
The remote memory access (RMA) is an increasingly 

important communication model due to its excellent 
potential for overlapping communication and 

computations and achieving high performance on modern 

networks with RDMA hardware such as Infiniband. RMA 

plays a vital role in supporting the emerging global 

address space programming models. This paper 
describes how RMA can be implemented efficiently over 

InfiniBand. The capabilities not offered directly by the 

Infiniband verb layer can be implemented efficiently 

using the novel host-assisted approach while achieving 

zero-copy communication and supporting an excellent 

overlap of computation with communication. For 
contiguous data we are able to achieve a small message 

latency of 6µs and a peak bandwidth of 830 MB/s for 'put' 

and a small message latency of 12µs and a peak 

bandwidth of  765 Megabytes for 'get'. These numbers are 

almost as good as the performance of the native VAPI 

layer. For the noncontiguous data, the host assisted 
approach can deliver bandwidth close to that for the 

contiguous data. We also demonstrate the superior 

tolerance of host-assisted data-transfer operations to 

CPU intensive tasks due to minimum host involvement in 

our approach as compared to the traditional host-based 

approach. Our implementation also supports a very high 
degree of overlap of computation and communication.  

99% overlap for contiguous and up to 95% for non 

contiguous in case of large message sizes were achieved. 

The NAS MG and matrix multiplication benchmarks were 

used to validate effectiveness of our approach, and 
demonstrated excellent overall performance. 

1. Introduction  

The demand for computer cycles in scientific simulation 

is growing faster than the processor speed described by 

Moore’s law. To mitigate the impact of this trend, parallel 

systems employ increasingly large numbers of 

processors. At the same time, the gap between processor, 

memory, and network speed is not improving but getting 

worse. Even to sustain the scalability and performance 

levels of current leading scientific applications, progress 

needs to be made in implementation of the user-level 

communication protocols. First, zero-copy 

communication protocols are of increased importance 

because they remove memory performance factor from 

the communication performance model and help avoid 

wasting the valuable and limited memory bandwidth of 

the compute nodes. The limited memory bandwidth is 

often pointed out as a major issue affecting application 

efficiency in current systems based on commodity 

processors [1]. Second, the ability to overlap 

communication with computation as a simple and well 

understood latency-hiding mechanism is essential for 

addressing the growing gap between the network and 

processor speed. Memory copies used internally to 

implement the user-level communication protocols 

require host involvement and thus reduce the potential for 

effective overlapping nonblocking communication with 

computation. Because zero-copy protocols do not require 

memory copies, they are a more attractive approach for 

supporting latency hiding through nonblocking 

communication. 

In this paper, we are focusing on the remote memory 

access (RMA) communication model. RMA offers 

several desirable properties such as the lack of explicit 

coordination between sender and receiver and simplified 

flow control (does not involve tag matching or handling 

or early message arrivals). RMA is well suited for zero-

copy nonblocking implementation. Current 

communication networks offer increasing levels of 

support for RMA communication. The RMA model has 

been available in the user-level communication libraries 

such as SHMEM, MPI-2 1-sided, ARMCI, and Global 

Arrays. It is also the preferred communication model for 

implementing the emerging global address space 

languages such as UPC [2] or CAF [3]. We are working 

on advancing ARMCI, a portable RMA library used as a 

part of the run-time system developed by the Center for 

Programming Models for Scalable Parallel Computing 

project (www.pmodels.org) sponsored by the U.S. 

Department of Energy. In particular, the current goal is to 

provide efficient communication capabilities that could 

be used for latency hiding and reducing communication 

overhead in language- and library- based programming 

models and for devising implementation techniques that 

enhance the overall application performance. 

The cost-effectiveness and performance of InfiniBand 

makes this technology a very attractive network for 

commodity clusters.  This paper evaluates the 

performance and capabilities of InfiniBand in the area of 

RMA communication. It describes how to harness the 

InfiniBand verbs layer to implement RMA efficiently 

while addressing the requirements of the user-level 
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protocols by implementing ARMCI one-sided RMA on 

top of InfiniBand. In addition, we describe a novel 

implementation approach called host- assisted zero-copy 

RMA. It can be used to implement the missing RMA 

capabilities in the network communication protocols 

while achieving zero-copy communication and 

maximizing the potential for overlapping communication 

with computation. In the context of InfiniBand, this 

approach has been used for noncontiguous RMA 

communication, which has limited support in the 

InfiniBand verbs standard. This has been accomplished 

using nonblocking scatter-gather point-to-point 

messaging interfaces of the Mellanox VAPI layer and a 

special helper thread. For other networks with even more 

limited support for RMA (e.g., VIA), this technique can 

be used to efficiently implement RMA Get protocol on 

top of RMA Put while minimizing host involvement and 

preserving zero-copy processing. 

The effectiveness of these techniques has been evaluated 

across two different platforms with InfiniBand 

interconnect. For the contiguous case, we are able to 

achieve a small message latency of 6.0µs and a peak 

bandwidth of 830 MegaBytes for 'Put' and a small 

message latency of 12µs and a peak bandwidth of 765 

MegaBytes for 'Get'. For the non contiguous case with the 

host based approach we achieved close to the peak 

bandwidth and very close to the contiguous case. The 

proposed host-assisted approach delivered superior 

tolerance to CPU intensive tasks because of the minimal 

host involvement. Our implementation of RMA protocols 

supports up to 99% and 95% overlap for contiguous and 

noncontiguous operations respectively for large message 

sizes. The benefits of this approach were demonstrated at 

the application level in the context of the NAS MG 

benchmark and in the dense matrix multiplication. 

The paper is organized as follows. Section 2 provides an 

overview of RMA communication. Section 3 describes 

InfiniBand architecture and its capabilities. In Section 4, 

we present the implementation of basic RMA capabilities 

over InfiniBand and evaluate their performance. Section 5 

describes our novel host-assisted protocol and 

demonstrates its performance benefits in the context of 

noncontiguous data communication. An application-level 

performance evaluation is presented in Section 6.  Our 

conclusions are offered in Section 7.  

2. RMA Communication 

Remote memory operations offer an intermediate 

programming model between message passing and shared 

memory. This model combines some advantages of 

shared memory, such as direct access to shared/global 

data, and the message-passing model, namely the control 

over locality and data distribution. Certain types of shared 

memory applications can be implemented using this 

approach. In some other cases, remote memory 

operations can be used as a high-performance alternative 

to message passing. Many such applications are 

characterized by irregular data structures and dynamic or 

unpredictable data access patterns. MPI-2 offers one 

version of remote memory operations with two specific 

variations—active and passive target one-sided 

communication. Other versions are found in vendor 

specific interfaces such as LAPI on the IBM SP, RDMA 

on the Hitachi SR-8000, MPlib on the Fujitsu VPP-5000, 

and in other portable interfaces such as ARMCI [4] or 

SHMEM [5]. Differences between these models can be 

significant in terms of progress rules and semantics, and 

they can affect performance. MPI-2 offers a model 

closely aligned with traditional message passing and 

includes high-level concepts such as windows, epochs, 

and distinct progress rules for passive and active target 

communication. A recent paper [6] describes how MPI-2 

model is not optimal for implementing global address 

space languages due to excessive synchronization and its 

progress rules.  

In ARMCI, we are focusing on a low-level interface and 

simpler progress rules motivated by the existing hardware 

support for remote memory operations on the current 

systems. The library is intended to be used as a run-time 

system for other programming models such as Global 

Arrays [7], Co-Array Fortran [8] or UPC compilers, or 

even as a portable SHMEM library [9]. Compared to the 

well known Cray SHMEM one-sided interface [5], 

ARMCI places more focus on noncontiguous data 

transfers that correspond to data structures in scientific 

applications (e.g., sections of multidimensional dense or 

sparse arrays). Such transfers can be optimized, thanks to 

the noncontiguous data interfaces available in the 

ARMCI data transfer operations—multi-strided and 

generalized UNIX I/O vector interfaces.  

Some networks and native communication interfaces on 

these networks do not have direct support for all the 

RMA operations offered by the portable interfaces 

discussed above. Other networks have a rich functionality 

set but introduce substantial performance compromises. 

For example, IBM LAPI [10], an active message library 

for the IBM SPs, does support contiguous and 

noncontiguous RMA but is not copy-free and requires use 

of the host CPU on both sides of data transfer. As the 

memory copies degrade performance and host CPU 

resources are taken away from the application, this 

approach usually has an adverse affect on the overall 

application performance and scalability. To maximize 

application performance, it is important to avoid data 

movement and protocol processing on the remote side as 

much as possible. RMA models that require explicit 

synchronization might incur overhead on the part of the 

application running on the remote side. For example, the 

MPI-2 one-sided operations involve synchronization 

between the source and the destination for every one-

sided operation via a fence, a lock, or dedicated Post-
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Wait coordination in the active target mode [11, 12], at 

least in principle. 

Despite the progress in networking technologies, the gap 

between processor speed and network (especially latency) 

has been increasing. As a result of this trend, the ability to 

overlap communication with computation through the use 

of nonblocking communication is becoming critical. 

Given the simplicity of its communication model (source 

and destination for the data transfer explicitly known, no 

send/receive tag and buffer matching, no early message 

arrival processing), RMA offers increased opportunities 

for designing implementations that provide a high degree 

of overlap between communication and computations. In 

addition to reducing or eliminating the data movement on 

the remote side, good implementation of the nonblocking 

RMA should return the control to the user program as 

soon as possible, giving the application a chance to make 

progress on computations while the communication is 

being completed by the underlying network hardware.  

3. Overview of InfiniBand 

InfiniBand is a recently developed interconnect 

technology that has been rapidly becoming popular in the 

commodity clusters. The InfiniBand architecture is an 

industry standard introduced by the InfiniBand Trade 

Association and has been proposed as the next-generation 

interconnect for I/O and inter-process communication. 

The InfiniBand architecture defines a system area 

network (SAN) for connecting multiple independent 

processor platforms, I/O platforms, and I/O devices. It 

uses scalable switched serial links to design clusters and 

servers that can offer high bandwidth and low latency. A 

4x HCA link allows for a bandwidth of up to 10 Gb/s. In 

an InfiniBand network, nodes are connected to the IBA 

fabric using channel adapters. The inter-processor 

communication is handled by the host channel adapters 

(HCA) installed on the processing nodes. The I/O nodes 

are connected to the fabric through target channel 

adapters (TCA).  The IBA hardware offloads much of the 

I/O communications operation from the OS and CPU, 

thus eliminating traditional communication overhead. 

Further, each channel adapter may have one or more ports 

for use as multiple paths to provide reliability. HCA, 

TCA, switch, routers, and a subnet manager form the five 

primary components of an InfiniBand fabric.  

Unlike VIA, InfiniBand architecture does not specify an 

API even though it does incorporate many of the concepts 

of VIA. IBA defines a semantic interface called Verbs 

that configures, manages, and operates a HCA. The 

communication verbs are based on queue pairs. 

InfiniBand supports both channel (send/receive) and 

memory (RDMA) communication semantics. These 

operations are initiated by posting work queue requests 

on the send or receive queues. The completion of a work 

request is reported through completion queues (CQs). 

The host communication buffers have to be registered 

because the HCA uses DMA operation to send from or 

receive into these buffers. 

VAPI is the Verbs implementation provided by Mellanox 

Technologies for HCAs. In addition to basic send/receive 

and RDMA read/write, they provide scatter/gather 

operations as well as atomic operations, thus supporting 

several essential interfaces of the RMA communication. 

With communication capabilities provided by the new 

InfiniBand VAPI as an example, one also can implement 

some of the RMA capabilities that are not directly 

provided by underlying communication layer. 

4. Implementing the Basic RMA Capabilities 
over InfiniBand 

A mismatch between user-level RMA interfaces and 

InfiniBand requirements is related to the virtual memory. 

The native RDMA write and read operation on 

InfiniBand can address only so-called registered memory 

for both sides of the data transfer. Memory registration 

involves locking pages in physical memory, which can be 

quite costly. In addition, the amount of memory that can 

be registered/locked is limited. This constraint has a 

profound impact on the implementation strategies of user-

level RMA on this network. Three techniques or 
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strategies address the requirement for registered memory 

in InfiniBand: 1) on-demand dynamic memory 

registration and deregistration (or lazy deregistration) as a 

part of the data transfer; 2) copying data via preallocated 

registered memory buffers (we refer to this as the host-

based/buffered technique); and 3) providing the user with 

a memory allocation interface that allocates registered 

memory underneath.  

The first technique is potentially more attractive, as it 

provides zero-copy data transfers and eliminates the need 

for data copy present in the second strategy. However, it 

does not always lead to superior performance, as the 

memory registration operations can be relatively 

expensive. Figure 2 shows on log-linear scales the 

performance of memory registration operations 

(registration and deregistration calls combined) in 

InfiniBand compared to the bandwidth of the memory 

copy operation.  

We implemented all three strategies described above. 

Because of the cost of memory registration on 

InfiniBand, Strategy 1 is not very competitive. An 

enhancement to the second technique is to divide data 

into chunks and pipeline the memory copy and 

nonblocking communication so that they overlap. Based 

on the message size, the message transmission/reception 

can be broken into smaller requests; a copy of one part of 

the request can be overlapped with the transmission of 

another piece, as described in [14]. Figure 1 shows the 

steps involved in a host-based/buffered protocol. 

For these three strategies to coexist, special care is 

needed. First, the user can optionally call the provided 

memory allocator interface, which attempts to allocate 

registered memory. Because the memory is 

registered/pinned on a page basis, the memory is 

allocated from the operating systems in potentially larger 

chunks and managed by a portable K&R malloc code. In 

addition, there is a table of the registered chunks with the 

address range and VAPI memory key information. If the 

requested amount of memory can be allocated but not 

registered, the appropriate entry in the table is not added. 

When placing an RMA data transfer call, the user does 

not have to be concerned about whether memory on 

either/both sides of the data transfer has been registered. 

We simply compare the specified address range to the 

entries in the table; by increasing the granularity of the 

memory segments, we can limit the number of entries in 

the tables and the associated verification cost, if the 

specified address range fits in an entry in the table, we 

can use the InfiniBand zero-copy RDMA Read/Write 

protocol directly. Otherwise, depending on the size of the 

message, either Strategy 1 or 2 (described above) is used. 

4.1 Performance of basic put/get operations 

We used two different platforms for evaluating the 

efficiency of our implementation and analyzing the 

performance of different protocols. The first (henceforth 

referred to as cluster-1) is a dual processor -GHz 

Itanium2 cluster with Mellanox A1 “Cougar” cards. The 

second one (referred to as cluster-2) is a 32-node dual 

processor Pentium IV cluster with Mellanox A1 cards. 

The cluster-2 was used only in the comparison of NAS 

MG benchmark because a bigger configuration was 

necessary for understanding the impact of these protocols 

on application benchmarks.  

Figures 3 and 4 show the performance of zero-copy 

contiguous ARMCI Get and Put operations. Figure 3 

compares the bandwidths of ARMCI Put operation with 

MPI send/receive, Mellanox VAPI RDMA Put, and 

Mellanox VAPI send/receive. For computing Mellanox 

VAPI bandwidth, a performance test “perf_main” 

provided by Mellanox was used. This Mellanox test 

chains multiple RDMA’s in computing bandwidth and 

hence doesn’t end up computing the actual average point 

to point bandwidth. ARMCI_Put bandwidth however 

seems slightly lower but is very representative of what an 

application using ARMCI put can expect as it computes 

an average of the actual point to point bandwidth. For the 

MPI bandwidth, a nonblocking send/receive-based test 

was used [13]. Figure 4 shows the ARMCI Get 

bandwidth as compared to the Mellanox VAPI RDMA 

Figure 4: ARMCI Get Bandwidth in comparison 

to RAW VAPI Read bandwidth 

Figure 3: ARMCI Put Bandwidth in comparison 

to Raw VAPI bandwidth and MPI 
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get operation. It can be seen from the figures that ARMCI 

operations have been implemented with very little 

overhead. On cluster-1 we obtained a peak bandwidth of 

730 MBps for a Put operation and 689 MBps for a get 

operation. On cluster-2 we obtained a peak bandwidth of 

830 MBps for a Put operation and 765 MBps for a get 

operation. It should be noted here that unlike MPI 

send/receive, ARMCI Put / Get are based on a less 

restrictive one-sided communication model. 

Figure 5 compares performance of zero-copy and the two 

copy-based implementations: host-based/buffered 

(baseline) and pipelined. The pipelined version uses the 

scheme we had developed earlier [14]. It relies on 

dividing the data into multiple, variable-sized chunks and 

exploits the nonblocking RDMA Read/Write 

communication to overlap memory copies on the client 

and server side with data transmission.  To improve 

performance for smaller requests, the chunk size is 

adaptively chosen to maximize the concurrency between 

memory copies and data transmission operations on both 

sides involved in the data transfer.  

 Although the pipelined version delivers good 

performance, it relies on the remote host participation in 

the data transfer. Therefore, the numbers presented in 

Figure 5 do not reflect the operational regimes in actual 

applications where remote CPU is involved in 

computations. We designed a test to measure the impact 

of a remote host CPU engaged in calculations and found 

that it does, in fact, bring performance down in the copy-

based (host-based/buffered and host-based/pipelined) 

implementations (Figure 6). As expected, the 

performance of the zero-copy version is virtually immune 

to the remote host activities, whereas the performance of 

copy-based protocols is seriously degraded.  

4.2 Overhead and overlap 

One of the key design requirements is reducing the 

implementation overhead over the VAPI layer. Another 

one is to maximize the potential for overlap between user 

computations and nonblocking communications. At the 

initiation of a call, the most appropriate protocol for 

efficient transmission of that message is selected based 

on the message size. The receiver thread on the remote 

side can select either the polling or blocking mode of 

operation, depending on the processing resources 

available on the system. Latency of our implementation is 

very comparable to the lowest attainable latencies of the 

VAPI layer. This is due to 1) direct use of RDMA 

capabilities whenever possible and 2) fast access to the 

registered memory information to determine if the current 

operation can directly use RDMA. The latencies of 

ARMCI Put/Get and MPI are contrasted with the VAPI 

level latencies obtained from the Mellanox VAPI layer in 

Table-1.  

Figure 6: Bandwidth comparison for different 

protocols supporting the contiguous get data 

transfers with remote side busy.  

Figure 5: Bandwidth comparison for different 

protocols supporting the contiguous get data 

transfers with remote side idle. 
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PlatformARMCI

Put 

MPI VAPI 

RDMA Put 

VAPI 

RDMA Get

ARMCI

Get

IA32 6.2 6.3 5.46 12.2 12.3 

IA64 7.44 8.03 5.84 15 16 

Table-1: ARMCI, MPI and VAPI latencies 

The overlap attainable by contiguous ARMCI operations 

is very close to that obtained with the Mellanox VAPI 

layer (see Figure 7). It is close to 99% for large messages, 

meaning 99% of the total data transfer time can be used 

by the application to do the computation. In comparison 

to the zero-copy get, the host-based buffered protocol 

offers relatively less overlap because, as a part of a wait 

operation in the critical path, data needs to be copied. For 

the Itanium-2 systems, the percentage of total time that 

was not overlapped was almost same as the percentage of 

total time it took for posting a descriptor and polling for a 

completed descriptor (it is measured as 8 microseconds 

on average in cluster-1 used for our tests). Thus the 

overlap attainable at the ARMCI level for all the message 

sizes in the zero-copy case is almost equal to the 

maximum amount of overlap attainable directly at the 

VAPI level.  

4.3 Atomic operations 

The atomic Read-Modify-Write (RMW) operation is a 

very useful primitive for implementing mutual exclusion, 

shared task counters (e.g., in dynamic load balancing), 

and more complex synchronization operations. Unlike 

MPI-2 that offers no support for RMW, ARMCI offers 

atomic swap’ and atomic fetch and add for both 

intermediate and long data types as part of the RMW 

interface. We used two techniques for implementing these 

operations. The first technique is server-based; the second 

technique bypasses the server thread by using VAPI 

RDMA atomic calls. 

For the server-based implementation, the client sends the 

request message to the data-server thread on the remote 

side [14]. The data server thread executes the operation 

on behalf of the requesting process and sends the result 

back to the client. To achieve atomicity, the server needs 

to lock the local memory, perform the operation, and 

unlock the memory before sending the result. In the 

second implementation, we exploit the atomic operations 

provided by the VAPI interface to enable a faster RMW 

operation. The atomic operations provided by VAPI are 

atomic fetch and add and atomic compare and swap with 

an operand size of 64 bits, which restricts their 

usefulness. The VAPI atomic operations are one-sided 

and do not involve host overhead on the remote node. 

The operation can be completed either through polling or 

through event-based notification, which involves 

registering a function handler to notify completion. In our 

implementation, we use the polling-based approach for 

performance considerations. The requesting process posts 

an atomic fetch and add and then polls the send 

completion queue for the completion of the atomic 

operation.  

We compared the two implementations of ARMCI RMW 

for the atomic fetch and add operation. The results show 

that the VAPI atomic-based implementation cuts down 

the latency of the RMW operation by about 23%, 

reducing it from 22.1 µs for the server-based 

implementation to 17.1 µs in the RDMA implementation, 

in addition to eliminating host involvement on the remote 

node. 

5. Host-Assisted Zero-Copy RMA 

The IBA verbs layer has some inadequacies in providing 

support for all the RMA capabilities required by 

applications. We attempted to address its lack of support 

in providing one-sided noncontiguous strided and vector 

data transfers. A simple way of addressing the lack of 

support for one-sided data transfer between a 

strided/vector source and a strided/vector destination is to 

maintain a contiguous buffer on both the local and the 

remote side and move data using this contiguous buffer. 

This approach requires heavy involvement on both the 

local and remote sides in moving the data between the 

buffer and the noncontiguous source or destination. 

Another approach that can be used here is to do multiple 

contiguous transfers for each contiguous chunk. This 

approach is zero-copy but may require the initiator of the 

request to spend some time in processing the multiple 

contiguous requests it has to initiate for every 

noncontiguous request. In addition, handling flow control 

issues like the number of outstanding requests allowed 

might adversely affect performance. We introduced a 

host-assisted zero-copy method to address the problems 

inherent in both the approaches described above.  

To leverage the advantages of the host-assisted zero-copy 

approach in Mellanox VAPI, memory on both sides must 

be registered. The user is not expected to either explicitly 

register memory or keep track of this information. 

Instead, as described in Section 4, we maintain and parse 

our high-granularity global memory information table to 

determine if the memory on both sides is registered. The 

host-assisted approach requires partial involvement of a 

remote host to complete operations. We refer to the 

representative on the remote side that assists in the 

completion of the operation as a “helper” thread. The 

helper thread initiates an operation and hence requires 

minimal remote-side CPU involvement. This is very 

similar to the ARMCI data server thread [4, 14] and the 

dispatcher thread in the IBM LAPI. The significant 

difference is that the helper thread does not copy any data 

and does not wait on an operation it issued to complete. 

With this helper thread as an assistant to complete the 

operation on the remote side, we describe the 

implementation details of contiguous and noncontiguous 

one-sided Get and Put operations. We demonstrate the 

benefits of this approach by contrasting its performance 
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with the traditional host-based/buffered approach and by 

showing the performance of these protocols on a few 

application benchmarks in Section 6. 

5.1 Get operation for Contiguous Data 

Because the Mellanox VAPI implements the RDMA 

Read operation, contiguous get can be done using the 

RDMA Read operation when both source and destination 

memories are registered. On networks that do not support 

RDMA Read or have limited or unoptimized RDMA 

Read, implementation of this scheme is inherently simple. 

The client doing the get operation sends a request to the 

helper thread on the remote node. The helper thread, upon 

receiving a get request, initiates a RDMA put and then 

would resume polling/blocking. As a result, request 

processing overhead on the remote host is very little. We 

verified the effectiveness of this approach on the Myrinet 

GM 1.6 [18]. The ARMCI Get latency dropped from 

27µs to 24µs by using the host-assisted approach. Get 

bandwidth improved from 198MB for copy based 

protocol to 237MBps for host-assisted zero-copy 

contiguous get, there by showing that this approach is not 

just high performance but also adaptive to the platforms 

that don’t have support for RDMA read. 

5.2 Get Operation for Noncontiguous Data 

Because a noncontiguous data transfer would involve 

transfer of multiple segments of data, our strategy is to 

use the scatter/gather message passing feature provided 

by IBA to achieve the zero-copy transfer. Using that 

feature, we can send /receive multiple data segments as a 

single message by posting a single scatter/gather 

descriptor. Two types of scatter/gather message-passing 

operations defined in IBA VAPI are 1) Gather-Send 

(which requires the noncontiguous data being sent to be 

represented as a Gather-Send descriptor) and 2) Scatter-

Receive (which requires the noncontiguous destination 

for the receive to be specified in a Scatter-Receive 

descriptor format). 

In a host-assisted zero-copy Put, the source sends a 

request to the remote side the helper thread processes the 

request, converts the vector/stride information in the 

request into a VAPI Receive-Scatter descriptor, posts the 

descriptor, and sends an acknowledgment to the 

requesting process, indicating that it is ready. On 

receiving this acknowledgment, the source process posts 

a Gather-Send from the VAPI Gather-Send descriptor it 

created while waiting for an acknowledgment from the 

helper thread. This directly delivers the data to the 

destination memory without the overhead of any 

intermediate copies. Although the explicit 

acknowledgment might seem like an overhead, for large 

messages, when the copying cost starts to dominate, this 

approach performs better. It could be enabled only for 

multidimensional Put operations when the first stride or 

the size of each contiguous segment is large.  

For a host-assisted zero-copy Get (Figure 8), the source 

node posts a Scatter-Receive descriptor to receive the 

vector/strided data and then sends a request to the remote 

host with the remote stride/vector information. The helper 

thread on the remote host receives the request and then 

posts a corresponding VAPI Gather-Send by converting 

the stride/vector information in the request message into a 

VAPI Gather-Send descriptor. The implementation of this 

protocol prompted us to address a number of design 

issues. 

Limit on Scatter/Gather Entries per Descriptor: The 

strided put/get operations can be used to transfer sections 

of multidimensional arrays. Each dimension of the array 

can support any number of data segments. However, the 

IBA implementation puts an upper limit of 60 on the 

number of scatter/gather entries that can be allowed per 

Scatter-Receive or Gather-Send descriptor. Hence, for 

large messages, the maximum scatter/gather entry limit 

requires us to extend the above approach. Because we can 

have only 60 scatter/gather entries in a descriptor, our 

solution is to break our message into chunks of up to 60 

data segments and post a gather send/scatter receive for 

each one of them. Posting a send/receive is a nonblocking 

operation in IBA and takes only a very short time (a 

microsecond on Itanium 1GHz), so the overhead in 

posting multiple gather descriptors is not significant. In 

the case of Strided Get, the client posts multiple scatter 

receives and then sends the request. At the remote side, 

the helper thread processes the request and posts multiple 

gather sends. A similar approach has been followed for 

implementing the noncontiguous puts. 

Resource Allocation: At the client level, memory needs to 

be allocated and maintained to create a scatter/gather 

descriptor from a strided/vector request. Unlike VIA, 

VAPI copies the posted descriptor on to the NIC and 

hence does not require us to keep the descriptor until the 

request has been completed. At the NIC level, the number 

of scatter/gather entries must be decided at the 

initialization phase. The larger the scatter gather list, the 

larger the amount of memory allocated per descriptor on 

the NIC. To investigate the effect of this on the 
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performance of the operation, we conducted experiments 

to measure the change in latency with increasing number 

of scatter/gather entries. Overhead for having 60 scatter 

gather entries in a descriptor instead of 1 is not significant 

(< 1 micro sec) and hence we could afford to set the 

scatter/gather limit to the maximum allowed value of 60. 

5.3 Performance of Host-Assisted Approach 

 Figure 9 compares the performance of host-

based/buffered get and host-assisted zero-copy get 

operations with MPI for two-dimensional data. Zero-

Copy 2D get in Figures 9 and 10 represents the approach 

discussed earlier in this section where a noncontiguous 

Get operation is implemented on top of multiple 

contiguous RDMA Get operations, one for each 

contiguous segment. For this test, ARMCI 2D data is 

represented using the strided data format [4] and in MPI 

using the strided data type. Clearly the host-assisted zero-

copy implementation performs much better and more 

significantly so when the first dimension is large.  

An advantage of using host-assisted zero copy can be 

determined by measuring the effect on protocol 

performance when the remote side is doing a CPU-

intensive operation. Unlike the zero-copy approach, host-

assisted zero-copy requires some host involvement in 

initiating data transfer. This is more representative of the 

impact these protocols may have on an application than 

mere measurement of communication bandwidth/latency. 

Figure 10 shows the performance difference between the 

buffered and host-assisted zero-copy protocols when the 

remote side is doing a CPU-intensive operation. In 

comparison to Figure 9, it is very clear that the 

performance of the host-assisted zero-copy protocol has 

not been affected at all by the CPU-intensive operation on 

the other side while the performance of the buffered Get 

protocol dropped very significantly. This clearly shows 

the very low overhead this protocol imposes on the 

remote-side CPU.  

 5.4 Overhead and Overlap 

Another significant advantage of this protocol is the 

amount of overlap it can provide in nonblocking 

operations. Because the implementation does not involve 

any data movement in call initiation or call completion, 

the amount of overlap possible is much higher than that 

for the other protocols. This can be seen in Figure 7(b), 

which compares the amount of overlap attainable with 

host-based and host-assisted protocols for  noncontiguous 

data transfer of various square chunks of data.  

6. Experimental Evaluation: NAS MG and 
Matrix Multiplication 

Reported performance numbers for RMA operations 

often misrepresent the actual impact of the protocol used 

to implement the one-sided operation on an application. 

A significant issue that comes to light in actual 

application performance in the case of one-sided 

operations is the ability of the operation to make progress 

with minimal to no remote host involvement. Unlike 

message passing, efficiently implemented one-sided 

RMA operations have the potential to complete without 

significant or explicit remote host involvement. In our 

previous work [19], we have attempted to show the 

advantages of the RMA programming model in 

comparison to a more synchronous two-sided 

communication model, MPI. Here the emphasis is on the 

way one-sided communication is implemented on 

InfiniBand, like the ability to offload the processing on 

the remote CPU by as much as possible so that the CPU 

can be more efficiently utilized by the application for 

computation. We used two different benchmarks, 

representing a sample of algorithms used in scientific 

computing: 1) Multigrid (MG) kernel benchmarks from 

the NAS suite and 2) dense matrix multiplication. 

6.1 NAS MG benchmark 

The NAS parallel benchmarks are a set of programs 

designed at the NASA Numerical Aerodynamic 

Simulation (NAS) program, originally to evaluate 

supercomputers. They mimic the computation and data 

movement characteristics of large scale computations. 

NAS parallel benchmark suite consists of five kernels 

(EP, MG, FT, CG, IS) and three pseudo applications (LU, 

SP, BT) programs. Our starting point was NPB 2.4 [15] 

implementation written in MPI and distributed by NASA. 

We modified NAS MultiGrid (MG) to replace point-to-

point blocking and nonblocking message-passing 

communication calls with ARMCI one-sided RMA 

communication. The NAS-MG MultiGrid benchmark 
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protocols supporting the contiguous get data 
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solves Poisson's equation in 3D using a multigrid V-

cycle. The multigrid benchmark carries out computation 

at a series of levels and each level of the V-cycle defines 

a grid at a successively coarser resolution. This 

implementation of MG from NAS is said to approximate 

the performance a typical user can expect for a portable 

parallel program on a distributed memory computer.  

NAS benchmarks are categorized into different classes 

based on problem size and number of iterations. For 

Class A, ARMCI host-based/buffered code outperforms 

the original message-passing implementation by 8% to 

22%. The performance advantage here is because of the 

less restrictive programming model ARMCI uses, which 

allows progress without explicit remote host involvement. 

For the Host-based/buffered approach, the remote-side 

CPU is still involved in copying the data between the 

buffer and destination; this shows up in the overall 

application time. By using the zero-copy approach in 

ARMCI, an improvement of 14% to 25% is obtained over 

message-passing implementation on the benchmarks. For 

Class B, with the same problem size as Class A but more 

iterations, the ARMCI host-based/buffered approach 

outperforms the original message-passing implementation 

by 5% to 19% (see Figure 11). By using a zero copy 

ARMCI implementation, a 14% to 27% improvement is 

seen over the original message-passing implementation. 

6.2 Matrix Multiplication 

SUMMA is a highly efficient, scalable implementation of 

common matrix multiplication algorithm proposed by van 

de Geijn and Watts [16].  The MPI version is the 

SUMMA code developed by its authors, which is 

modified to use more efficient matrix multiplication 

dgemm routines from Intel math libraries on Itanium 

rather than equivalent C code distributed with SUMMA. 

For comparing with the RMA version, we used the 

algorithm implemented using ARMCI RMA in Global 

Arrays. The matrix in the Global Arrays implementation 

of ARMCI is decomposed into blocks and distributed 

among processors with a two-dimensional block 

distribution. Each submatrix is divided into chunks. 

Overlapping is achieved by issuing a call to get a chunk 

of data while computing the previously received chunk. 

The minimum chunk size was 128 for all runs, which was 

determined empirically.  The chunk size was determined 

dynamically, depending on memory availability and the 

number of processors. 

Experiments with matrix multiplication were run by 

varying the matrix size and the number of processors. 

The first three lines labeled in both the graphs in 

Figure12 represent three different approaches to 

implement multi-dimensional RMA in ARMCI. The host-

assisted zero-copy approach was introduced in Section 5. 

The computations were done on four nodes with two 

processes each. The left side in Figure 12 is for square 

matrices with sizes varying from 128 to 2000. The right 

side in Figure 12 is for a rectangular matrix where the 

second dimension is set to 512 and the first dimension 

varies from 128 to 2000. For the square matrix (Figure 

12, left), in comparison to MPI, the ARMCI host-

based/buffered approach outperforms the message-

passing implementation by up to 44% whereas the host-

assisted zero-copy approach, because of its negligible 

overhead on the remote processor, outperforms the 

message-passing implementation by 18% to 80%.   

7. Conclusions and Future Work 

This paper described how the RMA communication 

model can be implemented efficiently over InfiniBand. 

The capabilities not offered directly by the InfiniBand 

verb layer such as noncontiguous RMA were 

implemented efficiently through the novel host-assisted 

approach to support the zero-copy communication. In 

addition, a high degree of overlapping computations and 

communication was demonstrated. The benchmarks used 

in the study showed effectiveness of the RMA 

implementation on InfiniBand and the importance of 

zero-copy nonblocking protocols for hiding latency in the 

interprocessor communication. When reimplemented to 

use RMA, the NAS MG and parallel matrix 

multiplication benchmarks when reimplemented to use 

RMA, achieved superior performance over their MPI 

counterparts. Our current approach uses the InfiniBand 

Reliable Connection mode, which ensures ordered 

delivery of messages. However, other modes such as 

Figure-11: Performance of NAS MG using contiguous data transfers. Left: Class A and Right: Class B 
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Reliable Delivery could be investigated to evaluate the 

tradeoffs between the lack of message ordering in this 

mode and potentially increased performance.  
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