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Abstract—In the last decade or so, clusters have observed
a tremendous rise in popularity due to the excellent price to
performance ratio. A variety of Interconnects have been proposed
during this period, with InfiniBand leading the way due to its
high performance and open standard. At the same time, multiple
programming models have emerged in order to meet the require-
ments of various applications and their programming models. To
support requirements of multiple programming models, Infini-
Band provides multiple transport semantics, ranging from unreli-
able connectionless to reliable connected characteristics. Among
them, the reliable connection (RC) semantics is being widely
used due to its high performance and support for novel features
like Remote Direct Memory Acesss (RDMA), hardware atomics
and Network Fault Tolerance. However, the pairwise connection
oriented nature of the RC transport semantics limits its scalability
and usage at the increasing processor counts. In this paper,
we design and implement on-demand connection management
approaches in the context of Partitioned Global Address Space
(PGAS) programming models, which provided shared memory
abstraction and one-sided communication semantics, leading to
the development of multiple languages (UPC, X10, Chapel) and
libraries (Global Arrays, MPI-RMA). Using Global Arrays as
the research vehicle, we implement this approach with Aggre-
gate Remote Memory Copy Interface (ARMCI), the runtime
system of Global Arrays. We evaluate our approach, ARMCI-
On Demand Connection Management (ARMCI-ODCM) using
various microbenchmarks and benchmarks (LU Factorization,
RandomAccess and Lennard Jones simulation) and application
(Subsurface transport over multiple phases (STOMP)). With the
performance evaluation for up to 4096 processors, we are able
to have a multi-fold reduction in connection memory with a
negligible degradation in performance. Using STOMP at 4096
processors, reduces the overall connection memory by 66 times
with no performance degradation. To the best of our knowledge,
this is the first design, implementation and evaluation of on-
demand connection management with InfiniBand using PGAS
models.

I. INTRODUCTION

The computational needs of today’s scientific applications

has led to the augmentation of high performance computing.

Combining commercial off the shelf processors with commod-

ity interconnects has led to cluster computing [1], a very effec-

tive methodology for achieving excellent price-to-performance

ratio. As the commodity processors continue to grow, com-

modity interconnects such as Myrinet [2], Quadrics [3], and

InfiniBand [4] are being introduced to combine these com-

modity processors. As reflected by the TOP500 [5] rankings,

InfiniBand in particular has been observing wide acceptance

due to its high performance and open standard, with 28% of

the systems using InfiniBand as their interconnect. The current

largest InfiniBand cluster uses more than 70,000 processor

cores at NUDT [6], and larger scale systems are being planned

for the near future. 1

A variety of programming models have emerged at the same

time, to provide scientists with different tools for writing their

parallel applications. While two-sided message passing contin-

ues to dominate with Message Passing Interface (MPI) [7], [8],

Partitioned Global Address Space (PGAS) programming mod-

els like Global Arrays [9] are being used in a variety of appli-

cations with dynamic computation characteristics and naturally

suiting one-sided communication paradigm. To meet the needs

of multiple programming models, modern interconnects like

InfiniBand support multiple transport semantics, ranging from

unreliable connection-less to end-to-end reliable connection

characteristics. Among them, reliable connection semantics

has observed most popularity due to support for novel fea-

tures like Remote Direct Memory Access (RDMA), hardware

atomics and Automatic Path Migration [10]. However, the

pairwise connection oriented nature of the reliable connection

transport semantics introduces scalability challenges. Each

of the connection can consume up to 44KBytes [11] of

memory, resulting in a utilization of more than 700 MBytes

of connection memory for 16K processors!.

While this problem has been addressed in detail with MPI

for two-sided messaging semantics [12], [11], [13], [14],

[15], PGAS programming models entail additional challenges.

The two-sided natures of connection establishment protocol

maps is a natural fit with implicit synchronization of MPI.

However, this property imposes challenges for PGAS models,

which use one-sided communication and exhibit no implicit

synchronization. A variety of MPI collective communication

patterns allow for automatic overlap in connection manage-

ment, while connection establishment is always serialized

for PGAS models. As a result state of the art PGAS run-

time systems like Aggregate Remote Memory Copy Interface

(ARMCI) [16] and GASNet [17] use static connection estab-

lishment mechanisms. To address this, we present a design for

on-demand connection management for PGAS models runtime
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Office of Science, U. S. Department of Energy, with a contract for Pacific
Northwest National Lab, operated by Battelle.



systems using Aggregate Remote Memory Copy Interface

(ARMCI) [16], the runtime system of Global Arrays [9].

Within the solution space, we present the overall design of

ARMCI over InfiniBand, multiple overlap protocols for on-

demand connection creation and establishment; simplification

of the connection establishment state machine and reliabil-

ity protocol due to the assymetric nature of communication

paradigm in PGAS runtime systems. We implement our design

and evaluate it with micro-benchmarks and benchmarks (LU

Factorization, RandomAccess, and Lennard Jones simulation)

and applications (Sub-surface transport over Multiple Phases

(STOMP) [18]). With the performance evaluation for up to

4096 processors for benchmarks, we are able to achieve a

multi-fold reduction in connection memory without perceiv-

able performance degradation. With evaluation of STOMP at

4096 processors, we are able to reduce the connection memory

utilization by 66 times. To the best of our knowledge, this is

the first design, implementation and evaluation of on-demand

connection management approach with PGAS model runtime

systems over InfiniBand.

The rest of the paper is organized as follows. In section II,

we present the background of our work. In section III, we

present the design of ARMCI-ODCM, discussing the chal-

lenges presented by the PGAS models. In section IV, we

present the performance evaluation of ARMCI-ODCM using

simple micro-benchmarks and a variety of benchmarks and

STOMP, comparing it to the state of the art implementation.

We present the related work in section V. We conclude and

present our future directions in section VI. We begin with the

description of the background work.

II. BACKGROUND

In this section, we present the background of our work.

We begin with an introduction to InfiniBand [4] and the state

transitions associated with a Queue Pair (QP). We also provide

a brief introduction to InfiniBand transport semantics, Global

Arrays [9] and Aggregate Remote Memory Copy Interface

(ARMCI) [19].
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A. Overview of InfiniBand and QP Transition States

The InfiniBand Architecture (IBA) [4] defines a switched

network fabric for interconnecting processing nodes and I/O

nodes. An InfiniBand network consists of switches, adapters

(called Host Channel Adapters or HCAs) and links for com-

munication. InfiniBand supports different classes of transport

services (Reliable Connection, Unreliable Connection, Reli-

able Datagram and Unreliable Datagram). In this paper, we

focus on reliable connection and unreliable datagram trans-

port semantics. In reliable connection model, each process-

pair creates a unique entity for communication, called queue

pair. Each queue pair consists of two queues; send queue

and receive queue. Figure 1 shows the communication state

transition sequence for a QP.

At the point of QP creation, its communication state is

RESET. At this point, it is assigned a unique number called

qpnum by the InfiniBand access layer (Verbs) [4]. From this

state it is transitioned to the INIT state by invoking modify qp

function. The modify qp function is provided by the access

layer of InfiniBand [4]. During the RESET-INIT transition,

the QP is specified with the HCA port to use in addition to

the atomic flags. Once in the INIT state, the QP is specified

with the destination local identifier (LID) DLID and the

destination QP from which it will receive the messages. A

modify qp call transitions it to READY-TO-RCV (RTR) state.

At this point, the QP is ready to receive the data from the

destination QP. Finally, QP is transitioned to READY-TO-

SEND (RTS) state by specifying associated parameters and

making the modify qp call. At this point, the QP is ready

to send and receive data from its destination QP. Should any

error(s) occur on the QP, the QP goes to the ERROR state

automatically by the hardware. At this state, the QP is broken

and cannot communicate with its destination QP. In order to

re-use this QP, it needs to be transitioned back to the RESET

state and the above-mentioned transition sequence (RESET-

RTS) needs to be re-executed. The RTS-Send Queue Drained

(SQD) transition is an important mechanism to ensure that

the outstanding data requests have completed. After a QP is

in SQD state, it can be transitioned to RTS state directly to

allow messages to be sent/received from the communicating

pair. We will use the term QP and connection interchangeably

for the rest of the paper.

RESET

ERROR INIT

QP Creation

Modify QP

Modify QP

Ready−to−send

(RTS)

Recv from Dest. QPReady−to−Receive
Modify QP

Modify QP

Send Data to Dest. QP

Recv from Dest. QP (RTR)

Error in Transmission

Send Queue Drained

(SQD)

Fig. 1. QP Communication State Diagram

1) Data Transfer Requests and Completion Queue: The

data transfer requests are initiated by posting a send/receive

descriptor to the send/receive queue of the QP. For one-sided

programming models like Global Arrays [9], RDMA and

send/receive descriptor can be posted on the queue. Once the

request is completed, an entry is generated at the completion

queue. InfiniBand supports polling and blocking mechanisms

to check for the completion. In this paper, we use the polling

mechanism for checking the completion queue, since it results

in lesser overhead compared to interrupt generation.

B. InfiniBand Transport Semantics

In this section, we present a brief introduction to the

InfiniBand transport semantics. We specifically focus on the



unreliable datagram and reliable connection transport seman-

tics.

1) Unreliable Datagram: The unreliable datagram (UD)

model provides connection-less model for communication.

Each process creates a QP (not unique) for every other process

in an application. UD transport semantics guarantees at most

once data delivery with checksum. The in-order data delivery

is not guaranteed. Since this transport semantics does not

support RDMA with InfiniBand, it is imperative to use reliable

connection transport semantics for data transfer. As a result,

we use the unreliable datagram as the out-of-band channel for

connection establishment.

2) Reliable Connection: Reliable connection is the most

popular transport semantics for designing runtime commu-

nication system over InfiniBand [11]. A variety of features

including RDMA, Automatic Path Migration and hardware

atomics are available with this semantics, which are not

available with UD. In addition, it provides exact one, in-order

data delivery to the destination and exact-once notification of

the data delivery to the initiator, making it an attractive choice

to design runtime communication systems.

However, RC requires a pairwise connection between a pair

of communicating processes. Clearly, this inhibits scalability

at large processor counts. Hence, it is important to design an

on-demand connection management and maintain connections

only to the communicating processes. While solutions exist

for the two-sided message passing with MPI [11], [14], no

solutions exist for the run-time systems for PGAS models like

Global Arrays and ARMCI. In this paper, we design ARMCI-

ODCM, which provides on-demand connection management

with PGAS models over InfiniBand.

C. Global Arrays and ARMCI

Global Arrays:The Global Arrays [9] programming model

provides an efficient and portable “shared-memory” program-

ming interface for distributed-memory computers. Each pro-

cess in a Multiple Instruction Multiple Data (MIMD) par-

allel program can asynchronously access logical blocks of

physically distributed dense multi-dimensional arrays, without

need for an explicit co-operation by other processes. Unlike

other shared-memory environments, the GA model exposes a

non-uniform memory access (NUMA) characteristics of the

high performance computers and acknowledges that access

to a remote portion of the shared data is slower than to the

local portion. The locality information for the shared data is

available, and a direct access to the local portions of shared

data is provided [9]. Global Arrays uses Aggregate Remote

Memory Copy Interface (ARMCI) [16], as the runtime system

for communication.

ARMCI: The purpose of the ARMCI [16] library is to

provide a general-purpose, efficient, and widely portable re-

mote memory access (RMA) operations (one-sided communi-

cation) optimized for contiguous and non-contiguous (strided,

scatter/gather, I/O vector) data transfers. In addition, ARMCI

includes a set of atomic and mutual exclusion operations.

ARMCI exploits native network communication interfaces and

system resources (such as shared memory) to achieve the best

possible performance of the remote memory access. It exploits

high-performance network protocols on clustered systems.

Optimized implementations of ARMCI are available for the

Portals [20], Myrinet (GM and MX) [21], Quadrics [22], and

InfiniBand (using OpenFabrics and Mellanox Verbs API) [4].

It is also available for DOE leadership class machines includ-

ing Cray XT4 [23] and BlueGene/P [24].

III. ARMCI-ODCM DESIGN

In this section, we present the solution space for on-

demand connection management with Global Arrays using

ARMCI. We begin with a description of the state of the art

implementation with ARMCI over InfiniBand. We propose a

new connection management protocol, which performs overlap

of different states of connection management. We also discuss

reliability mechanisms, implementation details and present the

discussion on various aspects of the connection establishment

protocol.

A. Overall Design

In this section, we present the overall design of ARMCI over

InfiniBand. We begin with the description of the terminology.

1) Terminology: In this section, we present the terminology

used for processes in a Global Arrays application. Although

ARMCI processes are SPMD processes, it differentiates in the

terminology between processes on the same node to facilitate

the primitives of one-sided communication. The process with

the lowest rank in the node is called master and the rest

of the processes on a node are called clients. The master

process creates a thread (which can be configured to perform

polling/blocking on an event), which is referred to as the data

server. The data server performs operations on behalf of clients

on other nodes including accumulate operations, and other

one-sided communication primitives (put, get, lock), which

may not be efficiently implemented using memory semantics

like RDMA. The master process on a node is treated as a

client by the data server on another node.

Data Server Master Process Client
Thread

Process

Node 1 Node 2

Fig. 2. Connection Establishment Pattern in ARMCI

A client establishes a connection to only the data server

on another node; there are no client-client connections. While

two-sided message passing creates pairwise connections be-

tween communicating processes, the fundamental nature of
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PGAS models like Global Arrays precludes this requirement.

Each chunk of a Global Array is allocated by the master

process, created as a shared memory segment, and registered

with the adapter. This allows each client on a node to read and

write to the chunk directly. In addition, it also allows clients on

other nodes to read/write directly from/to the chunk. Hence, it

is necessary only to establish connections with the data server

on a node, which has access to the chunk, since it is a thread

of the master process. Figure 2 shows a typical connection

management scenario with ARMCI.

The state of the art ARMCI implementation establishes con-

nections during the initialization phase of the communication

runtime system. Since all connections may not be used by

the application, this results in increased connection memory

utilization. In addition, it also leads to overhead in overall

execution time, since each connection establishment takes a

significant amount of time. We present a detailed performance

analysis in Section IV.

B. On-Demand Connection Establishment

In this section, we present the state of the art connection

establishment protocols with traditional two-sided message

passing. While these protocols are sufficient for two-sided

message passing, they may not be sufficient for one-sided

communication runtime systems like ARMCI. Hence, we

present a new protocol for connection establishment, which

leverages the phase based connection management to overlap

the connection establishment as much as possible. We also

present a discussion on various reliability mechanisms dis-

cussed in literature and choice of the reliability mechanism

for ARMCI-ODCM.

1) State of the Art Connection Management with Two-

Sided Messaging: Collective Communication primitives in-

cluding All-to-all broadcast, All-to-all personalized exchange

and Allreduce are the primary workhorses of most MPI

applications, in addition to the MPI send and receive prim-

itives. Since most of the collective communication primitives

are based on MPI Sendrecv, which results in bi-directional

exchange between processes. As an example, using Ring based

algorithm for MPI all-to-all broadcast results in simultaneous

exchange of data between the left and the right neighbor. As a

result, in the absence of a connection with the neighbors, this

results in a overlap of connection establishment. To summa-

rize, the two-sided nature of MPI results in parallel connection

establishment, resulting in the least possible overhead.

However, with one-sided communication primitives, the

connection request is always initiated by a client, resulting

in no overlap for connection establishment. Clearly, this re-

sults in an overhead for one-sided programming models, in

comparison to the MPI two-sided communication semantics.

To alleviate this, we present a novel design of a connection es-

tablishment protocol with InfiniBand, which provides overlap

at multiple stages of connection establishment.
2) Overlap Protocol for Connection Establishment: Fig-

ure 3 shows the state of the art connection establishment

protocol with ARMCI. As discussed in section II, there are

multiple phases in connection establishment protocol. The

state of the art connection establishment protocol performs

the following algorithm:

• On request of a data transfer to target, check if a

connection exists to the data server (target)

• If a connection exists, continue with the data transfer, else

Create QP and transition the connection from RESET-

INIT state

• Send the Connection info to the data server and wait for

data server’s connection information

• Transition the connection from INIT-RTR and RTR-RTS

states. Continue with the Data transfer.

From the above protocol and Figure 3, we see that the

multiple phases of connection establishment protocol are com-

pletely serialized. In order to understand the overhead of each

phase, we performed experiments at Verbs (Hardware access

layer of InfiniBand) layer. We observed that the connection

creation and transition to INIT phase is three times more

expensive in comparison to the INIT-RTR, RTR-RTS phases.

The connection creation and transition to INIT phase for

one connection takes 367 us, while INIT-RTR and RTR-RTS

phases take in the order of 105 us. Taking this observation in

to account, we designed an overlap protocol for connection

creation as follows:

• On a data transfer request to target, check if a connection

exists to the data server (target)



• If a connection exists, continue with the data transfer, else

send a Connection req message to the data server, Create

connection and transition the connection from RESET-

INIT state

• Send the Connection info to the data server and wait for

data server’s Connection info

• Transition the connection from INIT-RTR and RTR-RTS

states. Continue with the Data transfer.

Figure 4 shows this protocol in further detail. With this change,

the connection creation and INIT-RTR phases of the overlap

protocol are overlapped, with incurring a slight overhead

of sending an extra connection creation message. Since the

connection information is in the order of 16 bytes, the overall

overhead incurred is lesser than 10us, while providing an

overlap of multiple orders of magnitude.

The change in the connection establishment protocol also

requires a change in the progress engine at the data server.

With the ARMCI-ODCM implementation, the data server

returns to poll for new completions, as soon as connection

is created on behalf of the data request. Once the connection

information from the client is received, it proceeds to perform

the INIT-RTR and RTR-RTS transitions.

3) Reliability Mechanisms: A variety of reliability mecha-

nisms have been discussed in literature with InfiniBand [11],

[14]. Koop et al., have presented that the progress-engine

based hybrid scheme presents the best case scenario, since

it leads to lesser overhead from interrupts [14]. The primary

problem with this mechanism is an unnecessary overhead of

retransmissions, if the remote process does not respond to

the connection request within a timeout. As a result, Koop

et al., have suggested a hybrid mechanism based on Progress

Engine and interrupts [11]. This problem is mainly observed

due to the two-sided nature of message passing and potentially

simultaneous initiation of data transfer.

However, the assymetric nature of connection establishment

with ARMCI-ODCM allows to prevent the occurrence of the

false positives in the re-transmission of connection request.

Since the data server executes as a thread, it is able to respond

to the connection requests from clients, unless there is an

actual data loss. Hence, we implement the progress engine

based mechanism for reliability with the ARMCI-ODCM

implementation.

C. Discussion

In this section, we present the discussion related to ARMCI-

ODCM. During the connection establishment phase, we as-

sume that the connections can always be created. While this

assumption works for the scale of clusters considered for

performance evaluation in this work, larger scale clusters are

likely to have increasing failure in connection establishment.

We are working to alleviate this limitation.

Koop et al., presented a connection-less approach using

InfiniBand unreliable datagram [11], and presented its efficacy

with the MPI applications. Unreliable datagram is attrac-

tive for message passing based programming models, since

they have implicit synchronization. In addition, it does not

support RDMA, which is a key feature for providing one-

sided communication. Hence, it is not suitable for one-sided

programming models like Global Arrays [9].

A possible mechanism is to have an on-demand discon-

nection protocol, similar to on-demand connection establish-

ment. This mechanism although attractive to alleviate the

above-mentioned limitation requires careful design and eval-

uation in order to prevent redundant connection establish-

ment/disconnection overhead. We are currently working to

design efficient disconnection protocols with InfinBand for

one-sided communication runtime systems.

IV. PERFORMANCE EVALUATION OF ARMCI-ODCM

In this section, we present the performance evaluation of

ARMCI-ODCM. We compare this with the latest release of

Global Arrays, version 4.2, which we refer to as ”Original”

for the rest of section. We use latency and bandwidth micro-

benchmarks for various one-sided communication primitives

(put, get, and accumulate) to understand the overheads in-

curred by ARMCI-ODCM. This is followed by the perfor-

mance evaluation using application kernels and benchmarks -

LU Factorization, Lennard Jones Simulation and RandomAc-

cess benchmark. We also present the performance evaluation

with STOMP, an application to perform the ground water

simulation. We have used Chinook [25], an AMD Barcelona

based Supercomputer at Pacific Northwest National Lab as the

experimental testbed for our evaluation.

A. Experimental Testbed

Chinook [25] is a 160 TFlops system that consists of 2310

HP DL185 nodes with dual socket, 64-bit, Quad-core AMD

2.2 GHz Barcelona Processors. Each node has 32 Gbytes

of memory and 365 Gbytes of local disk space. Commu-

nication between the nodes is performed using InfiniBand

with Voltaire [26] Switches and Mellanox [27] Adapters. The

system runs a version of Linux based on Red Hat Linux

Advanced Server. A global 297 Tbyte SFS file system is

available to all the nodes.

B. Performance Evaluation with Micro-benchmarks

In this section, we present the results using micro-

benchmarks of various one-sided communication primitives.

While most one-sided communication runtime systems focus

on contiguous data transfer ARMCI is heavily used for uni-

form non-contiguous data transfer (strided), in addition to the

contiguous data transfer.

For each of the ARMCI Put, ARMCI Get and

ARMCI Acc tests, we perform the latency and bandwidth

benchmarks. The number of iterations are varied wth size

(with more number of iterations for smaller messages to

a very few number of iterations for large messages). The

latency is measured as the time it takes to perform each of

the one-sided communication primitives. The bandwidth is

reported as the inverse of the latency for the message size (in

bytes).
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Fig. 5. ARMCI Get Unidirectional Bandwidth
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Fig. 6. ARMCI Put Unidirectional Bandwidth
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Fig. 7. ARMCI Accumulate Unidirectional
Bandwidth

Figures 5, 6, and 7 show the performance comparison of

the ARMCI-ODCM with the Original implementation us-

ing ARMCI Get, ARMCI Put and ARMCI Acc primitives,

respectively. We observe that the peak bandwidth achieved

by ARMCI Put and ARMCI Get is 1473 MB/s. Since the

contiguous data transfer uses RDMA, each of the ARMCI-

ODCM and Original implementations are able to achieve

the peak network bandwidth. As noticeable from the graphs,

ARMCI-ODCM incurs negligible overhead in comparison to

the Original implementation.

The peak bandwidth observed by ARMCI Acc is 1327

MB/s. The primary overheads in the ARMCI Acc compared

to the ARMCI Put and ARMCI Get primitives is due to

inability to use zero-copy for data transfer and computation

at the target for the accumulate operation. However, there is

no overhead incurred by the ARMCI-ODCM implementation,

in comparison to the Original implementation.

Figures 8, 9, and 10 show the performance comparison

of the ARMCI-ODCM with the Original implementation

using ARMCI GetS, ARMCI PutS and ARMCI AccS, re-

spectively. The peak ARMCI GetS bandwidth achieved by

ARMCI-ODCM and the Original implementation is 1358

MB/s and 1337 MB/s, which is less than 2% of the per-

formance difference. We attribute these differences to the

system noise. Similarly, the peak bandwidth achieved for

ARMCI PutS for ARMCI-ODCM and the Original imple-

mentation is 1434 MB/s and 1419 MB/s, respectively. The

peak ARMCI Accs bandwidth achieved by these implemen-

tations is 1339 MB/s and 1323 MB/s, respectively. The

peak ARMCI AccS bandwidth is slightly lesser than the

ARMCI PutS bandwidth, since accumulate operation requires

computation at the target node.

Figure 11 shows the performance comparison of ARMCI-

ODCM with Original implementation using ARMCI Put la-

tency primitive. The 8 byte message latency observed is 3.74

us and 3.79 us for ARMCI-ODCM and Original implementa-

tion, respectively. Clearly, the ARMCI-ODCM implementation

incurs negligible overhead compared to the Original imple-

mentation.

While there are multiple methods for measuring latency

(like round trip latency with MPI), and measuring bandwidth

(sending multiple outstanding messages from the origin to the

target), for any of these methods, we have not observed any

overhead incurred by the ARMCI-ODCM in comparison to the

Original implementation (results not included in the paper).

Figure 12 shows the overall timing of connection estab-

lishment with increasing number of processes. The micro-

benchmark compares the performance of ARMCI-ODCM

and Original respectively. For connecting two processes, the

Original implementation takes 820 us, while it takes only 500

us for ARMCI-ODCM to connect two processes, reducing

the connection time by 38%. Since the time scales linearly

with the increasing number of processes, the overall con-

nection time reduces significantly with the increasing num-

ber of processes. For 4096 processes, it takes 3.2 seconds

for Original implementation, while it takes 2.1 seconds for

ARMCI-ODCM. To the best of our knowledge, this is the first

design and performance evaluation of parallel implementation

for connection management with InfiniBand using reliable

transport semantics.

For the micro-benchmarks, we do not observe an improve-

ment in the connection memory utilization, since each of

the processes are connected with every other process. In

the next section, we present the performance evaluation with

benchmarks, and discuss the overall number of connections in

addition to comparing overall performance.

For the rest of the section, we present the results only

with the overlap protocol for connection establishment, since

it performs better than the non-overlap protocol for increasing

number of processes, as shown above.

C. Performance Evaluation with Benchmarks

In this section, we present the performance evaluation with

benchmarks. We use a variety of benchmarks for performance

evaluation. Besides, LU factorization, we use an ARMCI

version of the RandomAccess Benchmark, which creates a

global table for updates, allowing different processes to update

different locations of the global table in a one-sided manner

using Accumulate operation. As allowed by the MPI version

of the RandomAccess benchmark, a total of 1024 updates

are coalesced before the update vector is actually transferred.

Lennard Jones simulation uses Global Arrays as the program-

ming model. The simulation uses force decomposition and the

entire force matrix is divided into multiple blocks for dynamic

load balancing. The force between two atoms/particles can be

approximated by Lennard Jones potential energy function. Us-
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Fig. 10. ARMCI Accumulate Strided Unidi-
rectional Bandwidth
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Fig. 11. ARMCI Put Latency
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Fig. 12. Connection Establishment Latency
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Fig. 13. LU Factorization
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Fig. 14. RandomAccess Benchmark
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Fig. 15. Lennard Jones Simulation

ing Newton’s laws of equation and Velocity-Verlet algorithm,

the velocities and coordinates are updated for the next time

step.

Figure 13 compares the performance of LU factorization

for up to 1024 processes using ARMCI-ODCM and Original

implementations. We see that the relative times of execution

are very similar, showing the efficacy of the ARMCI-ODCM

design. Figure 14 shows the performance of ARMCI-ODCM

and Original implementation using RandomAccess Bench-

mark. We observe that the Giga Updates per Second (GUPS)

observed under both implementations show a difference rang-

ing from 2%-3%, which can be attributed to the system noise.

Similar results are observed for the Lennard Jones simulation

for increasing number of processes with Figure 15.

Tables I and II show the average number of client-server

and server-client connections created for increasing number

of processes using various benchmarks. We observe that for

Lennard-Jones simulation, the overall number of client-to-

server connections and server-to-client connections required

are equal to the number of nodes and processes respectively.

Due to this communication pattern of the benchmark, we

do not observe any improvement in the overall connection

memory footprint. However, we do not observe any overhead

incurred by ARMCI-ODCM implementation. A similar trend

is also observed for RandomAccess benchmark, the commu-

nication pattern requires creation of almost all client-server

and server-client connections. However, we do not observe

any performance degradation here with ARMCI-ODCM in

comparison to the Original implementation.

However, the LU factorization uses significantly lesser



number of connections in comparison to the total number of

processes. As shown in the table, with 1024 processes, the

average number of client-server and server-client connections

are 31 and 263, respectively. This leads to reduction of

connection memory by 65% and 73% for client-server and

server-client connections respectively, without incurring any

performance loss by using ARMCI-ODCM in comparison to

the Original implementation.

TABLE I
AVERAGE NUMBER OF CLIENT-SERVER CONNECTIONS - BENCHMARKS

128 256 512 1024

LU Factorization 12 19 25 31
Lennard Jones 22 44 88 176
RandomAccess 21 43 87 175

TABLE II
AVERAGE NUMBER OF SERVER-CLIENT CONNECTIONS - BENCHMARKS

128 256 512 1024

LU Factorization 71 112 197 263
Lennard Jones 128 256 512 1024
RandomAccess 123 251 507 1021

D. Performance Evaluation with STOMP

In this section, we present the performance evaluation of

STOMP with ARMCI-ODCM comparing its performance with

the original implementation. The STOMP simulator solves the

partial-differential equations that describe the conservation of

mass or energy quantities by employing integrated-volume

finite-difference discretization to the physical domain and

backward Euler discretization to the time domain. The result-

ing equations are nonlinear coupled algebraic equations, which

are solved using Newton-Raphson iteration. The simulator has

been written with a variable source code that allows the user

to choose the solved governing equations (e.g., water mass,

air mass, dissolved-oil mass, oil mass, salt mass, thermal

energy) [18].

Figures 16, 17 and 18 show the performance evaluation of

STOMP for 200x200x15, 400x400x15 and 800x800x15 grid

size respectively. We simulate the application for a period

of twenty minutes for the evaluation varying the number of

processes ranging from 128 to 4096. Using strong scaling, we

evaluate a problem to a number of processors, till the overhead

of communication prevents the problem to scale to a higher

number of processors. In each of the figures, we observe that

ARMCI-ODCM does not incur any overhead in comparison

to the original implementation. During our experimentation,

we observe a variance of up to 3%, which we attribute to the

system noise.

1) Connection Memory Utilization with STOMP: Tables III

and IV show the average number of client-to-server and

server-to-client connections with STOMP while increasing the

number of processes. Due to the limitations of the memory

bandwidth, we use six processes per node and dedicate the

remaining two cores for performing computations and data

transfers on behalf of the processes. As a result, the number

of nodes used for running 128 to 4096 process jobs is 22,

44, 88, 176, 352 and 704 nodes, respectively. Since there is

one data-server per node, and clients need to connect only

to the data server on a node, the average number of client-

server connections reflect trends with increasing number of

nodes. We observe that for 128 processes, the number of client-

server connections is 3, while the number of client-server

connections for 4096 processes is 10. Compared to the original

implantation, this leads to reduction in connection memory

utilization by 90% to 70 times reduction for 4096 processes.

We observe that the number of actual connections increase

slowly while doubling the number of processes. Clearly, we

expect the memory utilization of ARMCI-ODCM to be even

higher for larger processor counts.

TABLE III
AVERAGE NUMBER OF CLIENT-SERVER CONNECTIONS - STOMP

128 256 512 1024 2048 4096

200x200x15 3 3
400x400x15 3 3 6
800x800x15 6 10 10

TABLE IV
AVERAGE NUMBER OF SERVER-CLIENT CONNECTIONS - STOMP

128 256 512 1024 2048 4096

200x200x15 21 22
400x400x15 22 23 35
800x800x15 35 61 62

Table IV shows the average number of server-to-client

connections. Since the Original implementation maintains

a pairwise connection between each client and server, the

average number of server-to-client connections are equal to

the number of processes in the job. For 128 processes, the

average number of connections reduce by 6 times, while

almost a 66 times improvement is observed for 4096 processes.

Since STOMP performs clique based communication, multi-

fold improvement is expected at larger processor counts.

Clearly, ARMCI-ODCM is able to reduce the connection

memory footprint significantly for Global Arrays applications

like STOMP, without incurring an overhead for overall execu-

tion time. For other Global Arrays and ARMCI benchmarks,

depending up on the kernel computation and communication

pattern, ARMCI-ODCM is able to show overall reduction in

connection memory, without performance degradation in all

cases.

V. RELATED WORK

On demand connection management with InfiniBand for

MPI two-sided communications based programming models

has been studied by multiple researchers [28], [12], [11], [13],

[14], [15].

Wu et al., have presented the impact of on-demand con-

nection management with VIA [28]. However, the overall
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Fig. 17. STOMP-400x400x15
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Fig. 18. STOMP-800x800x15

memory utilization is much lesser compared to the connec-

tion memory with InfiniBand. Yu et al., have presented a

design for on-demand connection management using RDMA

connection manager and Openfabrics interface with Infini-

Band [12]. However, the reliability protocol is not clear in

the design. To alleviate the limitations of the work pre-

sented by Yu et al., [12], Koop et al., presented designs

using multiple transport semantics with InfiniBand [4]. Using

unreliable datagram connection-less transport semantics with

InfiniBand, Koop et al., presented designs for copy based

approaches [11]. Copy based approaches are applicable for

MPI, since it has implicit synchronization. Using zero-copy

based approaches with InfiniBand, Koop et al also presented

design and performance evaluation for using zero copy based

approach using send/receive mechanism provided by Infini-

Band, since the unreliable datagram transport semantics do not

support RDMA [13]. Koop et al., have also presented multi-

transport InfiniBand semantics using unreliable datagram and

reliable connection transport semantics [14]. Recently, work

related to extended reliable connection semantics has also

been presented. Using this transport, multiple processes on

the same node can share the data transfer queue, allowing

memory requirements to increase corresponding to the number

of nodes, rather than the number of processes [15]. This has

an important consequence for upcoming large scale multi-core

systems (more than 8/16 cores per node).

However, none of the above work has focused on design-

ing on-demand connection management protocols for one-

sided communication models like Global arrays [9], which

fundamentally differ from the two-sided message passing as

discussed in the paper. To the best of our knowledge, this is

the first study of the on-demand connection management with

one-sided communication runtime system like ARMCI [16].

Although, we have used ARMCI [16] as the communication

runtime system, similar design is applicable to runtime sys-

tems of other runtime systems like GASNet [17].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a design for on-

demand connection management for PGAS model’s runtime

systems using Aggregate Remote Memory Copy Interface

(ARMCI) [16], the runtime system of Global Arrays [9].

Within the solution space, we have presented the overall

design of ARMCI over InfiniBand, multiple approaches for

on-demand connection creation and establishment protocol;

simplification of the connection establishment state machine

and reliability protocol due to the assymetric nature of com-

munication in PGAS runtime systems. We have implemented

our design and evaluated it with micro-benchmarks and bench-

marks (LU Factorization, RandomAccess, Lennard Jones sim-

ulation) and application (Sub-surface Transport over Multiple

Phases (STOMP) [18]). With the performance evaluation for

up to 4096 processors, we are able to have a multi-fold

reduction in connection memory with a negligible degradation

in performance for the bechmarks. Our performance evaluation

with STOMP improves a connection memory utilization by

66 times with no performance degradation. To the best of

our knowledge, this is the first design, implementation and

evaluation of on-demand connection management approach

with PGAS programming models,

We plan to continue our research on impact of multiple

InfiniBand transport semantics on PGAS models. Specifically,

we plan to explore the impact of unreliable datagram seman-

tics, and support for multi-transport runtime systems using

Extended Reliable Connection (XRC) transport semantics in

near future. We will also consider on-demand connection

termination, which is of impending interest, as a result of the

scalable work stealing primitives being designed using PGAS

programming models.
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