings

of the 11th Colloquium on Automata, Languages and Programming (London,

UK, 1984), Springer-Verlag, pp. 454–464.

[70] Storoy, S., and Sorevik, T. Massively parallel augmenting path algorithms

for the assignment problem. Computing 59, 1 (1997), 1–16.

[71] Tabatabaee, V., Georgiadis, L., and Tassiulas, L. Qos provisioning and

tracking fluid policies in input queueing switches. IEEE/ACM Trans. Netw. 9,

5 (2001), 605–617.

[72] Uehara, R., and Chen, Z.-Z. Parallel approximation algorithms for max-

imum weighted matching in general graphs. Inf. Process. Lett. 76, 1-2 (2000),

13–17.

[73] Vazirani, V. V. A theory of alternating paths and blossoms for proving cor-

rectness of the o(
√
V E) general graph matching algorithm. Tech. rep., Ithaca,

NY, USA, 1989.

[74] Vinkemeier, D. E. D., and Hougardy, S. A linear-time approximation

algorithm for weighted matchings in graphs. ACM Trans. Algorithms 1, 1 (2005),

107–122.

[75] Wein, J., and Zenios, S. Massively parallel auction algorithms for the assign-

ment problem. Frontiers of Massively Parallel Computation, 1990. Proceedings.,

3rd Symposium on the (Oct 1990), 90–99.

[76] Wolsey, L. Integer Programming. Wiley-Interscience Publication, John Wiley

and Sons, 1998.

