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Abstract. This paper describes an efficient implementation of one-sided communication on top of the GM low-level message-passing
library for clusters with Myrinet. This approach is compatible with shared memory, exploits pipelining, nonblocking communication, and
overlapping memory registration with memory copy to maximize the transfer rate. The paper addresses critical design issues faced on
the commodity clusters and then describes possible solutions for matching the low-level network protocol with user-level interfaces. The
performance implications of the design decisions are presented and discussed in context of a standalone communication benchmark as well
as two applications. Finally, the paper offers some indications on what additional features would be desirable in a communication library
like GM to better support one-sided communication.
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1. Introduction

In recent years, the Myrinet network has received much at-
tention in the literature on high-performance communication.
Multiple projects have focused on developing efficient mes-
saging middleware (e.g., AM [1], PM [2], BIP [3], and HPVM
FM [4]) by exploiting the programmable Network Interface
Card (NIC) of Myrinet. The most common use of these inter-
faces has been support of MPI and sometimes other, internal
research projects. The HPVM project used its FM system
to implement MPI and other programming interfaces includ-
ing two one-sided: the Cray SHMEM and Global Arrays. In
the last few years, due to its good scalability and relatively
moderate cost, Myrinet has become the primary network for
building medium and large-scale clusters based on commod-
ity processing nodes (e.g., Intel or Alpha Linux systems). To
our best knowledge, with the exception of the NCSA Win-
dows NT SuperCluster that operates in the HPVM environ-
ment, the majority of medium and large Myrinet-based clus-
ters used in production mode rely on the GM message-passing
library and the MPICH, with the MPICH GM channel pro-
vided by Myricom. GM is the Myrinet alternative to the low-
level messaging middleware systems mentioned above [5].
With exception of an AM implementation on top of GM, these
other interfaces replace the standard Myrinet Control Pro-
gram (MCP) on the NIC thus are not compatible at run-time
and cannot be installed with GM. GM has been designed to
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provide high bandwidth and very low latency message pass-
ing in the polling mode. In addition to message passing, GM
also supports a one-sided put operation (gm_directed_send)
between registered (pinned) local and remote memory areas.

In this work, we are interested in developing efficient
one-sided communication on commodity clusters that use the
Myrinet network and the standard Myricom software envi-
ronment, which includes GM and MPICH/GM. One-sided
communication supports the global-address-space program-
ming model that for some applications is more appropriate
than the MPI-1 two-sided message-passing communication.
This model combines some advantages of shared memory,
such as direct access to shared/global data, and the message-
passing model, namely the control over locality and data dis-
tribution. One of the primary goals for the current work is
to develop, distribute, and support a communication library
compatible with the standard environment of the Myrinet
clusters employed for production purposes. This consider-
ation introduces some restrictions and offers certain advan-
tages for the potential users. For example, interoperability
with MPICH/GM is assumed and required. For practical rea-
sons and the ease-of-use by ordinary non-expert users, our
implementation attempts to minimize consumption of the GM
ports in order avoid rebuilding and reinstalling Myrinet soft-
ware to increase the number of available ports. We also con-
sider the SMP environment and interaction of shared memory
with the communication subsystem. This work is performed
in context of a portable one-sided communication interface,
ARMCI [6], developed as a portable run-time system for dis-
tributed array libraries and compilers. The primary opera-
tions in ARMCI include put, get, accumulate, and mutual ex-
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Table 1
Remote operations description.

Operation Description

ARMCI_Put, ARMCI_PutV, ARMCI_PutS contiguous, vector and strided versions of put
ARMCI_Get, ARMCI_GetV, ARMCI_GetS contiguous, vector and strided versions of get
ARMCI_Acc, ARMCI_AccV, ARMCI_AccS contiguous, vector and strided versions of atomic accumulate
ARMCI_Fence blocks until outstanding operations targeting specified process complete
ARMCI_AllFence blocks until all outstanding operations issued by calling process complete
ARMCI_Rmw atomic read-modify-write
ARMCI_Malloc memory al locator, returns array of addresses for memory allocated

by all processes
ARMCI_Free frees memory allocated by ARMCI_Malloc
ARMCI_Lock, ARMCI_Unlock mutex operations

clusion operations. The library is available on a variety of
platforms including Massively Parallel Processors (MPP) and
clusters.

The paper makes several contributions to the field. First
it shows how to build an efficient implementation of one-
sided communication on top of GM, a two-sided low-level
message-passing library on Myrinet. It addresses critical de-
sign issues faced on the commodity SMP clusters and then
describes possible solutions for matching the low-level net-
work protocol and user-level programming model require-
ments. The performance implications of the design decisions
are presented and analyzed in context of a standalone com-
munication benchmark as well as two applications. Finally, it
offers some indications on what additional features would be
desirable in a communication library like GM to better sup-
port one-sided communication.

The paper is organized as follows. Section 2 describes
ARMCI interface and model. Section 3 discusses the techni-
cal aspects of implementing one-sided communication based
on GM. Experimental results are provided and discussed in
section 4, and we present conclusions in section 5.

2. ARMCI

ARMCI was developed to support remote memory operations
(see table 1) in the context of distributed array libraries and
compiler run-time systems [6]. It was also used to imple-
ment other communication libraries such as a portable version
of the Cray SHMEM library [7]. The ARMCI interface is
portable and compatible with MPI (and on some platforms, it
also was used with other message-passing libraries). ARMCI
requires a message-passing library for the process startup and
user environment initialization. The library is available on
clusters of common Unix and Windows workstations/servers
and MPP systems.

Compared to the well known Cray SHMEM one-sided in-
terface [8], ARMCI places more focus on non-contiguous
data transfers that correspond to data structures in scien-
tific applications (e.g., sections of multi-dimensional dense
or sparse arrays). Such transfers are optimized thanks to the
non-contiguous data interfaces available in the ARMCI data
transfer operations: multi-strided and generalized UNIX I/O
vector interfaces. By default, ARMCI supports up to eight

stride levels corresponding to eight-dimensional arrays. The
library provides three classes of operations: (1) data trans-
fer operations including put, get, and accumulate; (2) syn-
chronization operations – local and global fence and atomic
read-modify-write, mutex operations; and (3) operations for
memory management and error handling.

ARMCI only supports communication that targets remote
memory allocated via the provided memory allocator rou-
tine, ARMCI_Malloc, which is similar to MPI_Win_malloc
in MPI-2. On shared memory systems including SMPs,
this requirement allows the library to allocate shared mem-
ory for the user data and consecutively map one-sided op-
erations to direct shared memory accesses, thus achiev-
ing sub-microsecond latency and a full memory band-
width [9].

3. Technical approach

ARMCI progress rules, unlike one-sided “active” communi-
cation model in the MPI-2 or put/get operations in Generic
Active Messages, declare its one-sided operation to be fully
unilateral (i.e., they complete regardless of the actions taken
by the remote process). In particular, polling (implicit when
making a library call, or explicit by calling provided polling
interface) in the application by remote process is not required
for communication progress. Although polling is well suited
for achieving very low-latency communication by avoiding
the cost of interrupt processing, it only works well when re-
mote processing is expecting communication and enters the
polling loop before the message arrives [10]. Polling often
leads to lower responsiveness and higher CPU consumption
than the interrupt mode in context of real applications, but
neither of these factors has any effect on latency results in the
standard message-passing ping-pong benchmark that is often
misused as a primary metric of the performance quality of
a message-passing library implementation. For example, the
polling implementation of MPICH on Myrinet offers several
times better latency than the interrupt-based MPIPro on the
Giganet cLAN, but it did not make the NAS benchmarks run
any faster on the same Dell Linux cluster [11]. Similarly, on
the IBM SP that offers polling and interrupt modes of opera-
tions in MPI, often the polling mode is used for running com-
munication benchmarks while the interrupt mode, which pro-
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duces a much higher latency [12], is more often used for run-
ning real applications. As we find explicit polling not com-
patible with the concept of one-sided communication, and for
the reasons mentioned above, ARMCI does not offer or rely
on a polling operation.

The default implementation of ARMCI for clusters of
workstations with generic TCP/IP networking support ex-
ploits the standard sockets interface. An extra “data server”
process (Unix) or thread (primarily on Windows) is forked
on each cluster node to service one-sided communication re-
quests from its clients (user MPI tasks). To prevent server
thread/process in the absence of one-sided communication
requests from consuming resources needed by the user
processes, special care is needed to reduce CPU utilization by
using blocking wait rather than active polling of the network
interfaces. In the case of the TCP/IP protocol, “data server”
exploits select call with a descriptor set that includes sockets
dedicated to communication with every task on remote nodes.
This system call blocks until data or a request is received on
at least one of the sockets. The performance is consistent
with the h/w and IP protocol limitations. For example, latency
of the get operation on Linux/Intel varies from 160 µs (ker-
nel 2.2.10smp) to 260 µs (kernel 2.2.14smp) on 100BaseT
Ethernet, and is almost the same as the MPICH round-trip,
message-passing latency for the same system configuration.
The bandwidth on the 100BaseT Ethernet is 11.7 MB/s for
both contiguous and strided operations. However, this level
of performance does not meet requirements of many commu-
nication intensive applications, and often makes impossible
for them to scale beyond a few nodes.

The TCP/IP implementation of ARMCI can be used on
Myrinet as well, as this network, in addition to the GM in-
terface, can support the standard IP protocols. The Myricom
implementation of IP if enabled consumes one of the eight
GM ports. There have been several implementations of the
TCP/IP protocol on Myrinet in the last several years, most
notably by the Trapeze project [13] for FreeBSD. Although,
proof-of-concept implementations demonstrated that perfor-
mance levels as good as 1 Gbit/s can be obtained, the produc-
tion implementation distributed by Myricom for Linux is far
from aproaching that level of performance. Apart from the
nominal performance issues, the TCP/IP protocol character-
istics [14] make it not the best choice for high-performance
computing.

3.1. GM

GM is a low-level message-passing system for the Myrinet
network [5]. The GM system includes a driver, the Myrinet-
interface control program, a network mapping program, and
the GM API, library, and header files. GM features include:
(1) concurrent, protected, user-level access to the Myrinet in-
terface; (2) reliable, ordered delivery of messages; (3) auto-
matic mapping and route computation; (4) automatic recovery
from transient network problems; (5) scalability to thousands
of nodes; and (6) low host-CPU utilization. GM is a light-
weight communication layer, and as such it has certain lim-

itations including inability to send messages from or receive
messages into non-DMA-able memory, and offers no support
for gather or scatter operations. It is also unable to register
shared memory under Linux. Moreover, memory registration
operations in GM under Linux 2.2.X are very expensive rela-
tive for example to AIX. GM on Solaris does not even allow
register local memory that was allocated as non-DMA-able in
the first place. Some of these limitations can be addressed by
layering a heavier-weight interface over GM, and they also
have a profound impact on our system design.

3.2. Architecture of ARMCI over GM

We made the following design assumptions: (1) compatibility
with standard unmodified version of MPICH/GM is required,
(2) compatible with the System V shared memory is very de-
sirable as it is required for effective SMP utilization [9], and
(3) consumption of the GM ports by ARMCI should be min-
imized to avoid recompiling and reinstalling Myrinet s/w by
ordinary non-expert users of the software.

The baseline GM port of ARMCI was derived from its
TCP/IP implementation. As fork is not supported in the GM
programs, an extra pthread is created on every cluster (uni-
or multi-processor) node to play a role of “data server”. The
GM blocking receive operation used by that thread is well
suited for developing an interrupt-driven implementation of
one-sided communication. The GM driver through its inter-
action with the thread scheduler activates the blocked server
thread upon arrival of the data. This thread at the initializa-
tion time opens two GM ports: one for receiving requests
and one for sending a response. The flow control issues in
GM make one port insufficient for that purpose as the server
would not be able to respond to the current client request un-
less all other pending requests from other clients are received
and stored in memory for further processing. In congested
cases, depletion of memory on a node would be then possi-
ble. However, the number of GM ports used by ARMCI is
independent of the number of MPI tasks on that node. We
use the same GM ports allocated by MPICH to send ARMCI
requests to a port opened by the remote “data server” thread.
The port sharing technique works well since we do not use the
GM receive operations to avoid handling GM messages sent
to that port by the other protocol – MPI. Instead, a response
from the server is delivered by directed send (put) that does
not require GM receive operations (i.e., the data is directly
placed in the client memory). In order to avoid deadlock, the
GM tokens associated with send operations on the client side
must be recovered by GM. That library assumes that tokens
are relinquished when application calls gm_unknown opera-
tion while polling for arriving messages using the GM receive
operations. However the ARMCI client code cannot use this
approach for the reasons stated above. Instead, it relinquishes
its send tokens indirectly by calling MPI_Iprobe while wait-
ing for a response from the server. MPI_Iprobe checks the
network interface for MPI messages received on the same port
and, by doing so, unknowingly relinquishes tokens associated
not only with MPI but also ARMCI messages. Although this
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Figure 1. ARMCI request format for communication with server thread.

technique might first seem unsafe and dependent on an im-
plementation of MPI, we believe that for progress and/or per-
formance reasons any implementation of MPI_Iprobe would
have to poll the network interface, thus effectively processing
the GM tokens. We also found this trick to work reliably in
practice.

The client communicates with the server by sending re-
quest messages in the format as shown in figure 1. The request
messages contain one required component, a header describ-
ing the request, and depending on the request type, it might
include a descriptor for the client buffer, a descriptor for re-
mote memory that the request references, and data (e.g., in
put operation). The optional descriptor for the client buffer
has been introduced in the GM port to provide the server with
the ability to respond directly to the client, thus avoiding any
intermediate buffering.

As already mentioned, GM only supports data transfers
from/to DMA-able memory. Such memory can be obtained
with a GM memory allocation routine. Alternatively, on some
systems (including Linux), GM allows registration of already-
allocated memory. The zero-copy protocols in application
level libraries require registration of the user memory, which
underneath involves pinning memory. Since ARMCI applica-
tions can potentially use the entire physical memory (or more
thanks to the virtual memory) in the system in context of one-
sided communication, we cannot pin user data statically in
ARMCI_Malloc. Pinning can only be done dynamically as
a part of data transfer operations, and when these operations
are complete, the memory must be unpinned. Unfortunately,
memory registration and dereagistration on Linux through the
GM driver is an expensive operation, see figure 4 in section 4.
On our Dell Linux system, it is comparable in cost to memory
copy thus its cost has to be considered in the protocol design.
In addition, on Linux gm_register fails for the System
V shared memory – according to Myricom due to a problem
in the GM implementation. This constraint requires server
to use an extra copy when sending shared memory data via a
DMA-able buffer. On the client side, the user buffer is located
most often in local memory; therefore, it can be pinned. Our
baseline implementation for GM does not require memory
registration and uses two DMA-able buffers allocated with
GM by the server and client at the startup. The data must be
transferred to and from these buffers, thus the corresponding
two extra memory copies reduce the asymptotic transfer rate
achievable in that version. This implementation scheme is
used on systems such as Solaris where the registration is not
possible. On systems where it is, ARMCI uses that scheme
for short messages or messages involving multiple short con-

(a)

(b)

Figure 2. Baseline (a) and pipelined (b) implementation of multi-strided get.

tiguous data segments – GM unlike VIA does not support
scatter/gather operations.

3.3. Get operation

We improved performance of the baseline implementation for
medium and large messages by (1) pinning client buffer when
possible, and (2) using pipelined nonblocking sends that over-
lap with the memory copy on the server side. The difference
between the baseline and pipelined implementation is demon-
strated for the multistrided get operation in figure 2. This im-
plementation tries to pipeline and overlap memory copy op-
erations with nonblocking communication using the GM di-
rected send. For large data segments occuring in contiguous
or strided requests, our implementation can increase the over-
lap level by splitting contiguous data segments into chunks to
send them in the pipelined fashion.

In the next step, we attempted to address the registration
cost of the client buffer. In the previous version, this oper-
ation was performed before the request was sent. At least a
partial cost of this step can be removed from the critical path
by overlapping it with the memory copy done by the server.
We use an extra flag on the server side for the client to no-
tify the server about the registration state of the user buffer.
The notification is performed by a direct send (put). Client
sends a request to the server and then calls gm_register
for the user buffer. Before that operation is complete, the
server can receive the request and start copying the first por-
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The nonpipelined version of ARMCI’s Put: COPYS – copy from second message send buffer; XMIT/RECV – the

transmission and reception phases of the message; COPYR – copy from the provided receive buffer to destination.

Pipelined implementation of PUT: There are two buffers on the second side, COPYS1 indicates

copy into one such buffer and COPYS2 into the second one. Similarly, one thereceived side,

COPYR1 indicates copy into one of the two available buffers, COPYR2 indicates a copy into the

second one.

Figure 3. Time diagram for the baseline and pipelined implementation of the Put operation.

tion of the requested data from shared memory into its pinned
buffer. However, before the first portion is sent back to client,
the server must check the status of the flag. Only when its
value indicates that the client buffer registration is succesful
can the server issue a GM directed send operation targeting
that buffer. If the client notifies the server that registration
was not succesful, processing of the current request is aban-
doned by the server. In that case, the client will send it one
more time using a different approach that does require regis-
tration. In our previous paper [15], registration of client buffer
was performed in one step. We refined this technique by split-
ting client registration into two steps – first involving only as
much memory as the maximum size of the internal buffer size
used by server (400 KB) and second step when the rest of the
client buffer is registered. We use two acknowledgment noti-
fications about progress of registration on the client side. This
refinement improves the performance for larger requests by
increasing the level of overlapping between operations per-
formed by the client and server.

3.4. Put operation

The baseline implementation of ARMCI Put is comprised of
three phases (see figure 3): (1) A data copy from the source
data to the message send buffer (a pre-pinned, pre-allocated
buffer, allocated when ARMCI is initialized), which we rep-
resent as ‘COPYS’ phase. This copy is done in the chunks of
the sizes of the message send buffer. (2) The actual data trans-
mission phase, where the gm_send_with_callback function is
used to actually transmit data in the message send buffer to
the destination. In this phase the data from the message send
buffer at the source node is DMA’ed to a receive buffer at the
destination node. This phase is represented as ‘XMIT’ and
‘RECV’ phase, where ‘XMIT’ stands for an operation per-
formed at the sender NIC to DMA the data and ‘RECV’ is

used to represent an operation performed at the receiver to
receive the data into a receive buffer. (3) The copy to destina-
tion memory location from the receive buffer at the destina-
tion side, which is represented as the ‘COPYR’ phase.

We have designed and implemented a pipelined version
of ARMCI Put operation essentially pipelining both the re-
ceiver and the sender side. In the pipeline, we overlap the
‘XMIT’ and the ‘COPYS’ phase as well as the ‘RECV’ and
the ‘COPYR’ phase. The pipelined implementation has mul-
tiple send and receive buffers. Hence the ‘COPYS’ phase
here is overlapped with the ‘XMIT’ and the ‘COPYR’ phase
overlapped with ‘RECV’. Instead of copying one chunk of
data, transmitting it, and then waiting for an acknowledge-
ment, we maintain a set of send buffers. Our analysis after
timing the COPYS and the XMIT phase shows that the ra-
tio of time taken in the XMIT phase to the time taken in the
COPYS phase is between 1 and 3 for most message sizes.
This implies that 2 buffers would be enough in most of the
cases to efficiently fill the pipeline and optimize the pipelined
algorithm performance.

4. Experimental results

The experiments were performed on a Linux (2.2.14smp ker-
nel) cluster with Dell PowerEdge-1300 nodes, dual 500-MHz
PIII, 512-MB main memory, and 512-kB, level-2 half-speed
cache. The Myrinet network was based on the Universal,
64/32-bit, 66/33-MHz, Myrinet-SAN/PCI interface, M2M-
PCI64A-2 cards, connected to the host by the 32-bit PCI inter-
face. We used the GM message-passing library, version 1.2.
In addition, to compare effectiveness of the GM port we also
used the TCP/IP protocol over Myrinet and 100BaseT Eth-
ernet. We could not run our experiments with the Trapeze
TCP/IP drivers for Myrinet as they are not available for Linux.
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Performance of memory copy, and registration and deregis-
tration on this system is shown if figure 4. We note that the
combined cost of registration and deregistration operations is
a nonlinear function of the data size. The curve describing
performance of memory copy is essentially linear past 4096
bytes, at which point our code is switching to an algorithm
optimized for larger data sizes.

4.1. Communication performance

Figures 5 and 6 illustrate performance of the ARMCI get op-
eration. In the tests, we attempted to avoid caching effects by
using consecutive accesses that target different memory areas
on remote side. In figure 5 we compare performance of the
three schemes: baseline, pipelined, and pipelined with over-
lapped client memory registration for large messages. The
two optimizations described in previous section increase the
bandwidth to 78 MB/s, which is 19 MB/s over the base-
line implementation. In order to better understand the ef-
ficiency of our approach we measured the rates of mem-
ory registration, memory copy, and GM bandwidth on our
cluster. They were bregistration = 411 MB/s for the mem-
ory registration, bcopy = 330 MB/s for memory copy (for
our optimized version of memcpy), and bGM = 101.8 MB/s

Figure 4. Combined cost of memory registration and deregistration compared
to memory copy.

for GM. The GM one-way b/w was reported by the Myri-
com program gm_allsize for transfers using DMA-able
buffers (the round trip b/w was reported by that program as
45.81 MB/s).

The performance model for the baseline implementation
of the ARMCI get that does not use memory registration is

bget = 1

2/bcopy + 1/bGM
= 61.9 MB/s,

as the key time components on the critical path of the get op-
eration are: two memory copies and the data transfer through
the network. The transfer time for the request alone is neg-
ligible in context of large requests. The computed value is
consistent with our experimental results for the baseline im-
plementation. If registration of memory on both sides worked
(i.e., on a uniprocessor system where ARMCI does not use
shared memory) and we were able to register memory rather
than copy the data the model would be

bget = 1

2/bregistration + 1/bGM
= 68.07 MB/s.

For the full overlapping of memory registration on the
client side and memory copy on the server side the model
is

bget = 1

1/ max(bregistration, bcopy) + 1/bGM
= 77.7 MB/s.

We obtain even a higher rate in the optimized implementa-
tion as ARMCI uses pipelined send that splits larger segments
into chunks to partially overlap the copy operation with send-
ing data through the network.

Figure 6 shows the ARMCI get performance of the opti-
mized GM implementation over the TCP/IP implementation
on Myrinet and Ethernet.

The latency of get operation was 75 µs for ARMCI/GM
on our 500 MHz PIII Linux system. As get involves round-
trip traffic across the network, this number could be compared
with the 30 µs, round-trip latency for MPICH/GM. An im-
portant difference is that MPICH receives data in the polling

(a) (b)

Figure 5. Performance of three implementations of get operation ((a) log and (b) linear scale).
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mode with both sides actively participating in the data trans-
fer, whereas ARMCI remote process in the benchmark is un-
aware of communication targeting its address space and the
request is processed in the interrupt mode. In case of ARMCI,
the latency number includes the cost of activating thread
blocked in gm_blocking_receive_no_spin. On an-

Figure 6. Performance of the ARMCI get operation using Myrinet and Eth-
ernet.

Figure 7. Bandwidth in multi-strided or series of contiguous (one column at
a time) ARMCI get operations on GM for a square section of matrix.

other Linux system with the 666 MHz EV67 Alpha CPU and
the same Myrinet card, the latency is 45 µs. For another com-
parison, the ARMCI get latency on the Cray T3E is 5 µs, and
on the IBM SP, it is 77 µs. Although the SHMEM interface
(used by the ARMCI implementation) on the Cray T3E pro-
vides excellent latency, both the IBM SP LAPI and GM inter-
faces offer a better support for optimizing noncontiguous data
transfers, which in part can improve the overall communica-
tion rate for applications that use such transfers. An example
illustrating this point is given in figure 7.

We also tried compare get bandwidth with performance of
the MPICH/GM message-passing communication. MPICH/
GM similarly to ARMCI uses registration of user buffers to
optimize performance for large requests. However, unlike
ARMCI the Myricom channel device for MPICH by default
does not deregister the user memory after communication is
complete [16]. Therefore, repeated data transfers involving
the same buffers do not incur the expensive memory regis-
tration cost which appears in every instance of ARMCI com-
munication (where we do not make the assumption that the
user data buffers would ever be reused). We found that for
a single 2 MB message exchanged in the ping-pong test the
MPICH/GM achieves 71.5 MB/s as compared to 78 MB/s in
ARMCI get. However, by avoiding registration costs for next
messages involving the same buffers, the average rate for 100
messages in a the ping-pong test grows to 82.76 MB/s.

Figure 8 illustrates performance of the put operation. In
order to better understand the performance it should be noted
that semantics of put operation allows an implementation to
return when the user buffer can be reused. This does not nec-
essarily imply that the data transfer completed on remote side.
In particular since our implementation uses 400 KB internal
registered buffer for sending data, put operation can return
when data is copied out from the user to this internal buffer
and a nonblocking GM send call is issued. For larger data
sizes, our implemntation of put operation packetizes data in
400 KB chunks and sends them using one (baseline) or two
(pipelined) buffers. We are not seeing the memcopy band-

(a) (b)

Figure 8. Performance of baseline and pipelined implementations of put ((a) log and (b) linear scale).
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(a) (b)

Figure 9. Performance of the SPLASH-2 LU benchmark with (a) block-cyclic and (b) block distributions using ARMCI implementations on top of GM and
TCP/IP – Myrinet and 100BaseT Ethernet.

width for data sizes <400 KB since our performance test is-
sues a series of put operations rather than just one and reports
averaged timing results. The performance curve is not con-
tiguous due to (1) the request packetization based on fixed
size buffer(s); (2) the fact that when put returns the data in the
last internal ARMCI buffer might be not fully transmitted (our
flow control allows one outstanding nonblocking send oper-
ation to assure ordering and buffer space availability); and
(3) the measurement is done for a series of puts and averaged.
The latency for the put operation was measured as 28 µs by
averaging time for 550 8-byte operations.

The performance of ARMCI/GM also can be compared to
the results of the HPVM/FM implementation of SHMEM[17].
On a dual CPU node with the same generation of Myrinet and
under Windows NT, the 26-µs latency and 67-MB/s band-
width were achieved in shmem_get, while shmem_put
achived 15-µs latency and 70 MB/s bandwidth. That imple-
mentation exploited (1) the FM support for one-sided com-
munication on the NIC (MCP program), and (2) a dedicated
CPU with an extra thread that uses active polling rather than
blocking like in our approach. The paper recommended dedi-
cation of the second processor to the polling thread but did not
report any application experiences with SHMEM to evaluate
tradeoffs and merits of their design. While HPVM achieves
lower latency, our approach delivers better bandwidth on the
standard GM communication layer optimized for two sided
protocols and does not require dedicating separate processor
for handling communication.

4.1.1. Application study
The SPLASH-2 benchmark suite [19] is a set of parallel appli-
cations for use in the design and evaluation of shared-memory
multiprocessing systems. We choose the LU program, which
is one of the kernel programs from SPLASH-2, to evaluate
the performance of our approach. The LU program factors a
dense matrix into the product of a lower and an upper triangu-
lar matrix. The factorization uses blocking to exploit tempo-
ral locality w.r.t. individual sub-matrix elements. Originally
designed to run on shared memory systems, this benchmark

can only be used on a single SMP node. Due to the simplic-
ity of the ARMCI progress rules and its memory consistency
model, only minor modifications were needed for use in one-
sided communication such as replacing memcopy with put/get
operations. The computation requires transferring data blocks
from the same row and column (for diagonal blocks). The
original benchmark uses block cyclic distribution as a way
of achieving load balancing. We also used block decomposi-
tion, as it had better locality of the data accesses thus reduc-
ing the amount of communication across the network. The
blocks are distributed according to a block pattern, such that
the block that needs to be transferred has a better chance to
reside in a local memory or neighboring memory on the same
node.

We used a matrix size of 3072 and a block size of 32 to
study performance of the LU benchmark. For both block
cyclic and block distributions, we tested three implementa-
tions: (1) GM over Myrinet, (2) TCP/IP over Myrinet, and
(3) TCP/IP over 100baseT Ethernet. As all of them exploited
shared memory in the same way, their single SMP results are
identical. Since the block cyclic decomposition yields bet-
ter load balancing the code scales better on a single SMP
node. However, communication patterns are spread out across
all the nodes. Consequently, the benchmark performance on
multiple nodes is better with block decomposition. Perfor-
mance of the benchmark with GM is always better than with
the IP over Myrinet or Ethernet. For block-cyclic decomposi-
tion, a higher amount of communication through the networks
leads to poor performance for TCP/IP over Myrinet as well as
Ethernet.

We also tested performance of a real scientific applica-
tion, NWChem [19] when solving a DFT (functional the-
ory) SiOSi3 benchmark. We run this test with the same
h/w and s/w configuration as the LU benchmark. In addi-
tion, for ARMCI/GM we also run it on another Linux sys-
tem equipped with the dual 800 MHz PIII nodes and Myrinet.
In this case too, the GM version scaled pretty well from 1
to 16 processors. Surprisingly, for NWChem when using
TCP/IP over Myrinet, the performance was much worse than
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Figure 10. The DFT benchmark results on the Cray T3E, IBM SP (8-way SMP), and Linux cluster configurations with dual Pentium III: GM (500 and
800 MHz), IP over Myrinet, IP over Ethernet.

when using Ethernet. It seems that the driver implementation
could be responsible for the unexpected performance drop-
offs. Finally, as shown in figure 10, we compared scaling
of this code on the two Myrinet clusters: the IBM SP with
“Nighthawk-I” 8-way SMP nodes and the Cray T3E. On the
IBM SP, only four tasks per node were used as the TB3MX
switch allows only for that number of tasks to communicate
in the user-space mode. The overall scaling of this applica-
tion on the Linux/Myrinet is very close to that on the Cray
T3E and the IBM SP. The IBM version scales better when the
code executes within the single SMP; however, once multiple
nodes are used the scaling becomes slightly worse than on the
Myrinet cluster.

5. Conclusions and future work

We have described an efficient implementation of one-sided
communication on top of GM and Pthreads for the Myrinet-
based SMP clusters. This approach avoids polling, is com-
patible with shared memory, and exploits pipelining, non-
blocking communication, and overlapping memory registra-
tion with memory copy to maximize the transfer rate. Our
implementation uses the standard distribution of GM and is
compatible with MPICH/GM. Performance of our two appli-
cations was very good, and the GM implementation allowed
them to avoid performance anomalies of the standard TCP/IP
version when running on Myrinet. We plan to evaluate feasi-
bility and potential advantages of using other messaging sys-
tems such as FM, BIP, or PM for implementing ARMCI on
Myrinet. Our experience brings up some suggestions for im-
proving GM support for one-sided communication such as:
ability to register shared memory, reducing cost associated
with activating a thread blocked in GM upon a message ar-
rival, or adding scatter capability to GM data transfer oper-
ations. However, in context of the current work we do not
see the missing get operation in GM as a critical shortcom-

ing – the usability issues related to the memory registration
required by GM would limit the use of that capability directly
anyway.
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