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Abstract—This paper presents a design of scalable Par-
titioned Global Address Space (PGAS) communication sub-
systems on recently proposed Blue Gene/Q architecture. The
proposed design provides an in-depth modeling of communica-
tion infrastructure using Parallel Active Messaging Interface
(PAMI). The communication infrastructure is used to design
time-space efficient communication protocols for frequently
used data-types (contiguous, uniformly non-contiguous) with
Remote Direct Memory Access (RDMA) get/put primitives.
The proposed design accelerates load balance counters by
using asynchronous threads, which are required due to the
missing network hardware support for generic Atomic Memory
Operations (AMOs). Under the proposed design, the synchro-
nization traffic is reduced by tracking conflicting memory
accesses in distributed memory with a slight increment in space
complexity. An evaluation with simple communication bench-
marks show a adjacent node get latency of 2.89µs and peak
bandwidth of 1775 MB/s resulting in ≈ 99% communication
efficiency.The evaluation shows a reduction in the execution
time by up to 30% for NWChem self consistent field calculation
on 4096 processes using the proposed asynchronous thread
based design.

I. INTRODUCTION

IBM Blue Gene/Q is a recently proposed system-on-a-
chip architecture with a potential for building supercomput-
ers with a peak performance of tens of PetaFlop/s (PF/s) [1],
[2]. At this massive scale, revisiting the programming mod-
els, which can effectively leverage the architecture is essen-
tial. An exploration of alternative/complimentary program-
ming models to the ubiquitous Message Passing Interface
(MPI) [3], [4] is being undertaken by Partitioned Global
Address Space (PGAS) models such as Global Arrays [5],
Unified Parallel C (UPC) [6], Co-Array Fortran [7], IBM
X10 [8] and Chapel [9]. PGAS models rely on scalable
distribution of frequently used data structures (arrays/trees),
and asynchronous read/writes (get/put) to these structures
for load balancing, work-stealing and resiliency [10]. An
essential component of the PGAS models is the underlying
communication infrastructure. The communication infras-
tructure provides abstractions for remote memory access
(RMA), active messages (AM), atomic memory operations
(AMOs), and synchronization. The communication runtime

must harness the architectural capabilities and address the
hardware limitations to scale the PGAS models.

This paper presents a design of scalable PGAS commu-
nication subsystem on Blue Gene/Q. The proposed frame-
work involves designing time-space efficient communication
protocols for frequently used datatypes such as contiguous,
uniformly non-contiguous with Remote Direct Memory Ac-
cess (RDMA). The proposed design accelerates the load
balance counters, frequently used in applications such as
NWChem [11] using asynchronous threads. The design
space involves alleviating unnecessary synchronization by
setting up status bit for memory regions. An implementation
and evaluation of the proposed design with Aggregate Re-
mote Memory Copy Interface (ARMCI) [12] shows a get la-
tency of 2.89 µs and bandwidth of 1775 MB/s resulting in ≈
99% communication efficiency. The load balance counters,
accelerated using asynchronous thread based design reduce
the execution time of NWChem [11] by up to 30% using
Self Consistent Field (SCF) theory on 4096 processes.

A. Contributions:

Specifically, the contributions of the paper are:
• Detailed time-space complexity models of PGAS com-

munication systems using Parallel Active Messaging In-
terface (PAMI) [13]. The paper contributes algorithms
for datatypes (contiguous, uniformly non-contiguous)
get/put communication and efficient handling of con-
flicting memory accesses, while providing location con-
sistency [14].

• Application driven use-case to show that RDMA is nec-
essary, but not sufficient for PGAS models. An asyn-
chronous thread based design is presented to address
the hardware limitations for load balance counters.

• An in-depth performance evaluation and analysis using
communication benchmarks with datatypes, load/store
(get/put) operations, atomic memory operations us-
ing up to 4096 processes. Performance analysis with
NWChem [11] using Self Consistent Field (SCF) high-
lights a need for asynchronous threads for load balanc-
ing, and a need for network hardware support in future
Blue Gene architecture.



The rest of the paper is organized as follows: Section II
provides a background of our work. Section III provides a
solution space for designing scalable PGAS communication
subsystem, time-space tradeoff of communication protocols
for datatypes, accelerating atomic memory operations and
implementation details. Section IV provides a performance
evaluation of the proposed design using communication
benchmarks, and NWChem [11], a high performance com-
putation chemistry application designed using Global Ar-
rays [5]. Section V provides related work on designing
scalable communication subsystems.

II. BACKGROUND

This section provides a background for designing scal-
able PGAS communication subsystem for Blue Gene/Q. A
description of Blue Gene/Q [1] and ARMCI [12] is provided
as follows.

A. Blue Gene/Q Architecture

Blue Gene/Q is the third supercomputer design in the Blue
Gene series. It continues to expand and enhance the Blue
Gene/L and /P architectures. The Blue Gene/Q Compute
chip is an 18 core chip. The 64-bit PowerPC A2 processor
cores are 4-way simultaneously multi-threaded (SMT), and
run at 1.6 GHz. Each processor core has a SIMD Quad-
vector double precision floating point unit, the QPU, after
which the system is named. The processor cores are linked
by a crossbar switch to a 32 MB eDRAM L2 cache. The L2
cache is multi-versioned, supports transactional memory and
speculative execution, and has hardware support for atomic
operations [2]. L2 cache misses are handled by two built-in
DDR3 memory running at 1.33 GHz [1], [2]. 16 Processor
cores are used for computing, and a 17th core for operating
system assist functions such as interrupts, and asynchronous
I/O. The 18th core is fused out.

Blue Gene/Q Compute nodes are interconnected using a
5D torus configuration with ten 2 GB/s bidirectional links.
5D torus increases the bisection bandwidth in comparison to
Blue Gene/P, increases the partitioning capacity and reduces
the system diameter. Barrier and Collective communication
network are integrated with the torus network. Blue Gene/Q
supports deterministic and dynamic routing. However, the
software interfaces at the point of paper submission support
deterministic routing only. Blue Gene/Q provides rich soft-
ware primitives for Active Messages and Remote Memory
Access (RMA) model using Parallel Active Messaging Inter-
face (PAMI). PAMI supports primitives for client creation,
context creation, end-point creation, memory regions for
Remote Direct Memory Access (RDMA), contiguous put/get
and read-modify-write operations. These primitives are used
in designing scalable PGAS communication subsystem on
Blue Gene/Q architecture.

B. Aggregate Remote Memory Copy Interface

ARMCI [12] is a scalable communication runtime sys-
tem which provides communication interfaces for remote
memory access models. ARMCI provides communica-
tion primitives for data-types (contiguous, uniformly non-
contiguous and general I/O vector), atomic memory opera-
tions (AMOs) and synchronization. It provides primitives for
collective/non-collective memory allocation, atomic memory
operations (fetch-and-add, compare-and-swap), bulk accu-
mulate operations and lock/unlock operations. ARMCI sup-
ports the location consistency model [14]. The primitives
support pairwise and collective memory synchronization.
Support for non-blocking communication interfaces with
explicit and implicit handles are supported, which follow
buffer reuse semantics similar to MPI [3], [4].

The Global Arrays programming model provides abstrac-
tions for distributed arrays and leverages the communication
primitives provided by ARMCI. Global Arrays programming
model has been used for designing many scalable applica-
tions in domains such as chemistry [11] and sub-surface
modeling [15]. ARMCI leverages the low level network
primitives provided by modern networks and multi-core
systems. It is supported on clusters with commodity inter-
connects (InfiniBand [16], Ethernet) and high-end systems
(IBM BG/P, Cray XTs, Cray XE6/XK6 [17], [18]). This
paper primarily focusses on designing a scalable PGAS com-
munication layer for Blue Gene/Q systems using ARMCI.

III. SCALABLE ARMCI DESIGN ON BLUE GENE/Q

This section begins with a brief overview of Parallel
Active Messaging Interface (PAMI). This is followed by a
discussion of preliminaries: time-space utilization of scal-
able communication protocols for ARMCI using PAMI
communication library. This is followed by a detailed de-
scription of scalable communication protocols for load/store
(get/put) primitives with data-types (contiguous, uniformly
non-contiguous). The subsequent section makes a strong
case for using asynchronous threads. The section concludes
with important implementation details to reduce network
synchronization traffic in order to maintain location consis-
tency [14].

A. Overview of IBM Parallel Active Messaging Interface
(PAMI)

IBM Parallel Active Messaging Interface (PAMI) is a
recently proposed communication interface for Active Mes-
saging and Remote Memory Access (RMA) primitives on
Blue Gene/Q. PAMI interface is general and available for
PERCS and x86 architectures as well.

1) Fundamentals: Figure 1 shows PAMI terminology
with an example. A process must create a unique communi-
cation client for allocating network resources. A client must
create at least one communication context. PAMI contexts
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Figure 1. An Example of PAMI Setup with 3 processes: Process 0 and 2
have two communication contexts, Process 1 has only one context

are threading points, which may be used to optimize con-
current communication operations - multiple communication
contexts may progress independently. A communication
context must create end-points - objects which are used to
address a destination in a client. A local endpoint must be
created before initiating an active message or put request.
A remote endpoint is required for get and atomic memory
operations (AMOs).

2) Active Messaging: PAMI provides interfaces for non-
blocking active messages with a support for local and remote
call-backs. Active messaging interfaces are non-blocking
and execute a local call-back for notifying completion. An
exception is PAMI immediate variant of active message,
which has blocking completion semantics.

3) Remote Memory Access (RMA): PAMI supports RMA
model by providing remote load/store (get/put) for contigu-
ous data transfer, AMOs (add, fetch-and-add, compare-and-
test) and primitives for synchronizing the communication
end-points. The RMA model may use Remote Direct Mem-
ory Access (RDMA) by leveraging memory region(s). PAMI
RMA operations are non-blocking; a local/remote call-back
function is required for notifying local/remote completion,
respectively.

4) Ordering and Completion Semantics: By default,
PAMI communication primitives provide message ordering
between a pair of processes1. This is useful, but not re-
quired for location consistency semantics maintained by
ARMCI [14]. An exception to this rule is atomic memory
operations (AMOs), which are not ordered with respect to
each other and with other messages in flight.

1This is true for dimension order routing, which is enabled by default
on Blue Gene/Q architecture

B. Preliminaries

This section focusses on time-space complexity of design-
ing ARMCI on Blue Gene/Q. Table I shows the attributes
used in the following sections to model the space and
time complexity of setting up ARMCI on Blue Gene/Q
using PAMI. These attributes are used to derive the space
utilized by data structures and space-time tradeoff(s) of
communication protocols for RMA primitives.

Property Symbol
1 Message Size for Data Transfer m
2 Total Number of Processes p
3 Number of Processes/Node c
4 Endpoint Space Utilization α
5 Endpoint Creation Time β
6 Memory Region Space Utilization γ
7 Memory Region Creation Time δ
8 Context Space Utilization ε
9 Context Creation Time %

10 Number of Contexts ρ
11 Communication Clique ζ
12 Number of Active Global Address Structure σ
13 Number of Local Buffers used for Communication τ

Table I
PAMI TIME AND SPACE ATTRIBUTES

PAMI communication context(s) must be created be-
fore creating a communication endpoint for RMA/Active
Messaging request. Space (Mc) and time (Tc) complex-
ity/process is:

Mc = ε.ρ (1)

Tc = %.ρ (2)

The empirical value of ρ is typically 1. In the later
sections, a case is presented, when using more contexts may
be beneficial for accelerating PGAS communication.

A communication endpoint may be created as the com-
munication clique (ζ) is generated during the lifetime of an
application. Endpoint creation is local - active message and
put communication primitives require only a local endpoint
for initiating a data transfer. The local endpoint space uti-
lization (Me) and time complexity (Te) for communication
clique ζ is:

Me = ζ.α.ρ (3)

Te = ζ.β.ρ (4)

The get communication primitive requires a remote end-
point. Hence, a space-time tradeoff exists in designing get
primitive protocols: A source may use an active message
to send the local address to a remote process, and the
remote process performs a put to complete the get operation.
This protocol alleviates a requirement for endpoint creation.
However, it requires an involvement from remote process to
complete the get operation. The proposed implementation
caches endpoints for the communication clique increasing



the space utilization Me, similar to previously proposed
approaches for other Interconnects [16].

Blue Gene/Q supports Remote Direct Memory Access
(RDMA). RDMA operations require that a memory region
is created before using the region as a source/target of
communication. The size of the meta-data for memory
region is independent of the size of memory region. The
space complexity(Mr) and time complexity (Tr) is:

Mr = τ.γ + σ.ζ.γ (5)

Tr = τ.δ + σ.δ (6)

The space complexity Mr includes the memory required
for caching the memory regions for communication clique
and number of local buffers used for communication. With
strong scaling, ζ ≈ p, which is prohibitive on a memory
limited architecture like Blue Gene/Q. The proposed imple-
mentation addresses the memory limitation by using a re-
mote memory region cache. Missing cache entries are served
using an active message to the destination; the replacement
policy uses least frequently used (LFU) algorithm.

The next section presents a design for communication
protocols, which are optimized for a data-types (contigu-
ous/strided), load/store (get/put) requests, atomic memory
operations and synchronization.

C. Remote Memory Access Primitives

1) Contiguous Data-type: RDMA requires the source and
target of RDMA to be contiguous in memory. Consequently,
the contiguous data-type communication uses RDMA, when
possible. An associated memory region cache is searched for
finding local, remote memory regions, base addresses, and
offsets for RDMA transfer.

At scale, the creation of memory region may fail due
to memory constraints. The proposed design uses a fall-
back protocol with active messages for contiguous data-type.
Using the popular LogGP [19] model for communication (o:
time during which processor is busy in communication, L:
network latency, G: inverse of bandwidth) , the latency for
get (Trdma) operation using RDMA and fall-back (Tfallback)
is defined as2:

Trdma ≈ o+ L+ (m− 1).G (7)

Tfallback ≈ o+ L+ o+ (m− 1).G (8)

An additional o is observed for fall-back protocol, since
the remote process/thread is involved in response to the
get request. For bulk transfers, Trdma and Tfallback are ≈
m.G, if the processes are tightly synchronized. However,
Tfallback ∈ Ω(Trdma) : Fall-back protocol requires an in-
volvement of a remote process/thread to make progress on
data transfer. Trdma does not require an involvement from

2We ignore the g parameter for simplicity, without loss of generality

a remote process/thread for communication progress. Get is
a dominant communication primitive in PGAS applications
such as NWChem [11], hence using RDMA is critical for
scaling these applications [16], [18].

The model for put communication is similar to the get
model. The put primitive does not require a fall-back pro-
tocol because the put primitive follows similar buffer reuse
semantics as MPI [3], [4]. PAMI’s default RMA messaging
primitive may be used when either memory region is not
available.

The space complexity of communication protocols for
contiguous data-type is independent of m, and partially
dependent on the degree of non-blocking data transfers. This
makes RDMA based protocols conducive for large scale
systems such as Blue Gene/Q.

2) Uniformly Non-contiguous (Strided) Datatype Get/Put
Communication: Uniformly non-contiguous (strided) data
type is used in patch-based data transfer of distributed
data structures. ARMCI provides interfaces to represent
multi-dimensional patch requests with very little memory
usage in comparison to the general I/O vector requests [4].
Figure 2 shows an example of strided put communication
from process Pi’s local buffer to patches (dashed lines) of
processes Pr, Ps, Pt, and Pu, respectively.

Pi 

Pt 

Pr Ps 

Pu 

Figure 2. Example of Strided Communication, Process Pi writes rectan-
gular Patches to Processes Pr , Ps, Pt, and Pu respectively

Legacy communication protocols for strided data type use
pack/unpack strategies, which require data packing at local
process and data unpacking at the remote process. These
protocols require intermediate buffering and flow control for
completing the RMA operation.

Modern networks provide high messaging rate and net-
work concurrency, obviating a need for a pack/unpack
protocol. An important implication is that individual chunks
may use RDMA for data transfer, eliminating a need of flow
control and remote progress. A high throughput efficiency
of networks such as Blue Gene/Q interconnection network
supports this argument. The proposed communication pro-
tocols for these data type post a list of non-blocking RDMA
requests, leveraging the network concurrency effectively. For
a message size (m), divided in (s) dimensions as (m =



∏s−1
i=0 li), l0 is the size of the contiguous chunk, the latency

(Tstrided) is given as:

Tstrided ≈ o.
s−1∏
i=1

li +m.G = o.m/l0 +m.G (9)

As Equation 9 suggests, Tstrided is inversely proportional
to the size of the contiguous chunk3. This may be a problem
for tall-skinny communication. The proposed approach uses
PAMI typed data type communication for such transfers For
a majority of strided data transfers, zero copy based protocol
is used. The space complexity is ∈ Θ(k.m/l0), where k is
the number of outstanding message requests from the user.

D. A Case for Asynchronous Progress Threads

A significant subset of communication primitives map di-
rectly to RDMA. Another subset of important operations are
Atomic Memory Operations (AMOs) such as read-modify-
write instructions for load balance counters and generic ac-
cumulate operations. Unlike Cray Gemini Interconnect [18],
[17] and InfiniBand [20], PAMI on Blue Gene/Q does not
provide hardware support for generic AMOs on the Network
Interface Card (NIC)4. At the same time, non-RDMA variant
of get operation is not truly one-sided: the source of the get
needs to make an explicit call to the progress engine of
PAMI. In our proposed implementation, non-RDMA variant
of get is used when either of the memory regions are not
available. Hence, it is critical to accelerate these operations,
which would need explicit progress engine calls.

The SMT architecture of Blue Gene/Q comes to rescue
to address the hardware limitations for AMOs. Each SMT
thread may not be sufficient for an independent process,
however it may be used to schedule an asynchronous thread
for communication progress. The asynchronous thread is
used to accelerate the AMOs and non-RDMA variant of get
operations. Active message requests from other processes
are handled by the asynchronous thread. The other SMT
threads may be used to schedule computation.

An implementation artifact of using an asynchronous
thread is guarding the PAMI progress engine with locks.
The inherent competition of using locks may starve the asyn-
chronous thread from servicing remote requests. Conversely,
the main thread may not be able to make progress on local
completions, while the asynchronous thread holds the lock.

In our proposed design, this limitation is addressed by
using multiple communication contexts (ρ). This enhance-
ment improves the progress schedule for each thread with a
slight increment in space complexity (ρ.ε). Each communi-
cation context can make independent progress and receives
completions targeted for that particular context.

3The term o is observed on each communication list, hence the overhead
is a multiple of the number of chunks

4Additional lower layer mechanisms for AMO with restrictions are
available, but they are not openly available

E. Handling Conflicting Memory Accesses

ARMCI scalable protocols layer provides location consis-
tency [14] by tracking the read (get) and writes (put, accu-
mulate) to the communication clique (ζ). A naive algorithm
maintains a communication status for a target (cstgt) by
appropriately setting it as read/write as the data requests are
generated. An outstanding write to a process must be fenced
before any read requests are serviced from that process. This
approach scales well in space complexity ∈ Θ(ζ), but it
suffers from false positives.

Using dgemm as an example, it can be noted that A, B
and C (C = A · B) matrices would be distributed equally
among processes for memory and load balancing. To overlap
communication with computation, a process would request
multiple non-blocking gets and perform asynchronous accu-
mulates to the C matrix. Under the naive algorithm, each
get would require that the accumulates have been fenced
before gets are serviced. However, this is not necessary, since
the read and write requests are from different distributed
data structures. Several applications use distributed data
structures as read-only or write-only (put/accumulate), for
which this situation is encountered.

The problem may be alleviated largely by locally setting
communication status for each memory region (csmr) appro-
priately as the read/write(s) are requested. In our proposed
approach, we use an 8-bit integer to set the csmr for
each distributed data structure. Accumulate operations are
associative - ordering among updates is not required. The
space complexity is ∈ Θ(σ.ζ).

IV. PERFORMANCE EVALUATION

This section presents a performance evaluation of our
proposed design. A set of detailed preliminary communi-
cation benchmarks are used to understand the performance
of different communication primitives in multiple scenar-
ios. The section concludes with a detailed performance
evaluation using NWChem [11], a petascale computational
chemistry application designed using Global Arrays [5] and
ARMCI [12]. The performance uses ABCDET mapping
for 5D torus. Up to 4096 processes (half-midplane) is used
for performance evaluation (limited by the time allocation).

A. Fundamentals

Table II contains the attribute values used in performance
evaluation. Values of α, β, γ, δ and ε are computed by
calculating the actual time during program execution. The
maximum data transfer size is 1 MB, which is covers a large
percentile of message size used in real applications.

The endpoint space and time complexity is 4 bytes and
0.3 µs, which makes the memory consumption highly scal-
able for building even larger systems. The memory region
space utilization is 8 bytes, which makes it very scalable
caching active global address space structures (σ: 1-7) and
local buffers (τ : 1-3). The communication clique (ζ) varies



Property Symbol Value
1 Message Size for Data Transfer m 16 Bytes - 1 MBytes
2 Total number of processes p 2 - 4096
3 Number of processes/Node c 1 - 16
4 Endpoint Space Utilization α 4 Bytes
5 Endpoint Creation Time β .3 µs
6 Memory Region Space Utilization γ 8 Bytes
7 Memory Region Creation Time δ 43 µs
8 Context Space Utilization ε varies
9 Context Creation Time % 3821 - 4271 µs
10 Number of contexts ρ 1 - 2
11 Communication Clique ζ 1 - p
12 Number of Active Global Address Structure σ 1 - 7
13 Number of Local Buffers used for Communication τ 1 - 3

Table II
EMPIRICAL VALUES OF TIME AND SPACE ATTRIBUTES

from 1-p. ζ is not necessarily generated in an all-to-all
communication step, but gets, and accumulates to many
processes during an application lifetime. The observation
is relevant for NWChem [11], which uses load balance
counters, and asynchronous gets and accumulates with
little to no regularity in communication patterns.
B. Preliminary Empirical Analysis

1) Contiguous Datatype Performance: Figure 3 shows
the raw latency performance for inter-node communication
using gets and puts. A get latency of 2.89 µs is observed
for 16 bytes. RDMA is used in both primitives, as it is
the preferred method for mapping get/put requests. The put
latency is 2.7 µs, but it primarily indicates send overhead and
local completion. This communication type reflects usage
pattern for many kernels, which do not require the result of
write (put or accumulate) to be available immediately. A
drop at 256 bytes is observed in latency. This is primarily
due to fact that cache aligned data transfer(s) are faster than
unaligned data transfer (m < 256 bytes).

Figure 4 shows the performance of put and get bandwidth
using two processes and inter-node communication. The
get overhead (due to round-trip) is visible till 8K bytes.
The curves achieve a peak bandwidth of 1775 MB/s. Blue
Gene/Q link bandwidth is 2 GB/s, with overhead a maximum
of 1.8 GB/s is available for performance [1], [2]. A peak
bandwidth of 1775 MB/s asserts the efficacy of the proposed
design for raw communication benchmarks achieving ≈
99% efficiency.

Figure 5 shows the effective latency/byte. The test is
used to determine the inflection point which may be used
for message aggregation by an application. This is useful
for applications, which may send out many small messages
over a period of time. Beyond 4K bytes, the latency/byte
is ≈ 1ns. Figure 6 shows bandwidth efficiency: ratio of
message bandwidth to peak bandwidth (1.8 GB/s). Blue
Gene/Q torus interconnection network is highly effective
for small/medium messages, N1/2 (message size at which
half of peak bandwidth can be achieved) is 2 Kbytes. An
efficiency ≥ 90% is achieved beyond 16 Kbytes message

size.
Figure 7 shows the get latency as a function of process

rank. A pseudo-oscillatory curve is observed with cluster(s)
of processes observing similar latency (due to same network
distance from process 0). This is an artifact of using 5D torus
- with ABCDET mapping, the distance between process 0
and other process oscillates explaining the latency curve.
Minimum observed latency is 2.89µs and the maximum
latency is 3.38µs. With 2048 processes, 128 nodes are used
(128 · 16 = 2048). Hence:

128 = 2(A) · 2(B) · 4(C) · 4(D) · 2(E) (10)

where n(dim): n is the size of the dimension and dim
is the dimension name. With wrap-around, a maximum
distance of (2+2+4+4+2)/2 = 7 is present. The difference
between maximum and minimum latency is 0.49µs, hence
each hop adds 0.49/(7 · 2(round-trip)) resulting of 35
ns latency increment per hop. This matches closely with
the empirical values stated by Chen et al. [2]. Hence, the
proposed approach does not incur any extra overhead in get
communication at scale.

2) Strided Datatype Communication Performance: Fig-
ure 8 shows the performance of strided communication
using get and put primitives with 1M Bytes data transfer.
The curve is relatively identical to Figure 4 as l0 (size
of the contiguous chunk) is increased. It is a worthwhile
observation that for each instance of l0 ≤ 1M Bytes, multiple
outstanding messages are initiated from the source.

3) Atomic Memory Operations (AMOs): Load Balance
Counters: Load balance counters are an essential primitive
for applications such as NWChem [11]. Figure 9 compares
the average latency for read-modify-write (fetch-and-add)
observed by processes 1 − p as fetch-and-add is requested
on a counter resident at process 0. This is a micro-kernel
of computation phases in NWChem [11] The figure shows
performance with/without using asynchronous threads and
with/without computation by process 0. It is observable that
by adding computation to process 0 increases the average
latency observed by each process significantly (tcompute by
process 0 is ≈ 300µs). The default and asynchronous thread
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Figure 6. Bandwidth Efficiency
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Figure 8. Strided Communication Performance
as a function of l0, m = 1 MBytes

based approach perform comparable to each other when
process 0 is not involved in computation.

There are multiple inferences from these observations.
Asynchronous threads are important for accelerating load
balance counters. Without asynchronous thread based de-
sign, the time taken is dependent up on the explicit progress
made by process 0.

However, even with asynchronous thread(s), the latency
increases linearly with system size. This observation is in
contrast with Cray Gemini [17], [18], [21], where a sub-
linear (step) function is observed in performance. Given the
high use of load balance counters, hardware assisted fetch-
and-add such as ones with InfiniBand [20] and Cray Gemini
can help accelerate the load balance counters without a need
of asynchronous threads.

C. Performance Evaluation with NWChem: Computational
Chemistry at Scale

1) Overview of NWChem Self Consistent Field Calcula-
tion: The NWChem Self Consistent Field (SCF) calculation
involves a number of different compute phases. The first
step is a calculation of molecular electron density matrix
which is constructed from a sum of atomic contributions.
The computation involves contracting the electron density
matrix with 2-electron integrals that represent the electron-
electron interaction to produce contributions to the Fock-
matrix. Figure 10 shows the algorithm for SCF calculation.
The local compute is abstracted as do work. The con-
struction of fock matrix is accelerated using load balance

counters. The processes request a fetch-and-add of the load
balance (SharedCounter in Figure 10) counter, perform gets,
compute locally and update the output matrix, as shown in
Figure 10.

2) Performance Evaluation: The performance evaluation
of SCF uses 6 molecules. This is smaller version of the
original input deck (24 water molecules) to the Gordon Bell
finalist used by Apra et al. for executing on full ORNL
Jaguar system [22]. Figure 11 shows the performance using
6 water molecules on 1024, 2048 and 4096 processes,
respectively. A total of 644 basis functions are used for the
calculation. Performance is compared using default (D) and
Asynchronous Thread (AT) based approach.

The asynchronous thread based approach outperforms the
default approach by reducing the execution time up to 30%;
the overall time in load balance counters reduces sharply
for asynchronous thread based approach. This is explained
as follows: For most of the calculation, the load balance
counter is held by process 0. In the default (D) approach,
any request to fetch-and-add on the counter is performed
by the main thread, which is possible only when the main
thread calls the PAMI progress engine. The delay observed
by other processes is proportional to time process 0 spends in
computation. The problem worsens further because as soon
as process 0 gets another task to compute, other processes
will have to wait for process 0 to finish to get the next
task. With the AT approach, process 0 does not need to
make explicit progress to perform fetch and add operation.
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my_next_task = 
SharedCounter() 
  do i=1,max_i 
    if(i.eq.my_next_task) 
then 
      call ga_get() 
        (do work) 
      call ga_acc() 
      my_next_task = 
SharedCounter() 
    endif 
  enddo 
barrier() 
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ν 

Figure 10. Self Consistent Field Algorithm
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Figure 11. NWChem SCF, 6 Water Molecules;
AT: Asynchronous Thread, D: Default implemen-
tation

Hence, it is absolutely critical to use asynchronous threads
for accelerating the AMOs and other non-RDMA operations
such as PAMI Get.

V. RELATED WORK

Designing scalable communication subsystems has been
of interest to many research groups with primary focus on
two-sided communication with MPI [3], [4].

Kumar et al. have provided an excellent description of
PAMI on Blue Gene/Q, and some preliminary results [13].
However, they do not provide guidance on the applicability
of PAMI primitives for PGAS communication subsystems
such as ARMCI. GASNet [23] also provides PAMI conduit,
however, we are not aware of any published research with
GASNet on Blue Gene/Q. Additionally, GASNet primarily
uses active messages, while the primary focus of ARMCI is
supporting the RMA model. Many studies have focused on
micro-architecture aspects of the Blue Gene/Q chip [1], [2].

Studies focusing on communication subsystem aspects
of other interconnects is presented here: Multiple studies
have been undertaken on designing scalable communication
subsystems on Cray Gemini Interconnect [21], [18]. Scalable
message passing for Cray Gemini Interconnect has been
proposed [24]. A similar study for Charm++ has been
undertaken [25]. However, these studies have focused on
message passing using uGNI, while the focus of the paper
is one-sided communication.

Scalable MPI design on InfiniBand has been addressed by
OpenMPI and MVAPICH/MVAPICH2 with salient features
such as RDMA, Shared Receive Queue (SRQ), Xtended
Reliable Connection, Fault tolerance with Automatic Path
Migration (APM) and multi-rail systems [26], [27]. Efforts
for scalable MPI design in other Interconnects such as
Quadrics, Myrinet, High Performance Switch have also been
performed [28], [29]. However, none of the efforts above
address the one-sided communication aspects, which are
addressed in this article.

VI. CONCLUSIONS

This paper has presented a design of scalable PGAS com-
munication subsystems on recently proposed Blue Gene/Q
architecture using PAMI communication interface. The pro-
posed communication infrastructure is used to design time-
space efficient communication protocols for frequently used
data-types (contiguous, uniformly non-contiguous) using
Remote Direct Memory Access (RDMA) get/put primitives.
We have accelerated the performance of load balance coun-
ters by using asynchronous threads. The synchronization
traffic is reduced by tracking conflicting memory accesses in
distributed space with slightly increment in space complex-
ity. An evaluation with simple communication benchmarks
show a get latency of 2.89µs and peak bandwidth of 1775
MB/s resulting in ≈ 99% communication efficiency. Accel-
erated load balance counters improve the execution time by
up to 30% for NWChem self consistent field calculation.
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