
Hot-Spot Avoidance With Multi-Pathing Over InfiniBand: An MPI Perspective ∗

A. Vishnu M. Koop A. Moody† A. R. Mamidala S. Narravula D. K. Panda

Computer Science and Engineering
The Ohio State University

{vishnu, koop, mamidala, narravul,
panda}@cse.ohio-state.edu

† Lawrence Livermore National Lab
7000 East Avenue

Livermore, CA 94550
{moody20}@llnl.gov

Abstract

Large scale InfiniBand clusters are becoming increas-

ingly popular, as reflected by the TOP 500 Supercomputer

rankings. At the same time, fat tree has become a popular

interconnection topology for these clusters, since it allows

multiple paths to be available in between a pair of nodes.

However, even with fat tree, hot-spots may occur in the net-

work depending upon the route configuration between end

nodes and communication pattern(s) in the application. To

make matters worse, the deterministic routing nature of In-

finiBand limits the application from effective use of multiple

paths transparently and avoid the hot-spots in the network.

Simulation based studies for switches and adapters to im-

plement congestion control have been proposed in the liter-

ature. However, these studies have focussed on providing

congestion control for the communication path, and not on

utilizing multiple paths in the network for hot-spot avoid-

ance. In this paper, we design a new MPI functionality,

which provides hot-spot avoidance for different communi-

cations, without apriori knowledge of the pattern. We lever-

age LMC (LID Mask Count) mechanism of InfiniBand to

create multiple paths in the network and present the design

issues (scheduling policies, selecting number of paths, and

scalability aspects) of our design. We implement our design

and evaluate it with Pallas collective communication and

MPI applications. On an InfiniBand cluster with 48 pro-

cesses, MPI All-to-all Personalized shows an improvement

of 27%. Our evaluation with NAS Parallel Benchmarks on

64 processes shows significant improvement in execution

time with this functionality.

Keywords: MPI, Clusters, Hot-spot, Congestion Con-

trol, InfiniBand

1 Introduction

In the past decade, introduction of high speed intercon-

nects like InfiniBand, Myrinet and Quadrics has escalated

∗This research is supported in part by DOE grants #DE-FC02-

06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-0403342 and

#CNS-0509452; grants from Intel, Mellanox, Cisco systems, Linux Net-

worx and Sun Microsystems; and equipment donations from Intel, Mel-
lanox, AMD, Apple, Appro, Dell, Microway, PathScale, IBM, SilverStorm

and Sun Microsystems.

the trends in cluster computing, with MPI being the de-

facto programming model. InfiniBand in particular is being

widely accepted as the next generation interconnect, due to

its open standard and high performance. Large scale In-

finiBand clusters are becoming increasingly popular, as re-

flected by the TOP 500 [1] Supercomputer rankings. At the

same time, fat tree [4] has become a popular interconnection

topology for these clusters, since it allows multiple paths to

be available in between a pair of nodes. However, even with

fat tree, hot-spots may occur in the network depending upon

the route configuration between end nodes and communica-

tion patterns in the application. To make matters worse, the

determinstic routing nature of InfiniBand limits the applica-

tion from effective use of multiple paths transparently and

avoid the hot-spots in the network. Simulation based studies

for switches and adapters to implement congestion control

have been proposed in the literature [14, 5, 9]. However,

these studies have focussed on providing congestion con-

trol for the communication path, and not on utilizing multi-

ple paths in the network for hot-spot avoidance. This leads

to the following challenges:

1. What are the mechanisms available for utilizing multi-

ple paths in InfiniBand?

2. What are the design issues at the MPI level in utilizing

these mechanisms efficiently?

3. How much benefit can be achieved compared to the

current state of the art MPI implementation?

In this paper, we address these challenges. We design an

MPI functionality which provides hot-spot avoidance for

different communication patterns, without apriori knowl-

edge of the pattern. We leverage LMC (LID Mask Count)

mechanism of InfiniBand to create multiple paths in the net-

work, and study its efficiency in creation of contention free

routes. We also present the design issues (scheduling poli-

cies, selecting number of paths, and scalability aspects) as-

sociated with our new MPI functionality.

We implement our design and evaluate it with micro-

benchmarks, Pallas collective communication and with MPI

applications. On an InfiniBand cluster with 64 processes,

we observe an average improvement of 23% for displaced

ring communication pattern amongst processes. For col-

lective operations like MPI All-to-all Personalized and MPI

1

Reduce Scatter, we observe an improvement of 27% and

19% respectively. Our evaluation with NAS Parallel Bench-

marks [2] shows an improvement of 6-9% in execution time

for the FT Benchmark, with class B and class C size us-

ing 32-64 processes for evaluation. For other NAS Parallel

Benchmarks, we do not see a degradation in performance

compared to the original design.

The rest of the paper is organized as follows. In section

2, we present the background of our work. In section 3, we

present the motivation of our work. In section 4, we present

the design issues of our functionality at the MPI layer . In

section 5, we present the performance evaluation on large

scale InfiniBand clusters. We present the related work in

section 6. We conclude and present our future directions in

section 7.

2 Background
In this section, we provide background information for

our work. We provide a brief introduction of InfiniBand

followed by Message Passing Interface (MPI). Lastly, we

provide a brief introduction to fat tree interconnection net-

works.

2.1 Overview of InfiniBand

The InfiniBand Architecture (IBA) [6] defines a switched

network fabric for interconnecting processing nodes and

I/O nodes. An InfiniBand network consists of switches,

adapters (called Host Channel Adapters or HCAs) and links

for communication. For communication, InfiniBand sup-

ports different classes of transport services (Reliable Con-

nection, Unreliable Connection, Reliable Datagram and

Unreliable Datagram). In this paper, we focus on the re-

liable connection model. In this model, each process-pair

creates a unique entity for communication, called queue

pair. Each queue pair consists of two queues; send queue

and receive queue. The requests to send the data to the peer

are placed on the send queue, by using a mechanism called

descriptor. A descriptor describes the information neces-

sary for a particular operation. For RDMA (Remote Direct

Memory Access) operation, it specifies the local buffer, ad-

dress of the peer buffer and access rights for manipulation

of remote buffer. InfiniBand also provides a mechanism,

where different queue pairs can share their receive queues,

called Shared Receive Queue mechanism. The comple-

tions of descriptors are posted on a queue called completion

queue. This mechanism allows a sender to know the sta-

tus of the data transfer operation. Different mechanisms for

notification are also supported (polling and asynchronous).

From the network management perspective, InfiniBand

defines an entity called subnet manager, which is responsi-

ble for discovery, configuration and maintenance of a net-

work. Each InfiniBand port in a network is identified by one

or more local identifiers (LIDs) , which are assigned by the

subnet manager. Since InfiniBand uses destination based

routing, each switch in the network has a routing table cor-

responding to the LIDs of the destination. Thus, decisions

to route messages adaptively cannot be taken by the inter-

mediate switches. Instead, InfiniBand provides a mecha-

nism, in which each port can be assigned multiple LIDs,

to exploit multiple paths in the network. Leveraging this

mechanism for avoiding hot-spots is the focus of this paper.

2.2 Overview of MPI Protocols

MPI defines two types of communication protocols; ea-

ger and rendezvous. These protocols are handled by a com-

ponent in the MPI implementation called progress engine.

In the eager protocol, the message is pushed to the receiver

side regardless of its state. In the rendezvous protocol, a

handshake takes place between the sender and the receiver

via control messages before the data is sent to the receiver

side. Usually, Eager protocol is used for small messages

and Rendezvous protocol is used for large messages.

For small messages, a copy based approach benefits over

the cost of the handshake. For the large messages, it is ben-

eficial to perform exchange of buffer addresses. This is a

requirement for RDMA (Remote Direct Memory Access)

mechanism, which allows remote data to be read/written

with kernel bypass. The application buffer(s) need to be

pinned so that the operating system does not swap them

during communication. In this paper, we use this mecha-

nism for large messages. Using multiple paths, we divide

the application buffer into stripes for efficient use of multi-

ple paths.

2.3 Fat Tree Topology

Fat Tree is a general purpose interconnection topology,

which is used for effective utilization of hardware resource

devoted to communication. In a fat tree based intercon-

nection network, leaf nodes represent processors, internal

nodes represent switches, and edges correspond to bidirec-

tional links between parents and children. In a traditional

Switch

SwitchSwitch

Switch

P3 P4P1 P2

P Processing Element

Figure 1. A Fat Tree with Four Switches

binary tree, the bandwidth at different levels of the network

is not constant. Due to this configuration, congestion may

occur near the root of the tree. Figure 1 shows an exam-

ple of fat tree with four processing elements connected with

four switches. The physical links are represented by the

solid lines. Some of the possible paths between processing

elements P1 and P3 are shown by dotted lines of different

dot formats. Please note that the other possible paths (which

are not min-hop) are not shown for clarity.

2

3 Motivation

In this section, we present the motivation of our work.

We take a cluster with a fat-tree switch and execute an MPI

program using this switch to understand the contention and

occurence of hot-spots in the network. Figure 2 represents

the switch topology used for our evaluation. Each switch

block consists of 24 ports. The leaf switches (referred to as

leaf blocks from here onwards) have 12 ports available to

be used by the end nodes, the other 12 ports are connected

to the spine switches (referred to as spine blocks from here

onwards). In the figure, blocks 1 - 12 are leaf blocks; blocks

13 - 24 are spine blocks. The complete switch has 144 ports

available for end nodes. Each block is a crossbar in itself.

Please note that in the figure, we have not shown all blocks

and their internal connections for clarity.

2

13

144 Port Switch

Available To End Node

12 Leaf Blocks

12 Spine Blocks

To Spine Blocks

1 3

14

Figure 2. 144-port InfiniBand Switch Block Di-
agram

To demonstrate the contention, we take a simple MPI

program, which performs ring communication with neigh-

bor rank increasing at every step. The communication pat-

tern is further illustrated in the Figure 3 (only step1 and

step2 are shown for clarity). Executing the program with n

processes takes n-1 steps. Let ranki denote the rank of the

ith process in the program. and stepj denote the jth step

during execution. At stepj , an MPI process with ranki

communicates with MPI process ranki+j . This communi-

cation pattern is referred to as DRC (Displaced Ring Com-

munication) for the rest of the paper.

Step1

Step2

Figure 3. Communication Steps in Displaced
Ring Communication

We take an instance of this program with 24 processes

and schedule MPI processes with rank0 - rank11 on nodes

connected to block 1 and rank12 - rank23 on block 2.

We use MVAPICH1, a popular MPI over InfiniBand as our

MPI implementation for the evaluation of DRC. Since each

block is a crossbar in itself, no contention is observed for

intra-block communication. However, as the step iteration

increases, the inter-block communication increases and a

significant link contention is observed. The link contention

observed during the step 12 (each process doing inter-block

communication) is shown in Figure 4, with thicker solid

lines representing more contentions. The quantitative eval-

uation is shown in Figure 5. From Figure 4, we can see

that some links are over-used to a degree from four to

zero. As the degree of link usage increases, the band-

width is split amongst the communication instances using

the link(s), making them hot spots. In our example, paths

using block 13 split bandwidth for four different communi-

cation instances making the set of links using this block hot-

spots. In Figure 5, we show the results of our evaluation.

On the x-axis and y-axis, we show the process ranks. The

bandwidth achieved during communication of rankx and

ranky is shown with a square generated by drawing lines

for the process ranks (shown as an example with the inter-

section of dotted lines in Figure 5). The darker the squares,

the worse is the bandwidth achieved in comparison to the

best bandwidth (The best bandwidth is achieved by the pro-

cesses doing intra-block communication). We notice that

as inter-block communication increases, the corresponding

squares become darker.

Process Rank

P
ro

ce
ss

 R
an

k

Figure 5. Displaced Ring Communication, 24
Processes

As indicated in Figure 5, even though, there are sufficient

links for an independent path of communication between

blocks 1 and 2 (using spine blocks), DRC is not able to

utilize them in a contention free manner. The usage of these

links is highly dependent upon the path configuration done

by the subnet manager. This route configuration done by

the subnet manager may benefit one communication pattern

and show contention for other patterns, leaving un-utilized

1MVAPICH/MVAPICH2 [8] are currently used by more than 450 or-

ganizations worldwide. It has enabled several large InfiniBand clusters to
obtain top 500 ranking. A version is also available in an integrated manner

with OpenFabrics stack

3

1

144 Port Switch

rank0 − rank11 rank12 − rank23

14 15 16 17 18

Un−used Link

Used Link

13

12

24

2 3 4 5 6

Figure 4. Link Usage with Displaced Ring Communication

links in the network. At the same time, the deterministic

routing nature of InfiniBand does not allow us to use these

links efficiently. In this Figure, the unused paths are shown

with a dotted line. We notice that paths using switch blocks

16 and 18 are left un-utilized. (The other un-utilized links

are not shown in the figure).

Under such a scenario, the utilization of the links is the

responsibility of the MPI implementation. Hence, design-

ing an efficient MPI library, with effective use of multiple

paths is critical to hot-spot avoidance. In the next section,

we explore the LMC mechanism provided by InfiniBand

for creation of multiple paths between a pair of nodes. We

leverage this mechanism to design an MPI implementation

by taking advantage of these paths in an efficient manner

and provide hot-spot avoidance for different communica-

tion patterns, without a-priori knowledge of the pattern.

4 Hot-Spot Avoidance MPI over InfiniBand

In [7], we presented an initial framework using multi-

rail networks and presented different scheduling policies for

their efficient utilization. We leverage this framework for

designing hot-spot avoidance functionality. However, the

existing framwork suffers from following limitations:

• A key functionality missing in the existing framework

is to leverage the LMC mechanism for hot-spot avoid-

ance. Using the subnet manager to configure disjoint

paths and their efficient usage is a major functionality,

which is added to the existing framework.

• The existing framework assumes the presence of one

path to be utilized per end port. In the motivation sec-

tion, we observed the presence of multiple un-utilized

paths per end port. Utilizing very few of these paths

may not significantly help to avoid hot-spots. How-

ever, utilization of all the existing paths has practical

implications due to startup costs, and accuracy in the

estimation of path bandwidth. We study this issue in

detail in our design and evaluation.

• Increasing the number of paths leads to increased

memory utilization. In the existing framework, we did

not address the memory scalability issue, due to the

presence of only one path/end port. We address the

this problem using InfiniBand’s shared receive queue

mechanism.

Our existing frame-work is based on MVAPICH, introduced

in the motivation section. We call our enhanced design,

HSAM (Hot-Spot Avoidance MVAPICH). Next, we present

the overall design of HSAM.

4.1 Overall Design

Figure 6 represents the overall design of HSAM. In the

figure, we can see that besides MPI Protocol Layer and In-

finiBand Layer, our design consists of three major compo-

nents: Communication Scheduler, Scheduling Policies, and

Completion Filter. The Communication Scheduler is the

central part of our design. It accepts protocol messages

from the MPI Protocol Layer, and stripes them across mul-

tiple paths. In order to decide how to stripe, the Communi-

cation Scheduler uses information provided by the Schedul-

ing Policies component. Scheduling Policies can be static

that are determined at initialization time. They can also be

dynamic and adjust themselves based on input from other

components of the system. Since a single message may be

striped and sent as multiple messages through the Infini-

Band Layer, we use the Completion Filter to process com-

pletion notifications and to inform the MPI Protocol Layer

upon completions of all stripes.

4.2 Leveraging Multiple Paths Using
LMC

In the motivation section, we have noted that some of

the paths became hot-spots, while other paths are left un-

utilized in the network. One important mechanism to effi-

ciently use the available paths is by changing the routing

table of each switch block. Using this mechanism, con-

tention free paths can be created for a particular communi-

cation pattern. The subnet manager allows a user to input its

own routing table for different switches, which can be used

for communication. However, this mechanism suffers from

the fact that the optimization can be done only for a single

communication pattern. At the same time, in the presence

of other jobs in the network, exact scheduling of each MPI

4

InfiniBand Layer

MPI Protocol Layer

Multiple
Paths

Eager
Protocol
Messages

Rendezvous
Protocol
Messages

Input from other system components
Completion
Notification

Completion
Notification

Communication

Scheduler

Scheduling

Policies

Completion

Filter

Figure 6. Overall Architecture [7]

task can complicate the generation of user-assisted routing

tables.

To overcome the above limitations, we leverage the LID

(Local Identifier) Mask Count (LMC) mechanism of Infini-

Band, which allows multiple paths to be created between a

pair of nodes. Using an LMC value of x, we can create 2x

paths, with 7 (128 paths) being the maximum value allowed

for LMC. We use OpenSM, a popular subnet manager for

InfiniBand to configure these paths. Using thetrace-route

mechanism of InfiniBand, we calculate the exact path (set

of switch blocks and ports) taken by each pair of source

and destination LID for different values of LMC. We notice

that the subnet manager is able to configure paths utiliz-

ing different spine blocks in the switch. Hence, the LMC

mechanism provides us as many contention free paths as

possible. However, efficient utilization of these paths is de-

pendent upon the scheduling policy for data transfer. In the

next section, we discuss the scheduling policies used for

evaluation.

4.3 Scheduling Policies

Different scheduling policies can be used by the Com-

munication Scheduler to decide the paths to use for mes-

sage transmission. We categorize different policies into two

classes: static schemes and dynamic schemes.

• In static schemes, the policy and its parameters are de-

termined at initialization time and do not change dur-

ing the execution of MPI applications.

• In dynamic schemes, we can switch between different

policies or change parameters during the program exe-

cution.

Even Striping: For static schemes, the weight distribution

of each path is fixed and does not change depending upon

the feedback of different components in the MPI Layer.

In our design, we use this mechanism to design a striping

policy for large messages, which stripes messages evenly

across all paths used for communication. We refer to this

policy as even striping.

Adaptive Striping: In this policy, we leverage the com-

pletion notification mechanism of InfiniBand to calculate

path bandwidth. The completion notification is generated

upon the data delivery to the remote destination’s adapter.

This provides a relatively accurate estimation of the time

spent in the network. To begin with, we stripe the messages

evenly on all paths. The weights of each paths is adjusted

in accordance with the completion times of the stripes. Up-

dated paths can then be used for followup iterations. A de-

tailed discussion of weight adjustment and efficiency of this

policy is discussed in our previous work [7]. We call this

policy as adaptive striping policy.

This policy helps us in avoiding hot-spots as much as

possible. To begin with, the adaptive striping policy be-

haves like even striping. However, on using a path with hot-

spot, the stripe delivery time increases considerably. Since

the paths are adjusted accordingly, this policy is able to

avoid the hot-spots. At the same time, if the hot-spots dis-

appear, this policy adjusts the weights accordingly. Hence,

this policy benefits in the presence of hot-spots, however

does not lead to performance degradation in their absence.

4.4 Selecting Number of Paths

In our previous work with multi-rail InfiniBand net-

works, we used one path of communication/end port. How-

ever, in the motivation section, we observed that there are

multiple paths available for communication between every

pair of processes, even though there is only one physical

port available at the end node. Using the maximum value

of LMC allowed by InfiniBand specification, we can create

128 virtual paths. However, some of the paths may physi-

cally overlap with each other. For a two-stage Fat Tree, as

shown in the motivation section, we observe that there are

only twelve disjoint physical paths. Hence, using a max-

imum of twelve paths would suffice our need for hot-spot

avoidance. As per the InfiniBand specification connection

model, a queue pair/path is needed to use them simultane-

ously. Once a path is specified for a queue pair, it cannot be

changed during the communication (An exception is Au-

tomatic Path Migration for InfiniBand, which is beyond the

scope of this paper). However, there are some practical con-

siderations in leveraging all the paths simultaneously:

• Sending a message stripe through each path requires

posting a corresponding descriptor. Hence, this may

lead to significant startup overhead with increasing

number of paths.

• For each message stripe, a completion is generated on

the sender side. With increasing number of paths, more

completions need to be handled, which can potentially

delay the progress of the application.

• The accuracy of path bandwidth is significantly depen-

dent upon the discovery of the completions, as men-

tioned in the scheduling policies sections. With in-

creasing number of paths, the accuracy may vary sig-

nificantly.

• The memory usage increases with increasing number

of paths. We handle this issue in the scalability section

later.

5

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

u
s
)

LMC Value

1 Hop
3 Hops

Figure 7. MPI Latency (UP mode)

 0

 50000

 100000

 150000

 200000

 250000

256K4K

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

Original, 1 Path
HSAM, 2 Paths, even
HSAM, 4 Paths, even

HSAM, 2 Paths, adaptive
HSAM, 4 Paths, adaptive
HSAM, 8 Paths, adaptive

Figure 8. MPI Alltoall Personalized (48x1)

Hence, a judicious selection of number of paths is impera-

tive to performance and memory utilization of the MPI li-

brary. In the next section, we discuss the memory utilization

aspect of our design.

4.5 Scalability Aspects of HSAM

In the previous section, we discussed that increasing

number of paths leads to more memory utilization. In

essence, the memory utilization per path can be represented

as follows:

memqp = memqp−context+nes∗memsqe+ner∗memrqe

(1)

where memqp is the connection memory usage per path,

nes and ner are number of send and receive work queue

elements, memsqe and memrqe are the sizes of each

send queue and receive queue elements, respectively.

memqp−context is the size of each QP context, correspond-

ing to each path in our design.

To make our design more scalable, we use the shared

receive queue mechanism of InfiniBand [10] to handle the

scalability aspect for receive queue. In this paper, receive

queues corresponding to different processes were shared.

We allow different paths for the same set of processes to

be attached to the shared receive queue. As a result the

memory usage in our design can be represented as:

memqp = memqp−context + nes ∗ memsqe (2)

Although our current design focusses only on reducing

the memory usage for receive queue, additional methods

such as setting up connections only as needed (on-demand

connection management) have also been shown to signifi-

cantly reduce memory usage and can be used in conjunction

with our design. In future, we plan to address these issues.

5 Performance Evaluation

In this section, we evaluate the performance of HSAM

(Hot-spot avoidance MVAPICH) and compare its perfor-

mance with the current version of MVAPICH (referred to

as Original for the rest of the section). We use one pro-

cess per node (hence 48 process run is referred to as 48x1).

Our evaluation consists of two parts. In the first part, we

show the performance benefit we can achieve compared to

the original MPI implementation using collective commu-

nication. In the second part, we provide an evaluation of

our design with MPI applications. We use NAS Parallel

Benchmarks [2] and for our evaluation.

5.1 Experimental Testbed

Our testbed cluster consists of 64 nodes; 32 nodes with

Intel EM64T architecture and 32 nodes with AMD Opteron

architecture. Each node with Intel EM64T architecture is

a dual socket, single core with 3.6 GHz, 2 MB L2 cache

and 2 GB DDR2 533 MHz main memory. Each node with

AMD Opteron architecture is a dual-socket, single core with

2.8 GHz, 1 MB L2 cache and 4 GB DDR2 533 MHz main

memory. On each of these systems, the I/O bus is x8 PCI-

Express with Mellanox MT25208 dual-port DDR Mellanox

HCAs attached to 144-port DDR Flextronics switch. The

firmware version is 5.1.400. We have used Open Fabrics

Enterprise distribution (OFED) version 1.1 for evaluation

on each of the nodes and OpenSM as the subnet manager,

distributed with this version.

5.2 Performance Benefits of HSAM with
Collective Communication

Figure 7 shows the ping-pong latency achieved using

two processes by a 4-byte message with increasing value

of LMC. The motivation is to understand the impact of in-

creased routing table size (present on each switch block),

with increasing value of LMC, since the number of entries

in the table grow exponentially. We notice that increasing

LMC does not impact the latency. The figure also repre-

sents the performance, when both processes are located on

the same block (1-hop) and different blocks (3-hops). We

notice that 3-hops increases the latency by 0.25us, an in-

crease of around 0.12us for every switch block.

In Figure 8, we show the performance of MPI Alltoall

6

Process Rank

P
ro

ce
ss

 R
an

k

Figure 9. Displaced
Ring Communica-
tion, 64x1, HSAM, 4
Paths, adaptive

Process Rank

P
ro

ce
ss

 R
an

k

Figure 10. Dis-
placed Ring Com-
munication, 64x1,
Original, 1 Path

Process Rank

P
ro

ce
ss

 R
an

k

Figure 11. Dis-
placed Ring Com-
munication, 24x1,
HSAM, 4 Paths,
adaptive

Process Rank

P
ro

ce
ss

 R
an

k

Figure 12. Dis-
placed Ring Com-
munication, 24x1,
Original, 1 Path

Personalized communication for 48 processes. We com-

pare a combination of HSAM parameters; number of paths,

striping policy, LMC use with original implementation. In

our design, the completion filter waits for the completion of

all stripes, before notifying the application with the com-

pletion. The time is dominated with the slowest stripe, even

though other stripes may have finished earlier, and as a re-

sult the benefit from using hot-spot free path is nullified.

Hence, using even striping does not improve the perfor-

mance compared to the original implementation. For rest

of the evaluation, we only focus on adaptive striping policy

with HSAM. Using adaptive striping with HSAM improves

the performance significantly (both 2 paths and 4 paths).

Figures 9 and 10 show the results for displaced ring

communication, explained in the section 3. We compare

HSAM’s adaptive policy with the original implementation.

We notice that using HSAM and the adaptive policy, the

spots compared to the original policy achieve much bet-

ter bandwidth. The average bandwidth improves by 23%

compared to the original implementation. The points near

the diagonal are also much wider implying the benefits of

HSAM and adaptive striping. In section 3, we presented

the results for 24 processes case. Figure 11 shows the re-

sults for 24 processes with HSAM. We can clearly notice

that the corresponding dark spots in the original case are

much lighter with HSAM. We are able to improve the aver-

age bandwidth by 21%.

5.3 Performance Benefits at Application
Level

In this section, we present the results for MPI applica-

tions with HSAM. We use NAS Parallel Benchmarks [2].

For NAS Parallel Benchmarks, we focus on the FT bench-

mark, which uses MPI All-to-all personalized communica-

tion. We use class B and class C problem size for eval-

uation. Although not included in the paper, we have not

seen performance degradation for rest of the NAS Parallel

Benchmarks using HSAM.

Figure 13 shows the results for FT benchmark, Class B

problem size, for 16, 32 and 64 processes. We compare the

performance of HSAM’s adaptive striping with the origi-

nal policy. Using 16 processes, we do not see any im-

provement, since the contention in the network is negligi-

ble. However, with 32 processes, we see an improvement

of 8% with HSAM and 6% with 64 processes, compared to

the original design. Figure 14 shows the results for Class

C problem size with FT benchmark. With 32 processes, we

see an improvement of 9%. The increased improvement is

attributed to the increased size of data transfer during MPI

All-to-all phase. With 64 processes, an improvement of 8%

is observed, compared to the original design.

6 Related Work

Many researchers have focused on providing MPI sup-

port for multi-rail networks [7, 3, 11]. In our previous work,

we have designed MPI-2 one sided communication using

multi-rail InfiniBand networks [13]. Handling network het-

erogeneity and network faults with asynchronous recov-

ery of previously failed paths has also been presented [12].

However, the above works have focused on design and eval-

uation with multi-rail networks on the end nodes (multiple

ports, multiple adapters), rather than the network.

Congestion control has been studied with simulations by

multiple researchers [14, 5, 9]. It has also been proposed as

a part of the IBA specification [6]. In [9], the researchers

proposed a notification mechanism to the subnet manager

for reducing the static rate of the affected connection to per-

form congestion control. The above works have proposed

explicit congestion notification mechanisms (forward con-

gestion notification and backward congestion notification)

to allow the switches and channel adapters to become aware

of congestion in the network. However, these works are

simulation based and have focussed on congestion control

for the existing path of communication, rather than utilizing

the presence of multiple paths in the network. Hence, de-

signing software based solutions to perform hot-spot avoid-

ance is imperative for upcoming large scale InfiniBand net-

works. In this paper, we have presented a new MPI func-

tionality for hot-spot avoidance and shown benefits for dif-

ferent communication patterns for MPI applications.

7 Conclusions and Future Work

In this paper, we have designed an MPI functionality

which provides hot-spot avoidance for different communi-

7

 Original, 1 Path
 HSAM, 4 Paths, Adaptive

 0

 2

 4

 6

 8

 10

 12

64x132x116x1

T
im

e
(S

e
c
o
n
d
s
)

Figure 13. NAS Parallel Benchmarks, FT,
Class B

 Original, 1 Path
 HSAM, 4 Paths, Adaptive

 0

 5

 10

 15

 20

 25

 30

64x132x1

T
im

e
(S

e
c
o
n
d
s
)

Figure 14. NAS Parallel Benchmarks, FT,
Class C

cation patterns, without apriori knowledge of the pattern.

We have leveraged LMC (LID Mask Count) mechanism of

InfiniBand to create multiple paths in the network, and stud-

ied its efficiency in creation of contention free routes. We

have also presented the design issues (scheduling policies,

selecting number of paths, and scalability aspects) associ-

ated with our MPI functionality. We have implemented our

design and evaluated it with collective communication and

MPI applications. On an InfiniBand cluster with 64 pro-

cesses, we have observed an average improvement of 23%

for displaced ring communication pattern. For collective

communication like MPI All-to-all Personalized, we have

observed an improvement of 27%. Our evaluation with

NAS Parallel Benchmarks has shown an improvement of 6-

9% in execution time for FT Benchmark, with class B and

class C problem size.

As a part of future work, we plan to evaluate our design

with very large scale InfiniBand clusters. We plan to study

the interaction of different jobs for communication and par-

titioning them logically for minimal interaction of the paths

in the network. As the InfiniBand products become mature,

we plan to study the proposed explicit congestion notifica-

tion mechanisms for congestion control on large scale In-

finiBand clusters.

References

[1] TOP 500 Supercomputer Sites. http://www.top500.org.
[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.

Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.

Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrish-

nan, and S. K. Weeratunga. The NAS Parallel Benchmarks.

Number 3, pages 63–73, Fall 1991.

[3] S. Coll, E. Frachtenberg, F. Petrini, A. Hoisie, and

L. Gurvits. Using Multirail Networks in High-Performance

Clusters. In IEEE Cluster 2001, Newport Beach, CA, Octo-

ber 2001.
[4] R. I. Greenberg and C. E. Leiserson. Randomized Routing

on Fat-Trees. In Proceedings of the 26th Annual Symposium

on the Foundations of Computer Science, pages 241–249,

1985.
[5] M. Gusat, D. Craddock, W. Denzel, T. Engbersen, N. Ni,

G. Pfister, W. Rooney, and J. Duato. Congestion Control in

InfiniBand Networks. In Hot Interconnects, pages 158–159,

2005.

[6] InfiniBand Trade Association. InfiniBand Architecture

Specification, Release 1.2, October 2004.
[7] J. Liu, A. Vishnu, and D. K. Panda. Building Multirail Infini-

Band Clusters: MPI-Level Design and Performance Evalua-

tion. In SuperComputing Conference, 2004.
[8] Network-Based Computing Laboratory. MVA-

PICH/MVAPICH2: MPI-1/MPI-2 for InfiniBand

on VAPI/Gen2 Layer. http://nowlab.cse.ohio-

state.edu/projects/mpi-iba/index.html.
[9] J. R. Santos, Y. Turner, and G. J. Janakiraman. End-to-End

Congestion Control for InfiniBand. In INFOCOM, 2003.
[10] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Receive

Queue based Scalable MPI Design for InfiniBand Clusters.

In International Parallel and Distributed Processing Sympo-

sium (IPDPS), 2006.
[11] A. Vishnu, B. Benton, and D. K. Panda. High Performance

MPI on IBM 12x InfiniBand Architecture. In Proceedings

of International Workshop on High-Level Parallel Program-

ming Models and Supportive Environments, held in conjunc-

tion with IPDPS ’07, March 2007, March 2007.
[12] A. Vishnu, P. Gupta, A. Mamidala, and D. K. Panda. A

Software Based Approach for Providing Network Fault Tol-

erance in Clusters Using the uDAPL Interface: MPI Level

Design and Performance Evaluation. In Proceedings of Su-

perComputing, November 2006.
[13] A. Vishnu, G. Santhanaraman, W. Huang, H.-W. Jin, and

D. K. Panda. Supporting MPI-2 One Sided Communication

on Multi-Rail InfiniBand Clusters: Design Challenges and

Performance Benefits. In International Conference on High

Performance Computing, HiPC, 2005.
[14] S. Yan, G. Min, and I. Awan. An Enhanced Congestion

Control Mechanism in InfiniBand Networks for High Per-

formance Computing Systems. In AINA ’06: Proceedings of

the 20th International Conference on Advanced Information

Networking and Applications - Volume 1 (AINA’06), pages

845–850, Washington, DC, USA, 2006. IEEE Computer So-

ciety.

8

