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Abstract—This paper presents a design of scalable Par-
titioned Global Address Space (PGAS) communication sub-
systems on recently proposed Blue Gene/Q architecture. The
proposed design provides an in-depth modeling of communica-
tion infrastructure using Parallel Active Messaging Interface
(PAMI). The communication infrastructure is used to design
time-space efficient communication protocols for frequently
used data-types (contiguous, uniformly non-contiguous) using
Remote Direct Memory Access (RDMA) get/put primitives. The
proposed design accelerated load balance counters by using
asynchronous threads, which are required due to the missing
network hardware support for Atomic Memory Operations
(AMOs). Under the proposed design, the synchronization traffic
is reduced by tracking conflicting memory accesses in dis-
tributed space with slightly increment in space complexity. The
accumulate operations are accelerated using QPX instruction
architecture. An evaluation with simple communication bench-
marks show a adjacent node get latency of 2.89µs and peak
bandwidth of 1775 MB/s resulting in ≈ 99% communication
efficiency.The evaluation shows a reduction in the execution
time by up to 30% for NWChem self consistent field calculation
on 4096 processes using the asynchronous thread based design.

I. INTRODUCTION

IBM Blue Gene/Q is a recently proposed system-on-a-
chip architecture with a potential for building supercomput-
ers with a peak performance of tens of PetaFlop/s (PF/s) [1],
[2]. The key elements of the architecture include an 18-core
chip (16 are available for user level threads, 1 is dedicated
for operating system and 1 is fused out), 64-bit PowerPC
cores with SMT, SIMD Quad Vector processing unit for
fused multiply-add operations and a 5-dimensional torus
interconnection network for increasing partition capacity
and reducing system diameter [1]. Low power consumption
CPU-memory subsystem makes Blue Gene/Q an attractive
choice for building even larger scale systems in the future.

At this massive concurrency scale, revisiting the program-
ming model which can effectively leverage the architecture
is essential. An exploration of alternative/complimentary
programming models to the ubiquitous Message Passing
Interface (MPI) [3], [4] is being undertaken by Partitioned
Global Address Space (PGAS) models such as Global Ar-
rays [5], Unified Parallel C (UPC) [6], Co-Array Fortran [7],
IBM X10 [8] and Chapel [9]. PGAS models rely on scalable

distribution of frequently used data structures (arrays/trees),
and asynchronous read/writes (get/put) to these structures
for load balancing, work-stealing and resiliency [10]. A
divergence from MPI CSP execution model is evident
with research efforts such as PLASMA [11], DaGuE [12]
and Global Futures [13]. An essential component of the
PGAS models is the underlying communication infrastruc-
ture. The communication infrastructure provides abstractions
for remote memory access (RMA), active messages (AM),
atomic memory operations (AMOs), and synchronization.
The communication runtime must harness the architectural
capabilities and address the hardware limitations to scale the
PGAS models.

This paper presents a design of scalable PGAS commu-
nication subsystem on Blue Gene/Q. The proposed frame-
work involves designing time-space efficient communication
protocols for frequently used datatypes such as contiguous,
uniformly non-contiguous with Remote Direct Memory Ac-
cess (RDMA). The proposed design accelerates the load
balance counters, frequently used in applications such as
NWChem [14] using asynchronous threads due to the lack of
network hardware support. The design space involves using
the QPUs for accelerating fused multiply-add (accumulate)
operations, and alleviating unnecessary synchronization by
setting up status bit for memory regions. An implementation
and evaluation of the proposed design with Aggregate Re-
mote Memory Copy Interface (ARMCI) [15] shows a get la-
tency of 2.89 µs and bandwidth of 1775 MB/s resulting in ≈
99% communication efficiency. The load balance counters,
accelerated using asynchronous thread based design reduce
the execution time of NWChem [14] by up to 30% using
Self Consistent Field theory on 4096 processes.

A. Contributions:

Specifically, the contributions of the paper are:

• Detailed time-space complexity models of PGAS com-
munication systems using Parallel Active Messaging
Interface (PAMI). The paper contributes algorithms
for datatypes (contiguous, uniformly non-contiguous)
get/put communication and efficient handling of con-



flicting memory accesses, while providing location con-
sistency [16].

• Application driven use-case to show that RDMA is nec-
essary, but not sufficient for PGAS models. An asyn-
chronous thread based design is presented to address
the hardware limitations for load balance counters.
Generic accumulate operations are accelerated using
QPX instruction set architecture.

• An in-depth performance evaluation and analysis using
communication benchmarks with datatypes, load/store
(get/put) operations, atomic memory operations us-
ing up to 4096 processes. Performance analysis with
NWChem [14] using Self consistent field highlights a
need for asynchronous threads for load balancing, and a
need for network hardware support in future Blue Gene
architecture.

• Extensive discussion on the impact of the proposed
design (and missing features) to other popular PGAS
models such as CAF, UPC, X10 and Chapel. A major
portion of the design is applicable to CAF, and Chapel,
while active message extensions are required for UPC
and X10.

The rest of the paper is organized as follows: Sec-
tion II provides a background of the proposed design.
Section III provides a solution space for designing scalable
PGAS communication subsystem, time-space tradeoff of
communication protocols for datatypes, accelerating atomic
memory operations and implementation details. Section IV
provides a performance evaluation of the proposed design
using communication benchmarks, application kernels such
as Lattice Boltzmann simulation, LU decomposition and
NWChem [14], a high performance computation chemistry
application designed using Global Arrays. Section V pro-
vides a broader impact on designing PGAS models such as
CAF, UPC, X10 and Chapel using the lessons learned in
the proposed design. Section VI provides related work on
designing scalable communication subsystems. Section VII
concludes and presents future directions.

II. BACKGROUND

This section provides a background for designing scal-
able PGAS communication subsystem for Blue Gene/Q. A
description of Blue Gene/Q [1] and ARMCI [15] is provided
as follows.

A. Blue Gene/Q Architecture

Blue Gene/Q is the third supercomputer design in the Blue
Gene series. It continues to expand and enhance the Blue
Gene/L and /P architectures. The Blue Gene/Q Compute
chip is an 18 core chip. The 64-bit PowerPC A2 processor
cores are 4-way simultaneously multi-threaded (SMT), and
run at 1.6 GHz. Each processor core has a SIMD Quad-
vector double precision floating point unit, the QPU, after
which the system is named. The processor cores are linked

by a crossbar switch to a 32 MB eDRAM L2 cache. The L2
cache is multi-versioned, supports transactional memory and
speculative execution, and has hardware support for atomic
operations [2]. L2 cache misses are handled by two built-in
DDR3 memory running at 1.33 GHz [1], [2]. 16 Processor
cores are used for computing, and a 17th core for operating
system assist functions such as interrupts, and asynchronous
I/O. The 18th core is fused out.

Blue Gene/Q Compute nodes are interconnected using a
5D torus configuration with ten 2 GB/s bidirectional links.
5D torus increases the bisection bandwidth in comparison to
Blue Gene/P, increases the partitioning capacity and reduces
the system diameter. Barrier and Collective communication
network are integrated with the torus network. Blue Gene/Q
supports deterministic and dynamic routing. However, the
software interfaces at the point of paper submission support
deterministic routing only. Unlike Cray Gemini [17], [18],
Blue Gene/Q torus interconnect does not provide support for
NIC atomic memory operations. Blue Gene/Q provides rich
software primitives for Active Messages and Remote Mem-
ory Access (RMA) model using Parallel Active Messaging
Interface (PAMI). PAMI supports primitives for client cre-
ation, context creation, end-point creation, memory regions
for Remote Direct Memory Access (RDMA), contiguous
put/get and read-modify-write operations. These primitives
are used in designing scalable PGAS communication sub-
system on Blue Gene/Q architecture.

B. Aggregate Remote Memory Copy Interface

ARMCI [15] is a scalable communication runtime sys-
tem which provides communication interfaces for remote
memory access models. ARMCI provides communica-
tion primitives for data-types (contiguous, uniformly non-
contiguous and general I/O vector), atomic memory opera-
tions (AMOs) and synchronization. It provides primitives for
collective/non-collective memory allocation, atomic memory
operations (fetch-and-add, compare-and-swap), bulk accu-
mulate operations and lock/unlock operations. ARMCI sup-
ports the location consistency model [16]. The primitives
support pairwise and collective memory synchronization.
Support for non-blocking communication interfaces with
explicit and implicit handles are supported, which follow
buffer reuse semantics similar to MPI [3], [4].

Figure 1 shows software ecosystem of Global Arrays [5]
and ARMCI. The Global Arrays programming model pro-
vides abstractions for distributed arrays and leverages the
communication primitives provided by ARMCI. Global Ar-
rays programming model has been used for designing many
scalable applications in domains such as chemistry [14]
and sub-surface modeling [19]. ARMCI leverages the low
level network primitives provided by modern networks and
multi-core systems. It is supported on clusters with com-
modity interconnects (InfiniBand [20], Ethernet) and high-
end systems (IBM BG/P, Cray XTs, Cray XE6/XK6 [17],



[18]). This paper primarily focusses on designing a scalable
PGAS communication layer for Blue Gene/Q systems using
ARMCI.

III. SCALABLE ARMCI DESIGN ON BLUE GENE/Q

This is followed by a discussion of preliminaries: time-
space utilization of scalable communication protocols for
ARMCI using PAMI communication runtime. This is fol-
lowed by a detailed description of scalable communication
protocols for load/store (get/put) primitives with data-types
(contiguous, uniformly non-contiguous). The subsequent
section makes a strong case for using asynchronous threads,
largely due to missing critical network hardware features
in Blue Gene/Q such as AMOs. The section concludes with
important implementation details to reduce network synchro-
nization traffic in order to maintain location consistency [16].

A. Overview of IBM Parallel Active Messaging Interface
(PAMI)

IBM Parallel Active Messaging Interface (PAMI) is a
recently proposed communication interface for Active Mes-
saging and Remote Memory Access (RMA) primitives on
Blue Gene/Q.

1) Fundamentals: Figure 2 shows PAMI terminology
with an example. A process must create a unique communi-
cation client for allocating network resources. A client must
create at least one communication context. PAMI contexts
are threading points, which may be used to optimize con-
current communication operations - multiple communication
contexts may progress independently. A communication
context must create end-points - objects which are used to
address a destination in a client. A local endpoint must be
created before initiating an active messaging or put request.
A remote endpoint is required for get and atomic memory
operations (AMOs).

2) Active Messaging Flavors: PAMI provides interfaces
for non-blocking active messages with a support for local
and remote call-backs. Arbitrary size data may be sent using
an active message - the data may be consumed after the
initial call-back has been executed. Small data transfers are
coalesced with active message header to reduce latency. Bulk
data transfer requires that the destination client provides a
receive buffer up on call-back execution. Active messaging
interfaces are non-blocking and execute a local call-back
for notifying completion. An exception is PAMI immediate
variant of active message, which has blocking completion
semantics.

3) Remote Memory Access (RMA): PAMI supports RMA
model by providing remote load/store (get/put) for contigu-
ous data transfer, AMOs (add, fetch-and-add, compare-and-
test) and primitives for synchronizing the communication
end-points. The RMA model may use Remote Direct Mem-
ory Access (RDMA) by leveraging memory region(s). A
memory region is meta-data for a region of memory used

as an RMA source/target. The memory region must be
created before RDMA operations can be initiated. The local,
remote memory region information, and offset from the base
addresses are required parameters for RDMA operations.
PAMI RMA operations are non-blocking; a local/remote
call-back function is required for notifying local/remote
completion, respectively.

4) Ordering and Completion Semantics: By default,
PAMI communication primitives provide message order-
ing between a pair of processes. This is useful, but not
required for location consistency semantics maintained by
ARMCI [16]. An exception to this rule is atomic memory
operations (AMOs), which are not ordered with respect to
each other and with other messages in flight. This is a
semantic mismatch with ARMCI, which requires AMOs to
be ordered with other RMA requests.

The local completion semantics ensure that the message
has been successfully sent out of the interconnect, and
the user buffer may be re-used. Message arrival at the
destination is notified using (an optional) remote call-backs.
In contrast, Cray Gemini Interconnect [17], [18] provides
location consistency with Distributed Memory Applications
(DMAPP). Similarly, a local completion queue entry (CQE)
with InfiniBand [21] reliable transport semantics implies an
acknowledgement from the remote network interface card
(NIC).

B. Preliminaries

This section focusses on time-space complexity of design-
ing ARMCI on Blue Gene/Q. Table I shows the attributes
used in the following sections to model the space and
time complexity of setting up ARMCI on Blue Gene/Q
using PAMI. These attributes are used to derive the space
utilized by data structures and space-time tradeoff(s) of
communication protocols for RMA primitives.

Property Symbol
1 Message Size for Data Transfer m
2 Total Number of Processes p
3 Number of Processes/Node c
4 Endpoint Space Utilization α
5 Endpoint Creation Time β
6 Memory Region Space Utilization γ
7 Memory Region Creation Time δ
8 Context Space Utilization ε
9 Context Creation Time %

10 Number of Contexts ρ
11 Communication Clique ζ
12 Number of Active Global Address Structure σ
13 Number of Local Buffers used for Communication τ

Table I
PAMI TIME AND SPACE ATTRIBUTES

PAMI communication context(s) must be created be-
fore creating a communication endpoint for RMA/Active
Messaging request. Space (Mc) and time (Tc) complex-



Figure 1. Software Ecosystem of Global Arrays and ARMCI
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Figure 2. An Example of PAMI Setup with 3 processes: Process 0 and 2
have two communication contexts, Process 1 has only one context

ity/process is:
Mc = ε.ρ (1)

Tc = %.ρ (2)

The empirical value of ρ is typically 1. In the later
sections, a case is presented, when using more contexts may
be beneficial for accelerating PGAS communication.

A communication endpoint may be created as the com-
munication clique (ζ) is generated during the lifetime of an
application. Endpoint creation is local - active message and
put communication primitives require only a local endpoint
for initiating a data transfer. The local endpoint space uti-
lization (Me) and time complexity (Te) for communication
clique ζ is:

Me = ζ.α.ρ (3)

Te = ζ.β.ρ (4)

The get communication primitive requires a remote end-
point. Hence, a space-time tradeoff exists in designing get
primitive protocols: A source may use an active message to
send the local address to a remote process, and the remote
process performs a put to complete the get operation. This
protocol alleviates memory requirement for endpoint cre-
ation. However, it requires involvement from remote process
to complete the get operation. The proposed implementation
caches endpoints for the communication clique increasing
the space for Me, similar to previously proposed approaches
for other Interconnects [20].

Blue Gene/Q supports Remote Direct Memory Access
(RDMA). RDMA operations require that a memory region is
created before using the region as a source/target of commu-
nication. The meta-data for memory region is independent
of the size of memory region. The space complexity(Mr)
and time complexity (Tr) is:

Mr = τ.γ + σ.ζ.γ (5)

Tr = τ.δ + σ.δ (6)

The space complexity Mr includes the memory required
for caching the memory regions for communication clique
and number of local buffers used for communication. With
strong scaling, ζ ≈ p, which is prohibitive on a memory
limited architecture like Blue Gene/Q. The proposed imple-
mentation addresses the memory limitation by using a re-
mote memory region cache. Missing cache entries are served
using an active message to the destination; the replacement
policy uses least frequently used (LFU) algorithm.

The next section presents a design for communication
protocols, which are optimized for a data-types (contigu-
ous/strided), load/store (get/put) requests, atomic memory
operations and synchronization.

C. Remote Memory Access Primitives

1) Contiguous Data-type: RDMA requires the source and
target of RDMA to be contiguous in memory. Consequently,
the contiguous data-type communication uses RDMA, when
possible. An associated memory region cache is searched for
finding local, remote memory regions, base addresses, and
offsets for RDMA transfer.

At scale, the creation of memory region may fail/the space
utilization of memory regions/endpoints may become pro-
hibitive. The proposed design uses a fall-back protocol with
active messages for contiguous data-type. Using the popular
LogGP [22] model for communication (o: time during which
processor is busy in communication, L: network latency, G:
inverse of bandwidth) , the latency for get (Trdma) operation
using RDMA and fall-back (Tfallback) is defined as:

Trdma = o+ L+ (m− 1).G (7)



Tfallback = o+ L+ o+ (m− 1).G (8)

An additional o is observed for fall-back protocol, since
the remote process/thread is involved in response to the get
request. For bulk transfers, Trdma and Tfallback are ≈ m.G.
However, Tfallback ∈ Ω(Trdma) : Fall-back protocol requires
involvement of a remote process/thread to make progress on
data transfer. Trdma does not require involvement from a
remote process/thread for communication progress. Get is a
dominant communication primitive in PGAS applications,
hence using RDMA is critical for scaling these applica-
tions [20], [18].

The model for put communication is similar to the get
model. The put primitive does not have a fall-back protocol:
PAMI’s default RMA messaging primitive may be used
when either memory region is not available.

The space complexity of communication protocols for
contiguous data-type is independent of m, and partially
dependent on the degree of non-blocking data transfers. This
makes RDMA based protocols conducive for large scale
systems such as Blue Gene/Q.

2) Uniformly Non-contiguous (Strided) Datatype Get/Put
Communication: Uniformly non-contiguous (strided) data
type is used in patch-based data transfer of distributed
data structures. ARMCI provides interfaces to represent
multi-dimensional patch requests with very little memory
usage in comparison to the general I/O vector requests [4].
Figure 3 shows an example of strided put communication
from process Pi’s local buffer to patches (dashed lines) of
processes Pr, Ps, Pt, and Pu, respectively.

Pi 

Pt 

Pr Ps 

Pu 

Figure 3. Example of Strided Communication, Process Pi writes rectan-
gular Patches to Processes Pr , Ps, Pt, and Pu respectively

Legacy communication protocols for strided data type use
pack/unpack strategies, which require data packing at local
process and data unpacking at the remote process. These
protocols require intermediate buffering and flow control for
message exchange.

Modern networks provide high messaging rate and net-
work concurrency, obliviating a need for a pack/unpack
protocol. An important implication is that individual chunks
may use RDMA for data transfer, eliminating a need of flow
control and remote progress. A high throughput efficiency

of networks such as Blue Gene/Q interconnection network
supports this argument. The proposed communication pro-
tocols for these data type post a list of non-blocking RDMA
requests, leveraging the network concurrency effectively. For
a message size (m), divided in (s) dimensions as (m =∏s−1

i=0 li), l0 is the size of the contiguous chunk, the latency
(Tstrided) is given as:

Tstrided ≈ o.
s−1∏
i=1

li +m.G = o.m/l0 +m.G (9)

As Equation 9 suggests, Tstrided is inversely proportional
to the size of the contiguous chunk. This may be a problem
for tall-skinny communication. The proposed approach uses
PAMI typed data type communication for such transfers,
which perform copy-based transfer. For a majority of strided
data transfers, zero copy based protocol is used. The space
complexity is ∈ Θ(k.m/l0), where k is the number of
outstanding message requests from the user.

Some networks like InfiniBand [21] provide a Send-
Gather and Receive-Scatter functionality, which may be
used to post a list of RMA requests in a single descrip-
tor. However, this functionality is not available with Blue
Gene/Q.

D. A Case for Asynchronous Progress Threads

A significant subset of communication primitives map
directly to RDMA. Another subset of important operations
are AMOs such as read-modify-write instructions for load
balance counters and generic accumulate operations. Unlike
Cray Gemini Interconnect [18], [17] and InfiniBand [21],
Blue Gene/Q does not provide hardware support for AMOs
on the Network Interface Card (NIC). Additionally, PAMI
software interface for AMOs does not support ordering.
Under these constraints, the location consistency semantics
of ARMCI would require that each PAMI read-modify-write
operation is fenced before issuing another request. This is
prohibitive for applications which largely depend on load
balance counters.

The proposed design uses an active message based pro-
tocol for read-modify-write operation. A request for read-
modify-write instruction such as fetch-and-add (for load
balance counters) and compare-and-swap (lock operations)
is handled using active messages. A timely response to these
operations is critical for load balancing and work stealing.

The SMT architecture of Blue Gene/Q comes to rescue
to address the hardware limitations for AMOs. Each SMT
thread may not be sufficient for an independent process; it
may be used to schedule an asynchronous thread for com-
munication progress. The number of asynchronous threads
to be used on a chip may be increased as per the application
requirements. Active message requests from other processes
are handled by the asynchronous thread. The other SMT
threads may be used to schedule computation.



An implementation artifact of using an asynchronous
thread is guarding the PAMI progress engine with locks.
The inherent competition of using locks may starve the asyn-
chronous thread from servicing remote requests. Conversely,
the main thread may not be able to make progress on local
completions, while the asynchronous thread holds the lock.
In the proposed design, this limitation is addressed by using
multiple communication contexts (ρ). This enhancement
improves the progress schedule for each thread with slightly
increased space complexity (ρ.ε). Each communication con-
text makes independent progress and receives completions
targeted for the particular context. Use of asynchronous
thread for load balance counters is optional - an application
may decide not to use asynchronous thread if it does not
rely on load balance counters.

1) Bulk Accumulate Operations: The lack of network
hardware support in Blue Gene/Q requires that the accu-
mulate operations use an active message approach. Bulk ac-
cumulate operations are pivotal in linear algebra, where pro-
cesses asynchronously update a block of distributed memory
( An example is C matrix in matrix-matrix multiplication,
C = A · B).

Blue Gene/Q supports QPX instruction set. QPX is a
vector SIMD model, with four execution slots and a register
file containing 32 256-bit quad processing registers (QPRs).
The QPX architecture contains a full set of arithmetic
instructions, including fused multiply-add (FMA) instruc-
tions, a new set of permute instructions for data shuffling
across execution slots, comparison, conversion, and move
instructions [1], [2]. The proposed instruction architecture
is useful for generic accumulate operations.

ARMCI blocking accumulate primitives follows the
buffer-reuse semantics similar to MPI [3], [4]. Communi-
cation protocols for accumulate operation may be classified
as source−driven and target−driven. The classification
is based on the process/thread performs the local accumulate
operation. A recent work proposed a source − driven
pipelined algorithm for accumulate operation, which over-
laps the get and put phases with local computation [23],
[18]. A target−driven accumulate communication protocol
which uses as active message to the process/asynchronous
thread is proposed, with accumulate performed by the pro-
cess/asynchronous thread. The proposed target − driven
approach is beneficial with read-only (A, B matrix in C
= A · B) and accumulate-only (C matrix in C = A · B)
distributed data structures - a primary use case for PGAS
application kernels. The result of the C matrix is needed
only at the end of the dgemm - offloading the accumulate
operation to the asynchronous thread is beneficial to the
main thread, as the main thread may continue its execution
without any interruption for communication progress.

E. Implementation Details

1) Conflicting Memory Accesses: ARMCI scalable proto-
cols layer provides location consistency [16] by tracking the
read (get) and writes (put, accumulate) to the communication
clique (ζ). A naive algorithm maintains a communication
status for a target (cstgt) by appropriately setting it as
read/write as the data requests are generated. An outstanding
write to a process must be fenced before any read requests
are serviced from that process. This approach scales well in
space complexity ∈ Θ(ζ), but it suffers from false positives.

Using dgemm as an example, it can be noted that A,
B and C matrices would be distributed equally amongst
processes for best memory and computation balancing.
To overlap communication with computation, a process
would request multiple non-blocking gets and perform asyn-
chronous accumulates to the C matrix. Under the naive
algorithm, each get would require that the accumulates
have been fenced before gets are serviced. However, this
is not necessary, since the read and write requests are
from different distributed data structures - a case for false
positives.

The problem may be alleviated largely by locally set-
ting communication status for each memory region (csmr)
appropriately as the read/write(s) are requested. The pro-
posed approach uses an 8-bit integer to set the csmr for
each distributed data structure. Accumulate operations are
associative - ordering among updates is not required. The
space complexity is ∈ Θ(σ.ζ).

With this approach, only the put operation is a false
positive, in which updates must occur in program order. put
is the least common of the read/write operations. The load
balance counters do not have this problem, since a separate
memory region is allocated for them on-demand.

IV. PERFORMANCE EVALUATION

This section presents a performance evaluation of our pro-
posed design. A set of detailed preliminary communication
benchmarks are used to understand the performance of dif-
ferent communication primitives in multiple scenarios. This
is followed by performance evaluation with application ker-
nels such as LU decomposition, and Lattice Boltzmann sim-
ulation. The section concludes with a detailed performance
evaluation using NWChem [14], a petascale computational
chemistry application designed using Global Arrays [5] and
ARMCI [15]. The performance uses ABCDET mapping
for 5D torus. Up to 4096 processes (half-midplane) is used
for performance evaluation (limited by the time allocation).

A. Fundamentals

Table II contains the attribute values used in performance
evaluation. Values of α, β, γ, δ and ε are computed by
calculating the actual time during program execution. The
maximum data transfer size is 1 MB, which is covers a large
percentile of message size used in real applications.



Property Symbol Value
1 Message Size for Data Transfer m 16 Bytes - 1 MBytes
2 Total number of processes p 2 - 4096
3 Number of processes/Node c 1 - 16
4 Endpoint Space Utilization α 4 Bytes
5 Endpoint Creation Time β .3 µs
6 Memory Region Space Utilization γ 8 Bytes
7 Memory Region Creation Time δ 43 µs
8 Context Space Utilization ε varies
9 Context Creation Time % 3821 - 4271 µs
10 Number of contexts ρ 1 - 2
11 Communication Clique ζ 1 - p
12 Number of Active Global Address Structure σ 1 - 7
13 Number of Local Buffers used for Communication τ 1 - 3

Table II
EMPIRICAL VALUES OF TIME AND SPACE ATTRIBUTES

The endpoint space and time complexity is 4 bytes and
0.3 µs, which makes the memory consumption highly scal-
able for building even larger systems. The memory region
space utilization is 8 bytes, which makes it very scalable
caching active global address space structures (σ: 1-7) and
local buffers (τ : 1-3). The communication clique (ζ) varies
from 1-p. ζ is not necessarily generated in an all-to-all
communication step, but gets, and accumulates to many
processes during an application lifetime. The observation
is relevant for NWChem [14], which uses load balance
counters, and asynchronous gets and accumulates with
little to no regularity in communication patterns.
B. Preliminary Empirical Analysis

1) Contiguous Datatype Performance: Figure 4 shows
the raw latency performance for inter-node communication
using gets and puts. A get latency of 2.89 µs is observed
for 16 bytes. RDMA is used in both primitives, as it is
the preferred method for mapping get/put requests. The put
latency is 2.7 µs, but it primarily indicates send overhead and
local completion. This communication type reflects usage
pattern for many kernels, which do not require the result of
write (put or accumulate) to be available immediately. A
drop at 256 bytes is observed in latency. This is primarily
due to fact that cache aligned data transfer(s) are faster than
unaligned data transfer (m < 256 bytes).

Figure 5 shows the performance of put and get bandwidth
using two processes and inter-node communication. The
get overhead (due to round-trip) is visible till 8K bytes.
The curves achieve a peak bandwidth of 1775 MB/s. Blue
Gene/Q link bandwidth is 2 GB/s, with overhead a maximum
of 1.8 GB/s is available for performance [1], [2]. A peak
bandwidth of 1775 MB/s asserts the efficacy of the proposed
design for raw communication benchmarks achieving ≈
99% efficiency.

Figure 6 shows the effective latency/byte. The test is
used to determine the inflection point which may be used
for message aggregation by an application. This is useful
for applications, which may send out many small messages
over a period of time, as observable in graph applications.

Beyond 4K bytes, the latency/byte is ≈ 1ns. Figure 7 shows
bandwidth efficiency: ratio of message bandwidth to peak
bandwidth (1.8 GB/s). Blue Gene/Q torus interconnection
network is highly effective for small/medium messages,
N1/2 (message size at which half of peak bandwidth can
be achieved) is 2 Kbytes. An efficiency ≥ 90% is achieved
beyond 16 Kbytes message size.

Figure 8 shows the get latency as a function of process
rank. A pseudo-oscillatory curve is observed with cluster(s)
of processes observing similar latency (due to same network
distance from process 0). This is an artifact of using 5D torus
- with ABCDET mapping, the distance between process 0
and other process oscillates explaining the latency curve.
Minimum observed latency is 2.89µs and the maximum
latency is 3.38µs. With 2048 processes, 128 nodes are used
(128 · 16 = 2048). Hence:

128 = 2(A) · 2(B) · 4(C) · 4(D) · 2(E) (10)

where n(dim): n is the size of the dimension and dim
is the dimension name. With wrap-around, a maximum
distance of (2+2+4+4+2)/2 = 7 is present. The difference
between maximum and minimum latency is 0.49µs, hence
each hop adds 0.49/(7 · 2(round-trip)) resulting of 35
ns latency increment per hop. This matches closely with
the empirical values stated by Chen et al [2]. Hence, the
proposed approach does not incur any extra overhead in get
communication at scale.

2) Strided Datatype Communication Performance: Fig-
ure 9 shows the performance of strided communication
using get and put primitives with 1M Bytes data transfer.
The curve is relatively identical to Figure 5 as l0 (size
of the contiguous chunk) is increased. It is a worthwhile
observation that for each instance of l0 ≤ 1M Bytes, multiple
outstanding messages are initiated from the source. Unlike
InfiniBand [21] and Cray Gemini [17], [18], the bandwidth
does not increase for small-medium size messages.

3) Atomic Memory Operations (AMOs): The perfor-
mance evaluation of AMOs is classified in load balance
counters and accumulate operations.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

16 64 256 1K 4K

L
a

te
n

c
y
 (

u
s
)

Message Size(Bytes)

Put
Get

Figure 4. Raw Latency Performance

 0

 500

 1000

 1500

 2000

16 64 256 1K 4K 16K 64K 256K

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (Bytes)

Put
Get

Figure 5. Raw Bandwidth Performance

 0

 2

 4

 6

 8

 10

 12

256 1K 4K 16K

L
a

te
n

c
y
/B

y
te

 (
n

s
)

Message Size(Bytes)

Put
Get

Figure 6. Effective Latency/Byte

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

256 1K 4K 16K 64K 256K

R
a

ti
o

 t
o

 P
e

a
k
 B

a
n

d
w

id
th

Message Size(Bytes)

Put
Get
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as a function of l0, m = 1 MBytes

Load Balance Counters: Load balance counters are
essential ingredient for applications such as NWChem [14]
which use non-SPMD execution models. Figure 10 compares
the average latency for read-modify-write (fetch-and-add)
observed by processes 1 − p as fetch-and-add is requested
on a counter resident at process 0. This is a micro-kernel
of computation phases in NWChem [14] The figure shows
performance with/without using asynchronous threads and
with/without computation by process 0. It is observable that
added computation to process 0 increases the average latency
observed by each process significantly (tcompute by process
0 is ≈ 300µs). The default and asynchronous thread based
approach perform similarly when process 0 is not involved
in computation. A linear trend is observed in latency.

There are multiple aspects of this result. Asynchronous
threads are important for accelerating load balance counters.
However, even with asynchronous thread(s), the latency
increases linearly with process size. This observation is in
contrast with Cray Gemini [17], [18], [23], where a sub-
linear (step) function is observed in performance. Given the
high use of load balance counters, hardware assisted fetch-
and-add such as ones with InfiniBand [21] and Cray Gemini
can help accelerate the load balance counters without a need
of asynchronous threads.

Accumulate Operations: Figure 11 shows the perfor-
mance of accumulate operations for a message size of
1MBytes. Similar to Figure 9, the size of l0 is increased.
The source-driven protocols uses a pipelining approach/non-

pipelined approach to achieve better communication-to-
computation (local accumulate) overlap. The completion se-
mantics (similar to MPI) of accumulate provide a significant
advantage to target-driven protocols. The test does not use a
fence after every operation, as this is not a common use
case for application kernels such as dgemm. Each local
accumulate uses QPX instruction set for accelerating the ac-
cumulate operation. The rest of the performance evaluation
uses target-driven accumulate based protocol for achieving
best performance.

C. Evaluation with Application Kernels

This section shows the performance results for application
kernels: LU decomposition, and Boltzmann simulation.

1) LU Decomposition: The LU decomposition kernel fac-
tors a matrix A of dimension N in L (Lower) and U (Upper)
matrices, respectively. This factorization is useful in solving
the set of linear equations. A dense LU decomposition kernel
designed using Global Arrays with 2D block data distri-
bution is used for evaluation (partial pivoting is not used).
The algorithm uses pre-allocated buffers for block owner(s)
to push (non-blocking put)/pull (non-blocking get) the data
asynchronously. Pre-putting/getting is used for achieving
communication-to-computation overlap. The communication
volume in LU decomposition is ∈ Θ(

√
(p)) and the overall

computation is inversely proportional to p. Figure 12 shows
the performance of LU decomposition with a matrix size
dimension of 32768, block distribution and strong scaling.
The overall computation time reduces from 135s - 70s
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for 512 - 2048 processes, respectively, which is inversely
proportional to p. The communication time increases, as pre-
put size becomes latency bound with strong scaling and the
number of processes increase in each dimension. Beyond
2K processes, the reduced computation/process results in no
performance improvement.

2) Lattice Boltzmann Simulation: Lattice Boltzmann sim-
ulation is used for simulating flows in topologically compli-
cated geometries, such as porous media, and for simulating
flow in multi-phase systems. It is used as an alternative to
traditional computational fluid dynamics (CFD), which are
not suitable for multi-phase flow. The Boltzmann simulation
kernel is designed using Global Arrays, which uses the
proposed ARMCI design for accelerating communication
on PAMI interface. The kernel uses a 2D decomposition
and updates the boundaries using ghost cells exchange.
Empirical values of computation (tcompute) and ghost cells
update (tghosts) is shown in Figure 13. The simulation uses
strong scaling.

The algorithm has a fixed communication pattern. With
strong scaling, the overall computation per process decreases
in p and communication volume decreases in

√
(p) (for 2D

decomposition). This pattern is observed up to 1K processes,
after which tghosts flattens out since the message exchange
is latency bound. With strong scaling, tcompute reduces
from 512-2048 processes inversely proportional to p before
flattening out due to reduced work/process. The simulation
does not need asynchronous threads, as it does not use load
balance counters

D. Performance Evaluation with NWChem: Computational
Chemistry at Scale

1) Overview of NWChem Self Consistent Field Calcula-
tion: The NWChem Self Consistent Field (SCF) calculation
involves a number of different compute phases. The first
calculation starts from with a molecular electron density
matrix which is constructed from a sum of atomic contri-
butions. The computation involves contracting the electron
density matrix with 2-electron integrals that represent the
electron-electron interaction to produce contributions to the

Fock-matrix. Figure 15 shows the algorithm for SCF cal-
culation. The local compute is abstracted as do work. The
construction of fock matrix is accelerated using load balance
counters. The processes request a fetch-and-add of the load
balance (SharedCounter in Figure 15) counter, perform gets,
compute locally and update the output matrix, as shown in
Figure 15.

my_next_task = 
SharedCounter() 
  do i=1,max_i 
    if(i.eq.my_next_task) 
then 
      call ga_get() 
        (do work) 
      call ga_acc() 
      my_next_task = 
SharedCounter() 
    endif 
  enddo 
barrier() 

D µ
ν 

Figure 15. SCF Calculation Schematic Diagram

2) Performance Evaluation: The performance evaluation
of SCF uses 6 molecules. This is smaller version of the
original input deck (24 water molecules) to the Gordon Bell
finalist used by Apra et al. for executing on full ORNL
Jaguar system [24]. Figure 14 shows the performance using
6 water molecules on 1024, 2048 and 4096 processes,
respectively. A total of 644 basis functions are used for the
calculation. Performance is compared using default (D) and
Asynchronous Thread (AT) based approach.

The asynchronous thread based approach outperforms the
default approach by reducing the execution time up to 30%;
the overall time in load balance counters reduces sharply for
asynchronous thread based approach. This is explained as
follows: For most of the calculation, the load balance counter
is held by process 0. Any request to fetch-and-add on the
counter is performed by the main thread, which is possible
only when the main thread calls the PAMI progress engine.
The delay observed by other processes is proportional to
time process 0 spends in computation. The problem worsens
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further because as soon as process 0 gets another task to
compute, other processes may have to wait for it finish
to get the next task. Hierarchical load balancer counters
may alleviate the problem slightly, but may need multiple
request(s) to get a shared counter.

In contrast, the asynchronous thread is not needed for
shared load balanced counters with Cray Gemini intercon-
nect [17]. In the Cray Gemini interconnect, the AMOs are
cached on the network interface card, providing a sub-
linear step function for load balancing . Get primitive is
used predominantly for communication, which is accelerated
using RDMA. An important conclusion from this result is
that RDMA is necessary, but not sufficient to accelerate
scalable PGAS applications such as NWChem for even a
medium job size evaluation, such as one presented here. The
result with NWChem, a complete application, underlines a
need for network hardware support of AMOs to accelerate
the application. It is expected that the current study would
help in designing the future generation of Blue Gene series
Interconnects, as PGAS models and alternative execution
models gain prominence in scientific applications.

V. BROADER IMPACT

This section discusses impact of the proposed design
for alternative PGAS programming models and associated
communication runtime systems. Specifically, examples of
Rice Co-Array Fortran (CAF), Berkeley Unified Parallel C
(UPC), IBM X10 and Cray Chapel are used.

Rice CAF 1.0 has previously been designed using
ARMCI [15], the co-array notation of CAF easily trans-
lates to RMA load/store (get/put for remote processes) at
the runtime. The fortran notation natively supports multi-
dimensional arrays, which may use optimized communica-
tion protocols for strided communication. CAF 2.0 extends
the specification for teams, which can easily translate to
ARMCI groups, with recent support for non-collective
memory allocation. The location consistency of CAF is a
direct match with ARMCI. CAF 2.0 supports list based
structures, which implies that the address is resolved dy-

namically. For these data structures, the CAF 2.0 runtime
may use active messages, such as supported in PAMI. The
proposed design of ARMCI does not support active message
interfaces. This limitation is currently being addressed.

Berkeley UPC uses GASNet communication subsystem,
which primarily uses active messages. PAMI also provides
support for active messages, which matches very well
with the needs of GASNet. Since PAMI supports large
header, and arbitrary size data transfer and no restrictions
on outstanding requests , no explicit flow control may
be required for GASNet. The recently proposed collective
communication primitives match very well with PAMI col-
lectives. Collectives are rarely used in Global Arrays based
applications, partly due to irregularity in data accesses and
computation. A primary use of GASNet is for small get/put
requests, which may use RDMA as the proposed design
has shown. GASNet 1.1 does not support AMOs, so an
asynchronous thread based design may not be needed. PAMI
supports ordering, while UPC does not necessarily guarantee
location consistency. However, the UPC programs should
work correctly, albeit at the expense of stricter ordering of
messages.

X10 and Chapel primarily use locality directed compu-
tation, which translates to using active messages for com-
munication. X10 uses “unified or global address space”, in
which a place (a process) may update data items only in the
current place. Updates on other places must be requested
using async, which translate to using active messages.
X10 supports distributed arrays, which may use ARMCI
style memory allocation and memory regions for RDMA,
if needed.

Chapel supports multi-resolution, strided and sparse ar-
rays, which are well supported by the proposed design. Set
operations and associative containers may use the underlying
atomic and reduction operations supported by ARMCI. The
task parallelism is beyond the scope of Global Arrays and
ARMCI, however, the asynchronous thread based proposed
design for AMOs may be used for accelerating task paral-
lelism with Chapel.



VI. RELATED WORK

Designing scalable communication subsystems has been
of interest to many research groups with primary focus on
two-sided communication with MPI [3], [4].

We are not aware of any published study on communi-
cation subsystem aspects of Blue Gene/Q. Many studies
have focused on micro-architecture aspects of the Blue
Gene/Q chip [1], [2]. Studies focusing on communication
subsystem aspects of other interconnects is presented below.
Multiple studies have been undertaken on designing scalable
communication subsystems on Cray Gemini Interconnect.
Scalable message passing for Cray Gemini Interconnect has
been proposed [25]. A similar study for Charm++ has been
undertaken [26]. However, these studies have focused on
message passing using uGNI, while the focus of the paper
is one-sided communication.

Scalable MPI design on InfiniBand has been addressed by
OpenMPI and MVAPICH/MVAPICH2 with salient features
such as RDMA, Shared Receive Queue (SRQ), Xtended
Reliable Connection, Fault tolerance with Automatic Path
Migration (APM) and multi-rail systems [27], [28], [29],
[30], [31]. Efforts for scalable MPI design in other Intercon-
nects such as Quadrics, Myrinet, High Performance Switch
have also been performed [32], [33], [34]. However, none
of the efforts above address the one-sided communication
aspects, which are addressed in this article.

A significant body of research has focused on performance
evaluation at the user-access layer for Interconnects such
as Cray Gemini Interconnect [18], [17]. However, the ef-
forts are for understanding the communication performance
of user-access layers, and not designing a communication
subsystem.

VII. CONCLUSIONS

This paper has presented a design of scalable PGAS com-
munication subsystems on recently proposed Blue Gene/Q
architecture. The proposed communication infrastructure is
used to design time-space efficient communication protocols
for frequently used data-types (contiguous, uniformly non-
contiguous) using Remote Direct Memory Access (RDMA)
get/put primitives. Load balance counters are accelerated
by using asynchronous threads, which are required due to
the missing network hardware support for Atomic Memory
Operations (AMOs). Synchronization traffic is reduced by
tracking conflicting memory accesses in distributed space
with slightly increment in space complexity and accumulate
operations are accelerated using QPX instruction architec-
ture. An evaluation with simple communication benchmarks
show a get latency of 2.89µs and peak bandwidth of 1775
MB/s resulting in ≈ 99% communication efficiency. Accel-
erated load balance counters improve the execution time by
up to 30% for NWChem self consistent field calculation on
half mid-plane - 4096 processes.
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