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Cyber system defenders face the challenging task of continually protecting critical assets and information from a
variety of malicious attackers. Defenders typically function within resource constraints, while attackers operate at
relatively low costs. As a result, design and development of resilient cyber systems that support mission goals under
attack, while accounting for the dynamics between attackers and defenders, is an important research problem. The
goal of this article is to increase awareness among practitioners and researchers about uncertainty quantification
within cybersecurity games, and encourage further advancements in this area.

In order to address cybersecurity challenges, researchers are increasingly adopting game theory-based mathematical
modeling approaches that involve strategic decision makers within non-cooperative settings [5-6, 10]. Various
taxonomies for classifying game-based modeling approaches exist (see Figure 1). These game formulations contain
assumptions about rounds of game plays, past player actions, types of players, number of cyber system states,
number of player actions in a given system state, and payoff (reward or penalty) functions associated with player
actions.
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Figure 1. Types of non-cooperative game models for cybersecurity. Figure created by authors.

While game-based attack-defense models consider complex scenarios and effectively represent dynamic interactions,
an increased focus on uncertainties in attacker payoff functions could enhance them. In a realistic setting, a defender
cannot assume that all necessary information—both about the attackers and their own system—will be available. Since
a cyber attacker’s payoff generation mechanism is largely unknown, appropriate representation and uncertainty
propagation is a critical task. One must also account for the lack or absence of perfect cyber system state information;
such uncertainties may arise due to inherent randomness or incomplete knowledge of the behavior of or events
affecting the system. For example, partial observability may make a cyber system’s state uncertain over time.
Moreover, multiple types of attackers could potentially target a system at a given point in time.

Advances in state-space modeling of cyber systems and reinforcement learning approaches for Markov decision
processes have inspired the development of partially observable stochastic games (POSGs) and their potential
applications for cybersecurity [1, 4, 6-9, 11]. A POSG is comprised of multiple players. Each player independently
chooses actions, makes observations, and receives payoffs while the system state transitions based on player-action
combinations. A POSG is defined as a tuple  where: 
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 is the set of action tuples (pairs when ), where  is the  player’s action set
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 is the reward function, where  denotes the individual reward function of the  player

 is the initial system state.

POSGs are very general formulations, and thus become intractable. Identifying joint policies (that map from
observation history and system states to actions) of players forming a Nash equilibrium is the decision-making goal.
Under equilibrium conditions, no player gains by unilaterally changing his/her policy. Typically, these problems may
be categorized into the following two categories: (1) Planning – where complete specification of the cyber-system
environment is known and optimal joint policies are desired; and (2) Learning – where players need to interact with
the cyber-system environment to learn about the system and each other, while updating their policies based on
these interactions. Solving such problems involves iteratively finding policies that achieve high rewards, on average,
over the long run. A POSG’s typical objective is to maximize the expected cumulative value (i.e. a function of payoffs)
for each player [8]:

where:

 is the value function for the first player, i.e  associated with a tuple of policies 

 is the reward over time  for the first player in state  for a joint action 

 is the initial system state distribution.

Researchers have proposed various approaches for solving POSGs, including dynamic programming with iterative
elimination of weakly dominated strategies [1] and transformations of POSGs to a series of Bayesian games (with
incomplete information about other player payoffs) that have properties similar to the original POSG [7].

In realistic cybersecurity settings, insufficient and uncertain information about system properties and attacker goals
may be available to a defender. A recent approach proposed a probabilistic framework for quantifying attacker payoff
uncertainty within a stochastic game setup that accounts for dependencies among a cyber system’s state, attacker
type, player actions, and state transitions [2-4]. This approach adopts conditional probabilistic reasoning to
characterize dependencies among these modeling elements. The application of probabilistic theories (such as total
probability theorem) and functions (such as marginal and conditional) may then lead to simulation of attacker payoff
probability distributions under various system states and operational actions. The framework is flexible and accounts
for multiple types of uncertainties—such as aleatory (statistical variability) and epistemic (insufficient information)—in
attacker payoffs within an integrated probabilistic framework (see Figure 2).

Figure 2. Probabilistic attacker payoff framework. Figure created by authors.

Mathematically, as presented in [2-4], the discrete version of the marginal probability of attacker payoff utility
(involving notions of time and cost),  is: 
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where:

 is the initial (prior) probability of system states 
 is the conditional probability of attacker type  for a given system state

 is the conditional probability of attacker and defender action combinations  for a given attacker

type and initial system state
 is the conditional probability of system state transition from  to  for given action combinations,

attacker type, and initial system state
 is the conditional probability of attacker payoff utility.

Statistical probability distributions typically address aleatory uncertainty, while mathematical intervals address
epistemic uncertainty. Depending on these representations, uncertainty propagation methods may include Monte
Carlo sampling analysis, interval analysis, and/or probability bounds analysis. Application of uncertainty propagation
techniques generates probability distributions, intervals, or intervals of distributions associated with attacker payoffs
that serve as critical inputs within stochastic cybersecurity games. These probabilities may be informed and updated
based on empirical event and system data, simulation experiments, and/or informed judgments of subject matter
experts. 

The game-theoretic and uncertainty quantification methods outlined above model the dynamics between cyber
attackers and defenders, and have real-world potential to address proactive resource allocation challenges within
resilient cyber systems. However, challenges to their implementation exist, including real-time, data-driven system
state determination, “realistic” payoff uncertainty representations, and scalability of uncertainty propagation and
stochastic game algorithms. Nevertheless, these approaches represent steps toward practical uses of game theory as
an effective tool for rigorous cyber defense analysis.
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