
The remote memory access (RMA) is an increasingly

important communication model due to its excellent
potential for overlapping communication and

computations and achieving high performance on modern

networks with RDMA hardware such as Infiniband. RMA

plays a vital role in supporting the emerging global

address space programming models. This paper
describes how RMA can be implemented efficiently over

InfiniBand. The capabilities not offered directly by the

Infiniband verb layer can be implemented efficiently

using the novel host-assisted approach while achieving

zero-copy communication and supporting an excellent

overlap of computation with communication. For
contiguous data we are able to achieve a small message

latency of 6µs and a peak bandwidth of 830 MB/s for 'put'

and a small message latency of 12µs and a peak

bandwidth of 765 Megabytes for 'get'. These numbers are

almost as good as the performance of the native VAPI

layer. For the noncontiguous data, the host assisted
approach can deliver bandwidth close to that for the

contiguous data. We also demonstrate the superior

tolerance of host-assisted data-transfer operations to

CPU intensive tasks due to minimum host involvement in

our approach as compared to the traditional host-based

approach. Our implementation also supports a very high
degree of overlap of computation and communication.

99% overlap for contiguous and up to 95% for non

contiguous in case of large message sizes were achieved.

The NAS MG and matrix multiplication benchmarks were

used to validate effectiveness of our approach, and
demonstrated excellent overall performance.

1. Introduction

The demand for computer cycles in scientific simulation

is growing faster than the processor speed described by

Moore’s law. To mitigate the impact of this trend, parallel

systems employ increasingly large numbers of

processors. At the same time, the gap between processor,

memory, and network speed is not improving but getting

worse. Even to sustain the scalability and performance

levels of current leading scientific applications, progress

needs to be made in implementation of the user-level

communication protocols. First, zero-copy

communication protocols are of increased importance

because they remove memory performance factor from

the communication performance model and help avoid

wasting the valuable and limited memory bandwidth of

the compute nodes. The limited memory bandwidth is

often pointed out as a major issue affecting application

efficiency in current systems based on commodity

processors [1]. Second, the ability to overlap

communication with computation as a simple and well

understood latency-hiding mechanism is essential for

addressing the growing gap between the network and

processor speed. Memory copies used internally to

implement the user-level communication protocols

require host involvement and thus reduce the potential for

effective overlapping nonblocking communication with

computation. Because zero-copy protocols do not require

memory copies, they are a more attractive approach for

supporting latency hiding through nonblocking

communication.

In this paper, we are focusing on the remote memory

access (RMA) communication model. RMA offers

several desirable properties such as the lack of explicit

coordination between sender and receiver and simplified

flow control (does not involve tag matching or handling

or early message arrivals). RMA is well suited for zero-

copy nonblocking implementation. Current

communication networks offer increasing levels of

support for RMA communication. The RMA model has

been available in the user-level communication libraries

such as SHMEM, MPI-2 1-sided, ARMCI, and Global

Arrays. It is also the preferred communication model for

implementing the emerging global address space

languages such as UPC [2] or CAF [3]. We are working

on advancing ARMCI, a portable RMA library used as a

part of the run-time system developed by the Center for

Programming Models for Scalable Parallel Computing

project (www.pmodels.org) sponsored by the U.S.

Department of Energy. In particular, the current goal is to

provide efficient communication capabilities that could

be used for latency hiding and reducing communication

overhead in language- and library- based programming

models and for devising implementation techniques that

enhance the overall application performance.

The cost-effectiveness and performance of InfiniBand

makes this technology a very attractive network for

commodity clusters. This paper evaluates the

performance and capabilities of InfiniBand in the area of

RMA communication. It describes how to harness the

InfiniBand verbs layer to implement RMA efficiently

while addressing the requirements of the user-level

Host-Assisted Zero-Copy Remote Memory Access Communication on InfiniBand

V. Tipparaju
†
 G. Santhanaraman

‡
 J. Nieplocha

†
 D.K. Panda

‡

† Pacific Northwest National Laboratory

‡ Ohio State University

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

protocols by implementing ARMCI one-sided RMA on

top of InfiniBand. In addition, we describe a novel

implementation approach called host- assisted zero-copy

RMA. It can be used to implement the missing RMA

capabilities in the network communication protocols

while achieving zero-copy communication and

maximizing the potential for overlapping communication

with computation. In the context of InfiniBand, this

approach has been used for noncontiguous RMA

communication, which has limited support in the

InfiniBand verbs standard. This has been accomplished

using nonblocking scatter-gather point-to-point

messaging interfaces of the Mellanox VAPI layer and a

special helper thread. For other networks with even more

limited support for RMA (e.g., VIA), this technique can

be used to efficiently implement RMA Get protocol on

top of RMA Put while minimizing host involvement and

preserving zero-copy processing.

The effectiveness of these techniques has been evaluated

across two different platforms with InfiniBand

interconnect. For the contiguous case, we are able to

achieve a small message latency of 6.0µs and a peak

bandwidth of 830 MegaBytes for 'Put' and a small

message latency of 12µs and a peak bandwidth of 765

MegaBytes for 'Get'. For the non contiguous case with the

host based approach we achieved close to the peak

bandwidth and very close to the contiguous case. The

proposed host-assisted approach delivered superior

tolerance to CPU intensive tasks because of the minimal

host involvement. Our implementation of RMA protocols

supports up to 99% and 95% overlap for contiguous and

noncontiguous operations respectively for large message

sizes. The benefits of this approach were demonstrated at

the application level in the context of the NAS MG

benchmark and in the dense matrix multiplication.

The paper is organized as follows. Section 2 provides an

overview of RMA communication. Section 3 describes

InfiniBand architecture and its capabilities. In Section 4,

we present the implementation of basic RMA capabilities

over InfiniBand and evaluate their performance. Section 5

describes our novel host-assisted protocol and

demonstrates its performance benefits in the context of

noncontiguous data communication. An application-level

performance evaluation is presented in Section 6. Our

conclusions are offered in Section 7.

2. RMA Communication

Remote memory operations offer an intermediate

programming model between message passing and shared

memory. This model combines some advantages of

shared memory, such as direct access to shared/global

data, and the message-passing model, namely the control

over locality and data distribution. Certain types of shared

memory applications can be implemented using this

approach. In some other cases, remote memory

operations can be used as a high-performance alternative

to message passing. Many such applications are

characterized by irregular data structures and dynamic or

unpredictable data access patterns. MPI-2 offers one

version of remote memory operations with two specific

variations—active and passive target one-sided

communication. Other versions are found in vendor

specific interfaces such as LAPI on the IBM SP, RDMA

on the Hitachi SR-8000, MPlib on the Fujitsu VPP-5000,

and in other portable interfaces such as ARMCI [4] or

SHMEM [5]. Differences between these models can be

significant in terms of progress rules and semantics, and

they can affect performance. MPI-2 offers a model

closely aligned with traditional message passing and

includes high-level concepts such as windows, epochs,

and distinct progress rules for passive and active target

communication. A recent paper [6] describes how MPI-2

model is not optimal for implementing global address

space languages due to excessive synchronization and its

progress rules.

In ARMCI, we are focusing on a low-level interface and

simpler progress rules motivated by the existing hardware

support for remote memory operations on the current

systems. The library is intended to be used as a run-time

system for other programming models such as Global

Arrays [7], Co-Array Fortran [8] or UPC compilers, or

even as a portable SHMEM library [9]. Compared to the

well known Cray SHMEM one-sided interface [5],

ARMCI places more focus on noncontiguous data

transfers that correspond to data structures in scientific

applications (e.g., sections of multidimensional dense or

sparse arrays). Such transfers can be optimized, thanks to

the noncontiguous data interfaces available in the

ARMCI data transfer operations—multi-strided and

generalized UNIX I/O vector interfaces.

Some networks and native communication interfaces on

these networks do not have direct support for all the

RMA operations offered by the portable interfaces

discussed above. Other networks have a rich functionality

set but introduce substantial performance compromises.

For example, IBM LAPI [10], an active message library

for the IBM SPs, does support contiguous and

noncontiguous RMA but is not copy-free and requires use

of the host CPU on both sides of data transfer. As the

memory copies degrade performance and host CPU

resources are taken away from the application, this

approach usually has an adverse affect on the overall

application performance and scalability. To maximize

application performance, it is important to avoid data

movement and protocol processing on the remote side as

much as possible. RMA models that require explicit

synchronization might incur overhead on the part of the

application running on the remote side. For example, the

MPI-2 one-sided operations involve synchronization

between the source and the destination for every one-

sided operation via a fence, a lock, or dedicated Post-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Wait coordination in the active target mode [11, 12], at

least in principle.

Despite the progress in networking technologies, the gap

between processor speed and network (especially latency)

has been increasing. As a result of this trend, the ability to

overlap communication with computation through the use

of nonblocking communication is becoming critical.

Given the simplicity of its communication model (source

and destination for the data transfer explicitly known, no

send/receive tag and buffer matching, no early message

arrival processing), RMA offers increased opportunities

for designing implementations that provide a high degree

of overlap between communication and computations. In

addition to reducing or eliminating the data movement on

the remote side, good implementation of the nonblocking

RMA should return the control to the user program as

soon as possible, giving the application a chance to make

progress on computations while the communication is

being completed by the underlying network hardware.

3. Overview of InfiniBand

InfiniBand is a recently developed interconnect

technology that has been rapidly becoming popular in the

commodity clusters. The InfiniBand architecture is an

industry standard introduced by the InfiniBand Trade

Association and has been proposed as the next-generation

interconnect for I/O and inter-process communication.

The InfiniBand architecture defines a system area

network (SAN) for connecting multiple independent

processor platforms, I/O platforms, and I/O devices. It

uses scalable switched serial links to design clusters and

servers that can offer high bandwidth and low latency. A

4x HCA link allows for a bandwidth of up to 10 Gb/s. In

an InfiniBand network, nodes are connected to the IBA

fabric using channel adapters. The inter-processor

communication is handled by the host channel adapters

(HCA) installed on the processing nodes. The I/O nodes

are connected to the fabric through target channel

adapters (TCA). The IBA hardware offloads much of the

I/O communications operation from the OS and CPU,

thus eliminating traditional communication overhead.

Further, each channel adapter may have one or more ports

for use as multiple paths to provide reliability. HCA,

TCA, switch, routers, and a subnet manager form the five

primary components of an InfiniBand fabric.

Unlike VIA, InfiniBand architecture does not specify an

API even though it does incorporate many of the concepts

of VIA. IBA defines a semantic interface called Verbs

that configures, manages, and operates a HCA. The

communication verbs are based on queue pairs.

InfiniBand supports both channel (send/receive) and

memory (RDMA) communication semantics. These

operations are initiated by posting work queue requests

on the send or receive queues. The completion of a work

request is reported through completion queues (CQs).

The host communication buffers have to be registered

because the HCA uses DMA operation to send from or

receive into these buffers.

VAPI is the Verbs implementation provided by Mellanox

Technologies for HCAs. In addition to basic send/receive

and RDMA read/write, they provide scatter/gather

operations as well as atomic operations, thus supporting

several essential interfaces of the RMA communication.

With communication capabilities provided by the new

InfiniBand VAPI as an example, one also can implement

some of the RMA capabilities that are not directly

provided by underlying communication layer.

4. Implementing the Basic RMA Capabilities
over InfiniBand

A mismatch between user-level RMA interfaces and

InfiniBand requirements is related to the virtual memory.

The native RDMA write and read operation on

InfiniBand can address only so-called registered memory

for both sides of the data transfer. Memory registration

involves locking pages in physical memory, which can be

quite costly. In addition, the amount of memory that can

be registered/locked is limited. This constraint has a

profound impact on the implementation strategies of user-

level RMA on this network. Three techniques or

0

500

1000

1500

1 100 10000 1000000

bytes

m
ic

ro
s
e
c
o

n
d

s
. Registration

Registration+Deregistration

Memory Copy

c

Figure 2: Cost of the VAPI memory registration and

deregistration as compared to the memory copy on

Itanium-2 1GHz processor.

NIC

Step1:client sends
 request

internal

 C

 NIC

Step 7:client
 copy

Step 3
(opt A): copy

Step 4
opt A):
DMA

Step6: DMA

Node 0 Node 1

Step 2: Get request

Step 5: Get response

S Internal buffer

 C
C C

S

Step 3
(opt B):DMA

user

buffer

user

buffer

Internal buffer

Figure 1: Host-based pipelined Get protocol

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

strategies address the requirement for registered memory

in InfiniBand: 1) on-demand dynamic memory

registration and deregistration (or lazy deregistration) as a

part of the data transfer; 2) copying data via preallocated

registered memory buffers (we refer to this as the host-

based/buffered technique); and 3) providing the user with

a memory allocation interface that allocates registered

memory underneath.

The first technique is potentially more attractive, as it

provides zero-copy data transfers and eliminates the need

for data copy present in the second strategy. However, it

does not always lead to superior performance, as the

memory registration operations can be relatively

expensive. Figure 2 shows on log-linear scales the

performance of memory registration operations

(registration and deregistration calls combined) in

InfiniBand compared to the bandwidth of the memory

copy operation.

We implemented all three strategies described above.

Because of the cost of memory registration on

InfiniBand, Strategy 1 is not very competitive. An

enhancement to the second technique is to divide data

into chunks and pipeline the memory copy and

nonblocking communication so that they overlap. Based

on the message size, the message transmission/reception

can be broken into smaller requests; a copy of one part of

the request can be overlapped with the transmission of

another piece, as described in [14]. Figure 1 shows the

steps involved in a host-based/buffered protocol.

For these three strategies to coexist, special care is

needed. First, the user can optionally call the provided

memory allocator interface, which attempts to allocate

registered memory. Because the memory is

registered/pinned on a page basis, the memory is

allocated from the operating systems in potentially larger

chunks and managed by a portable K&R malloc code. In

addition, there is a table of the registered chunks with the

address range and VAPI memory key information. If the

requested amount of memory can be allocated but not

registered, the appropriate entry in the table is not added.

When placing an RMA data transfer call, the user does

not have to be concerned about whether memory on

either/both sides of the data transfer has been registered.

We simply compare the specified address range to the

entries in the table; by increasing the granularity of the

memory segments, we can limit the number of entries in

the tables and the associated verification cost, if the

specified address range fits in an entry in the table, we

can use the InfiniBand zero-copy RDMA Read/Write

protocol directly. Otherwise, depending on the size of the

message, either Strategy 1 or 2 (described above) is used.

4.1 Performance of basic put/get operations

We used two different platforms for evaluating the

efficiency of our implementation and analyzing the

performance of different protocols. The first (henceforth

referred to as cluster-1) is a dual processor -GHz

Itanium2 cluster with Mellanox A1 “Cougar” cards. The

second one (referred to as cluster-2) is a 32-node dual

processor Pentium IV cluster with Mellanox A1 cards.

The cluster-2 was used only in the comparison of NAS

MG benchmark because a bigger configuration was

necessary for understanding the impact of these protocols

on application benchmarks.

Figures 3 and 4 show the performance of zero-copy

contiguous ARMCI Get and Put operations. Figure 3

compares the bandwidths of ARMCI Put operation with

MPI send/receive, Mellanox VAPI RDMA Put, and

Mellanox VAPI send/receive. For computing Mellanox

VAPI bandwidth, a performance test “perf_main”

provided by Mellanox was used. This Mellanox test

chains multiple RDMA’s in computing bandwidth and

hence doesn’t end up computing the actual average point

to point bandwidth. ARMCI_Put bandwidth however

seems slightly lower but is very representative of what an

application using ARMCI put can expect as it computes

an average of the actual point to point bandwidth. For the

MPI bandwidth, a nonblocking send/receive-based test

was used [13]. Figure 4 shows the ARMCI Get

bandwidth as compared to the Mellanox VAPI RDMA

Figure 4: ARMCI Get Bandwidth in comparison

to RAW VAPI Read bandwidth

Figure 3: ARMCI Put Bandwidth in comparison

to Raw VAPI bandwidth and MPI

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000

Bytes

M
B

p
s

ARMCI Zero-Copy Put
VAPI RDMA Put
VAPI send/recv BW
MPI Send/Recv

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000
Bytes

M
B

p
s

ARMCI Zero-Copy Get

RAW VAPI RDMA Get

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

get operation. It can be seen from the figures that ARMCI

operations have been implemented with very little

overhead. On cluster-1 we obtained a peak bandwidth of

730 MBps for a Put operation and 689 MBps for a get

operation. On cluster-2 we obtained a peak bandwidth of

830 MBps for a Put operation and 765 MBps for a get

operation. It should be noted here that unlike MPI

send/receive, ARMCI Put / Get are based on a less

restrictive one-sided communication model.

Figure 5 compares performance of zero-copy and the two

copy-based implementations: host-based/buffered

(baseline) and pipelined. The pipelined version uses the

scheme we had developed earlier [14]. It relies on

dividing the data into multiple, variable-sized chunks and

exploits the nonblocking RDMA Read/Write

communication to overlap memory copies on the client

and server side with data transmission. To improve

performance for smaller requests, the chunk size is

adaptively chosen to maximize the concurrency between

memory copies and data transmission operations on both

sides involved in the data transfer.

 Although the pipelined version delivers good

performance, it relies on the remote host participation in

the data transfer. Therefore, the numbers presented in

Figure 5 do not reflect the operational regimes in actual

applications where remote CPU is involved in

computations. We designed a test to measure the impact

of a remote host CPU engaged in calculations and found

that it does, in fact, bring performance down in the copy-

based (host-based/buffered and host-based/pipelined)

implementations (Figure 6). As expected, the

performance of the zero-copy version is virtually immune

to the remote host activities, whereas the performance of

copy-based protocols is seriously degraded.

4.2 Overhead and overlap

One of the key design requirements is reducing the

implementation overhead over the VAPI layer. Another

one is to maximize the potential for overlap between user

computations and nonblocking communications. At the

initiation of a call, the most appropriate protocol for

efficient transmission of that message is selected based

on the message size. The receiver thread on the remote

side can select either the polling or blocking mode of

operation, depending on the processing resources

available on the system. Latency of our implementation is

very comparable to the lowest attainable latencies of the

VAPI layer. This is due to 1) direct use of RDMA

capabilities whenever possible and 2) fast access to the

registered memory information to determine if the current

operation can directly use RDMA. The latencies of

ARMCI Put/Get and MPI are contrasted with the VAPI

level latencies obtained from the Mellanox VAPI layer in

Table-1.

Figure 6: Bandwidth comparison for different

protocols supporting the contiguous get data

transfers with remote side busy.

Figure 5: Bandwidth comparison for different

protocols supporting the contiguous get data

transfers with remote side idle.

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000

Bytes

M
B

p
s

Baseline Get
Pipeline Get

Zero-Copy Get
RAW RDMA Get

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000

Bytes

M
B

p
s

Baseline Get
Pipeline Get

Zero-Copy Get
RAW RDMA Get

Figure-7(a): Percentage overlap of Zero Copy and

Host-Based Buffered Get 1D get

Figure-7(B): Percentage overlap of Zero Copy and

Host-Based Buffered 2D Get

0

20

40

60

80

100

1 10 100 1000 10000 100000 1000000
Bytes

P
e
r
c
e
n

t
O

v
e
r
la

p

Percent Overlap ID Zero Copy Get

Percent Overlap ID Buffered Get

0

20

40

60

80

100

1 10 100 1000 10000 100000 1000000
Bytes

P
e
r
c
e
n

t
O

v
e
r
la

p

Percent Overlap 2D Host-Assisted Zero-Copy

get

Percent Overlap 2D Host-Based/Buffered Get

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

PlatformARMCI

Put

MPI VAPI

RDMA Put

VAPI

RDMA Get

ARMCI

Get

IA32 6.2 6.3 5.46 12.2 12.3

IA64 7.44 8.03 5.84 15 16

Table-1: ARMCI, MPI and VAPI latencies

The overlap attainable by contiguous ARMCI operations

is very close to that obtained with the Mellanox VAPI

layer (see Figure 7). It is close to 99% for large messages,

meaning 99% of the total data transfer time can be used

by the application to do the computation. In comparison

to the zero-copy get, the host-based buffered protocol

offers relatively less overlap because, as a part of a wait

operation in the critical path, data needs to be copied. For

the Itanium-2 systems, the percentage of total time that

was not overlapped was almost same as the percentage of

total time it took for posting a descriptor and polling for a

completed descriptor (it is measured as 8 microseconds

on average in cluster-1 used for our tests). Thus the

overlap attainable at the ARMCI level for all the message

sizes in the zero-copy case is almost equal to the

maximum amount of overlap attainable directly at the

VAPI level.

4.3 Atomic operations

The atomic Read-Modify-Write (RMW) operation is a

very useful primitive for implementing mutual exclusion,

shared task counters (e.g., in dynamic load balancing),

and more complex synchronization operations. Unlike

MPI-2 that offers no support for RMW, ARMCI offers

atomic swap’ and atomic fetch and add for both

intermediate and long data types as part of the RMW

interface. We used two techniques for implementing these

operations. The first technique is server-based; the second

technique bypasses the server thread by using VAPI

RDMA atomic calls.

For the server-based implementation, the client sends the

request message to the data-server thread on the remote

side [14]. The data server thread executes the operation

on behalf of the requesting process and sends the result

back to the client. To achieve atomicity, the server needs

to lock the local memory, perform the operation, and

unlock the memory before sending the result. In the

second implementation, we exploit the atomic operations

provided by the VAPI interface to enable a faster RMW

operation. The atomic operations provided by VAPI are

atomic fetch and add and atomic compare and swap with

an operand size of 64 bits, which restricts their

usefulness. The VAPI atomic operations are one-sided

and do not involve host overhead on the remote node.

The operation can be completed either through polling or

through event-based notification, which involves

registering a function handler to notify completion. In our

implementation, we use the polling-based approach for

performance considerations. The requesting process posts

an atomic fetch and add and then polls the send

completion queue for the completion of the atomic

operation.

We compared the two implementations of ARMCI RMW

for the atomic fetch and add operation. The results show

that the VAPI atomic-based implementation cuts down

the latency of the RMW operation by about 23%,

reducing it from 22.1 µs for the server-based

implementation to 17.1 µs in the RDMA implementation,

in addition to eliminating host involvement on the remote

node.

5. Host-Assisted Zero-Copy RMA

The IBA verbs layer has some inadequacies in providing

support for all the RMA capabilities required by

applications. We attempted to address its lack of support

in providing one-sided noncontiguous strided and vector

data transfers. A simple way of addressing the lack of

support for one-sided data transfer between a

strided/vector source and a strided/vector destination is to

maintain a contiguous buffer on both the local and the

remote side and move data using this contiguous buffer.

This approach requires heavy involvement on both the

local and remote sides in moving the data between the

buffer and the noncontiguous source or destination.

Another approach that can be used here is to do multiple

contiguous transfers for each contiguous chunk. This

approach is zero-copy but may require the initiator of the

request to spend some time in processing the multiple

contiguous requests it has to initiate for every

noncontiguous request. In addition, handling flow control

issues like the number of outstanding requests allowed

might adversely affect performance. We introduced a

host-assisted zero-copy method to address the problems

inherent in both the approaches described above.

To leverage the advantages of the host-assisted zero-copy

approach in Mellanox VAPI, memory on both sides must

be registered. The user is not expected to either explicitly

register memory or keep track of this information.

Instead, as described in Section 4, we maintain and parse

our high-granularity global memory information table to

determine if the memory on both sides is registered. The

host-assisted approach requires partial involvement of a

remote host to complete operations. We refer to the

representative on the remote side that assists in the

completion of the operation as a “helper” thread. The

helper thread initiates an operation and hence requires

minimal remote-side CPU involvement. This is very

similar to the ARMCI data server thread [4, 14] and the

dispatcher thread in the IBM LAPI. The significant

difference is that the helper thread does not copy any data

and does not wait on an operation it issued to complete.

With this helper thread as an assistant to complete the

operation on the remote side, we describe the

implementation details of contiguous and noncontiguous

one-sided Get and Put operations. We demonstrate the

benefits of this approach by contrasting its performance

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

with the traditional host-based/buffered approach and by

showing the performance of these protocols on a few

application benchmarks in Section 6.

5.1 Get operation for Contiguous Data

Because the Mellanox VAPI implements the RDMA

Read operation, contiguous get can be done using the

RDMA Read operation when both source and destination

memories are registered. On networks that do not support

RDMA Read or have limited or unoptimized RDMA

Read, implementation of this scheme is inherently simple.

The client doing the get operation sends a request to the

helper thread on the remote node. The helper thread, upon

receiving a get request, initiates a RDMA put and then

would resume polling/blocking. As a result, request

processing overhead on the remote host is very little. We

verified the effectiveness of this approach on the Myrinet

GM 1.6 [18]. The ARMCI Get latency dropped from

27µs to 24µs by using the host-assisted approach. Get

bandwidth improved from 198MB for copy based

protocol to 237MBps for host-assisted zero-copy

contiguous get, there by showing that this approach is not

just high performance but also adaptive to the platforms

that don’t have support for RDMA read.

5.2 Get Operation for Noncontiguous Data

Because a noncontiguous data transfer would involve

transfer of multiple segments of data, our strategy is to

use the scatter/gather message passing feature provided

by IBA to achieve the zero-copy transfer. Using that

feature, we can send /receive multiple data segments as a

single message by posting a single scatter/gather

descriptor. Two types of scatter/gather message-passing

operations defined in IBA VAPI are 1) Gather-Send

(which requires the noncontiguous data being sent to be

represented as a Gather-Send descriptor) and 2) Scatter-

Receive (which requires the noncontiguous destination

for the receive to be specified in a Scatter-Receive

descriptor format).

In a host-assisted zero-copy Put, the source sends a

request to the remote side the helper thread processes the

request, converts the vector/stride information in the

request into a VAPI Receive-Scatter descriptor, posts the

descriptor, and sends an acknowledgment to the

requesting process, indicating that it is ready. On

receiving this acknowledgment, the source process posts

a Gather-Send from the VAPI Gather-Send descriptor it

created while waiting for an acknowledgment from the

helper thread. This directly delivers the data to the

destination memory without the overhead of any

intermediate copies. Although the explicit

acknowledgment might seem like an overhead, for large

messages, when the copying cost starts to dominate, this

approach performs better. It could be enabled only for

multidimensional Put operations when the first stride or

the size of each contiguous segment is large.

For a host-assisted zero-copy Get (Figure 8), the source

node posts a Scatter-Receive descriptor to receive the

vector/strided data and then sends a request to the remote

host with the remote stride/vector information. The helper

thread on the remote host receives the request and then

posts a corresponding VAPI Gather-Send by converting

the stride/vector information in the request message into a

VAPI Gather-Send descriptor. The implementation of this

protocol prompted us to address a number of design

issues.

Limit on Scatter/Gather Entries per Descriptor: The

strided put/get operations can be used to transfer sections

of multidimensional arrays. Each dimension of the array

can support any number of data segments. However, the

IBA implementation puts an upper limit of 60 on the

number of scatter/gather entries that can be allowed per

Scatter-Receive or Gather-Send descriptor. Hence, for

large messages, the maximum scatter/gather entry limit

requires us to extend the above approach. Because we can

have only 60 scatter/gather entries in a descriptor, our

solution is to break our message into chunks of up to 60

data segments and post a gather send/scatter receive for

each one of them. Posting a send/receive is a nonblocking

operation in IBA and takes only a very short time (a

microsecond on Itanium 1GHz), so the overhead in

posting multiple gather descriptors is not significant. In

the case of Strided Get, the client posts multiple scatter

receives and then sends the request. At the remote side,

the helper thread processes the request and posts multiple

gather sends. A similar approach has been followed for

implementing the noncontiguous puts.

Resource Allocation: At the client level, memory needs to

be allocated and maintained to create a scatter/gather

descriptor from a strided/vector request. Unlike VIA,

VAPI copies the posted descriptor on to the NIC and

hence does not require us to keep the descriptor until the

request has been completed. At the NIC level, the number

of scatter/gather entries must be decided at the

initialization phase. The larger the scatter gather list, the

larger the amount of memory allocated per descriptor on

the NIC. To investigate the effect of this on the

NINIC

C

NINIC

Step 7: Scatter

Node 0 Node

Step 3: Get request

Step 6: Get response

S

 Sends
 request

C C C

S

C C

S

Step 5: Gather

User

bufferbuffer

Step1:client posts scatter

Step 4: server posts
 gather

Node 1

Step2:client

Figure 8: Host assisted get protocol

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

performance of the operation, we conducted experiments

to measure the change in latency with increasing number

of scatter/gather entries. Overhead for having 60 scatter

gather entries in a descriptor instead of 1 is not significant

(< 1 micro sec) and hence we could afford to set the

scatter/gather limit to the maximum allowed value of 60.

5.3 Performance of Host-Assisted Approach

 Figure 9 compares the performance of host-

based/buffered get and host-assisted zero-copy get

operations with MPI for two-dimensional data. Zero-

Copy 2D get in Figures 9 and 10 represents the approach

discussed earlier in this section where a noncontiguous

Get operation is implemented on top of multiple

contiguous RDMA Get operations, one for each

contiguous segment. For this test, ARMCI 2D data is

represented using the strided data format [4] and in MPI

using the strided data type. Clearly the host-assisted zero-

copy implementation performs much better and more

significantly so when the first dimension is large.

An advantage of using host-assisted zero copy can be

determined by measuring the effect on protocol

performance when the remote side is doing a CPU-

intensive operation. Unlike the zero-copy approach, host-

assisted zero-copy requires some host involvement in

initiating data transfer. This is more representative of the

impact these protocols may have on an application than

mere measurement of communication bandwidth/latency.

Figure 10 shows the performance difference between the

buffered and host-assisted zero-copy protocols when the

remote side is doing a CPU-intensive operation. In

comparison to Figure 9, it is very clear that the

performance of the host-assisted zero-copy protocol has

not been affected at all by the CPU-intensive operation on

the other side while the performance of the buffered Get

protocol dropped very significantly. This clearly shows

the very low overhead this protocol imposes on the

remote-side CPU.

 5.4 Overhead and Overlap

Another significant advantage of this protocol is the

amount of overlap it can provide in nonblocking

operations. Because the implementation does not involve

any data movement in call initiation or call completion,

the amount of overlap possible is much higher than that

for the other protocols. This can be seen in Figure 7(b),

which compares the amount of overlap attainable with

host-based and host-assisted protocols for noncontiguous

data transfer of various square chunks of data.

6. Experimental Evaluation: NAS MG and
Matrix Multiplication

Reported performance numbers for RMA operations

often misrepresent the actual impact of the protocol used

to implement the one-sided operation on an application.

A significant issue that comes to light in actual

application performance in the case of one-sided

operations is the ability of the operation to make progress

with minimal to no remote host involvement. Unlike

message passing, efficiently implemented one-sided

RMA operations have the potential to complete without

significant or explicit remote host involvement. In our

previous work [19], we have attempted to show the

advantages of the RMA programming model in

comparison to a more synchronous two-sided

communication model, MPI. Here the emphasis is on the

way one-sided communication is implemented on

InfiniBand, like the ability to offload the processing on

the remote CPU by as much as possible so that the CPU

can be more efficiently utilized by the application for

computation. We used two different benchmarks,

representing a sample of algorithms used in scientific

computing: 1) Multigrid (MG) kernel benchmarks from

the NAS suite and 2) dense matrix multiplication.

6.1 NAS MG benchmark

The NAS parallel benchmarks are a set of programs

designed at the NASA Numerical Aerodynamic

Simulation (NAS) program, originally to evaluate

supercomputers. They mimic the computation and data

movement characteristics of large scale computations.

NAS parallel benchmark suite consists of five kernels

(EP, MG, FT, CG, IS) and three pseudo applications (LU,

SP, BT) programs. Our starting point was NPB 2.4 [15]

implementation written in MPI and distributed by NASA.

We modified NAS MultiGrid (MG) to replace point-to-

point blocking and nonblocking message-passing

communication calls with ARMCI one-sided RMA

communication. The NAS-MG MultiGrid benchmark

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000

Bytes

M
B

p
s

2D Host-Based/Buffered Get

2D Zero-Copy Get

2D Host-Assisted Zero-Copy Get

MPI 2D w ith vector type

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000

Bytes

M
B

p
s

2D Host-Based/Buffered Get

2D Zero-Copy Get

2D Host-Assisted Zero-Copy Get

Figure 9: Bandwidth comparison for different

protocols supporting the contiguous get data

transfers with remote side idle.

Figure 10: Bandwidth comparison for different

protocols supporting the contiguous get data

transfers with remote side busy.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

solves Poisson's equation in 3D using a multigrid V-

cycle. The multigrid benchmark carries out computation

at a series of levels and each level of the V-cycle defines

a grid at a successively coarser resolution. This

implementation of MG from NAS is said to approximate

the performance a typical user can expect for a portable

parallel program on a distributed memory computer.

NAS benchmarks are categorized into different classes

based on problem size and number of iterations. For

Class A, ARMCI host-based/buffered code outperforms

the original message-passing implementation by 8% to

22%. The performance advantage here is because of the

less restrictive programming model ARMCI uses, which

allows progress without explicit remote host involvement.

For the Host-based/buffered approach, the remote-side

CPU is still involved in copying the data between the

buffer and destination; this shows up in the overall

application time. By using the zero-copy approach in

ARMCI, an improvement of 14% to 25% is obtained over

message-passing implementation on the benchmarks. For

Class B, with the same problem size as Class A but more

iterations, the ARMCI host-based/buffered approach

outperforms the original message-passing implementation

by 5% to 19% (see Figure 11). By using a zero copy

ARMCI implementation, a 14% to 27% improvement is

seen over the original message-passing implementation.

6.2 Matrix Multiplication

SUMMA is a highly efficient, scalable implementation of

common matrix multiplication algorithm proposed by van

de Geijn and Watts [16]. The MPI version is the

SUMMA code developed by its authors, which is

modified to use more efficient matrix multiplication

dgemm routines from Intel math libraries on Itanium

rather than equivalent C code distributed with SUMMA.

For comparing with the RMA version, we used the

algorithm implemented using ARMCI RMA in Global

Arrays. The matrix in the Global Arrays implementation

of ARMCI is decomposed into blocks and distributed

among processors with a two-dimensional block

distribution. Each submatrix is divided into chunks.

Overlapping is achieved by issuing a call to get a chunk

of data while computing the previously received chunk.

The minimum chunk size was 128 for all runs, which was

determined empirically. The chunk size was determined

dynamically, depending on memory availability and the

number of processors.

Experiments with matrix multiplication were run by

varying the matrix size and the number of processors.

The first three lines labeled in both the graphs in

Figure12 represent three different approaches to

implement multi-dimensional RMA in ARMCI. The host-

assisted zero-copy approach was introduced in Section 5.

The computations were done on four nodes with two

processes each. The left side in Figure 12 is for square

matrices with sizes varying from 128 to 2000. The right

side in Figure 12 is for a rectangular matrix where the

second dimension is set to 512 and the first dimension

varies from 128 to 2000. For the square matrix (Figure

12, left), in comparison to MPI, the ARMCI host-

based/buffered approach outperforms the message-

passing implementation by up to 44% whereas the host-

assisted zero-copy approach, because of its negligible

overhead on the remote processor, outperforms the

message-passing implementation by 18% to 80%.

7. Conclusions and Future Work

This paper described how the RMA communication

model can be implemented efficiently over InfiniBand.

The capabilities not offered directly by the InfiniBand

verb layer such as noncontiguous RMA were

implemented efficiently through the novel host-assisted

approach to support the zero-copy communication. In

addition, a high degree of overlapping computations and

communication was demonstrated. The benchmarks used

in the study showed effectiveness of the RMA

implementation on InfiniBand and the importance of

zero-copy nonblocking protocols for hiding latency in the

interprocessor communication. When reimplemented to

use RMA, the NAS MG and parallel matrix

multiplication benchmarks when reimplemented to use

RMA, achieved superior performance over their MPI

counterparts. Our current approach uses the InfiniBand

Reliable Connection mode, which ensures ordered

delivery of messages. However, other modes such as

Figure-11: Performance of NAS MG using contiguous data transfers. Left: Class A and Right: Class B

0

1

2

3

4

5

6

2 4 8 1 6
N o d e s

S
e
c
o

n
d

s

A R M C I - Z e r o Co p y

A R M C I B a s e lin e

M PI

0

5

1 0

1 5

2 0

2 5

3 0

2 4 8 1 6N o d e s

S
e
c
o

n
d

s

A R M CI - Z e r o C o p y

A R M CI B a s e lin e

M PI

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Reliable Delivery could be investigated to evaluate the

tradeoffs between the lack of message ordering in this

mode and potentially increased performance.

Acknowledgements

This work was supported by the Center for Programming

Models for Scalable Parallel Computing sponsored by the

MICS/ASCR program in the DOE Office of Science.

References

[1] Christopher Lazou, “NEC SX-6 - two times more

cost efficient than IBM P4”, HPCWire, 09.26.03.

[2] Parry Husbands, Costin Iancu and Katherine Yelick,

“A performance analysis of the Berkeley UPC compiler”

Proc. 17th international conf. Supercomputing, 2003.

[3] C. Coarfa, Y. Dotsenko, J. Eckhardt, J. Mellor-

Crummey, “Co-Array Fortran Performance and Potential:

An NPB Experimental Study”, 16th International

Workshop on Languages and Compilers for Parallel

Computing.2003.

[4] J. Nieplocha and B. Carpenter, “ARMCI: A Portable

Remote Memory Copy Library for Distributed Array

Libraries and Compiler Run-time Systems”, Proc. RTSPP

IPPS/SDP, 1999.

[5] R. Bariuso, Allan Knies, SHMEM's User's Guide,;

Cray Research,, SN-2516, 1994.

[6] Dan Bonachea and Jason Duell, “Problems with

using MPI 1.1 and 2.0 as compilation targets for parallel

language implementations”, 2nd Workshop on

Hardware/Software Support for High Performance

Scientific and Engineering Computing, SHPSEC-

PACT03.

[7] J. Nieplocha, RJ Harrison, and RJ Littlefield, “Global

Arrays: A portable `shared-memory' programming model

for distributed memory computers”, Proc. SC '94, 1994.

[8] R. Numrich, J.K. Reid, “Co-Array Fortran for

parallel programming”, ACM Fortran Forum, 17(2):1-31,

1998.

[9] K. Parzyszek, J. Nieplocha, and R.A. Kendall, “A

generalized portable SHMEM library for high

performance computing”, Proc. Parallel and Distributed

Computing and Systems PDCS, 2000.

[10] G.H. Shah, J. Nieplocha, J. Mirza, C. Kim, R. K.

Govindaraju, K. J. Gildea, R. Harrison, C. A. Bender,

“LAPI: A Low Level Communication Interface on the

IBM RS/6000 SP: Experience and Performance

Evaluation”, Proc. IPPS’98. 1998.J. Nieplocha, V.

Tipparaju, J. Ju, and E. Apra, “One-sided communication

on Myrinet”, Cluster Computing, 6, 115-124, 2003.

[11] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E.

Lusk, B. Nitzberg, W. Saphir, and M. Snir. “MPI –The

Complete Reference, volume 2, The MPI Extensions”,

MIT Press, 1998.

[12] Jesper Larsson Traff, Hubert Ritzdorf, and Rolf

Hempel. “The implementation of MPI2 one-sided

communication for the NEC SX-5”, In Proceedings of

Supercomputing 2000.

[13] http://nowlab.cis.ohio-state.edu/projects/mpi-

iba/mpi_bandwidth.c

[14] J. Nieplocha, V. Tipparaju, A. Saify, and D. Panda,

“Protocols and Strategies for Optimizing Remote

Memory Operations on Clusters”, Proc. Communication

Architecture for Clusters Workshop of IPDPS, 2002.

[15] D. Bailey, E. Barszcz, J. Barton, D. Browning, R.

Carter, L. Dagum, R. Fatoohi, S. Fineberg, P.

Frederickson, T. Lasinski, R. Schreiber, H. Simon, V.

Venkatakrishnan, and S. Weeratunga, The NAS parallel

benchmarks, Tech. Rep. RNR-94-007, NASA Ames.

[16] R. Van de Geijn and J. Watts, SUMMA: Scalable

Universal Matrix Multiplication Algorithm. Concurrency:

Practice and Experience, 9: 255-74, 1997.

[17] Center for Programming Models for Scalable Parallel

Computing, www.pmodels.org.

[18] Myricom, The GM Message Passing System.

[19] V.Tipparaju, M. Krishnan, J. Nieplocha, G.

Santhanaraman D. K. Panda, “Exploiting Nonblocking

Remote Memory Access Communication in Scientific

Benchmarks on Clusters”, in Proc. HiPC’03.

Figure12: Performance of matrix multiplication for square(left) and rectangular (right) matrices

0

5 00

10 00

15 00

20 00

25 00

30 00

35 00

40 00

128x128

256x256

380x380

512x512

800x800

1024
x1

024

1100
x1

100

1200
x1

200

1300
x1

300

1400
x1

400

1500
x1

500

1600
x1

600

1700
x1

700

1800
x1

800

1900
x1

900

2000
x2

000

M a tr ix S iz e (Sq u a r e M at r ice s o f Do u b le s)

M
e
g

a
F

lo
p

s
 P

e
r

P
ro

c
e
s
s
o

r

Hos t-A s s is ted
Hos t-Bas ed
Z ero Copy
Summa-MPI

0

500

1000

1500

2 000

2 500

3 000

3 500

128x512

256x512

380x512

512x512

800x512

1024
x5

12

1100
x5

12

1200
x5

12

1300
x5

12

1400
x5

12

1500
x5

12

1600
x5

12

1700
x5

12

1800
x5

12

1900
x5

12

2000
x5

12

M atr ix S iz e (Re ctan g u lar M atr ice s o f Do u b le s)

M
e
g

a
 F

lo
p

s
p

e
r

P
ro

c
e
s
s
o

r

Hos t-A s s is ted

Hos t-Bas e d
Z ero Copy

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

