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Abstract—We present Global Futures (GF), an execution model
extension to Global Arrays, which is based on a PGAS-compatible
active message-based paradigm. We describe the design and
implementation of Global Futures and illustrate its use in a
computational chemistry application benchmark (Hartree-Fock
matrix construction using the Self-Consistent Field method). Our
results show how we used GF to increase the scalability of the
Hartree-Fock matrix build to 6,144 cores of an Infiniband cluster.
We also show how GF’s multithreaded execution has comparable
performance to the traditional process-based SPMD model.

I. INTRODUCTION

Compute nodes in large-scale HPC systems are evolving
towards systems with large numbers of cores per node: i.e.
Hopper, the Cray XE6 system at DOE’s NERSC user facility,
as well as the recently deployed K computer at Japan’s RIKEN
center. This trend is expected to increase as newer large-scale
HPC systems are deployed on the path to exascale [1].

Even though newer systems have been deploying more total
memory per compute node, the increasing number of cores per
compute node implies that the available memory per core is
decreasing. This has critical implications for the large HPC
application software base. Most large-scale HPC applications
have been developed using the Single Program - Multiple Data
(SPMD) paradigm, which typically is realized by starting up
a number of sequential processes (0 · · · p − 1) on individual
“processors” (cores in modern systems). Explicit parallelism
is typically realized only through this mechanism (in contrast
to implicit core-level parallelism such as Instruction Level
Parallelism (ILP) or SIMD vector instructions). Thus, this
model can only implement explicit parallelism in a single level.
The current generation of HPC petascale programming models
such as Message Passing Interface (MPI) [2] and Global
Arrays (GA) [3], as well as PGAS language-based models
such as Unified Parallel C (UPC) [4] and Co-Array Fortran [5],
[6] are all based on the SPMD paradigm. SPMD models may
incur a high cost in data replication due to private per-process
address spaces, when considering multiple processes running
on the same SMP node.

Hybrid programming with MPI and OpenMP has been used
as a solution for applications that require larger amounts of
memory per process, yet still want to use all available cores for
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computation exploiting multi-level parallelism. These hybrid
solutions have achieved good performance in some cases,
while in other cases it has been challenging to match the
corresponding pure MPI performance [7]. There are several
reasons why OpenMP implementations may not be able to
match the performance of an MPI implementation running
on a shared memory node using the same number of core
resources: less control over memory allocation and OpenMP
thread placement on NUMA systems1, as well as the need to
run all OpenMP threads in a tightly synchronized manner due
to the constraints and requirements of the OpenMP execution
model: fork-join parallelism executing in a BSP-like manner.

Next-generation PGAS models such as X10 [8] and
Chapel [9] have developed an alternative execution model that
is based on the ability to create activities on remote nodes in a
distributed memory system (asyncs in X10, tasks in Chapel).
X10 and Chapel both enable the expression of these mecha-
nisms at a higher level in the respective languages through
the mapping of distributed data structures to the compute
nodes where the application is running. In this manner, an
X10 async or Chapel task can be created on the node that
owns a section of an X10 or Chapel distributed array. This
alternative execution model has been termed Asynchronous
PGAS (APGAS) [10]. The typical implementation mechanism
for APGAS environments on distributed memory systems
has been to use process-based SPMD execution, where each
process runs a multithreaded environment. The underlying
runtime libraries use an active message-based [11] approach
to create activities on remote nodes, which are then executed
by a dedicated thread or by a user-level compute thread within
the target multithreaded process. APGAS extensions have also
been proposed for Co-Array Fortran [12].

a) Global Arrays: Global Arrays (GA) is a library-
based PGAS programming model, developed over the past two
decades [13], [14]. It is based on providing global-view access
to dense arrays distributed across the memories of a distributed
system. GA uses a traditional SPMD execution model and pro-
vides global-view access to the processes participating in the
SPMD execution via put(), get() and other primitives that
specify array slices in terms of their global index coordinates.

1OpenMP applications will allocate many data structures on the NUMA
memory domain closest to the master thread, while MPI processes will
typically be bound to a core and allocate all memory close to it



GA’s performance and scalability are on par with MPI [3] and
fully interoperable with it (a GA application can mix GA &
MPI calls).

Being an MPI-interoperable library-based model offers sev-
eral advantages to GA including not depending on compiler
technology (except for the underlying node languages: C/C++,
Fortran), as well as the ability to introduce GA constructs
incrementally into very large HPC applications, which can be
done on a module or even a routine-by-routine basis. This
is due to the fact that GA’s underlying execution model is
fully compatible with MPI. Library-based models potentially
suffer from lack of optimization by advanced compilers, which
can better understand and improve remote data accesses in
language-based PGAS models (UPC, CAF, others). Language-
based models have a higher cost in terms of adoption and
incremental integration into existing applications due to re-
strictions (or lack) of interoperability with MPI and traditional
node languages. Less mature language-based models also
suffer a performance penalty (compared to codes written
in traditional HPC models & languages) due to compiler
technology that needs further refinement [15].

b) Global Futures: The principal contribution of this
paper is the Global Futures (GF) execution model. GF can
be categorized as an APGAS execution model extension to
Global Arrays. Global Futures is library-based to maintain full
compatibility with GA and MPI, as well as fully interoperable
with their underlying SPMD execution environment.

Global Futures extends GA by adding a new set of API
functions that enable the execution of tasks on the locations
that own arbitrary array slices of a GA instance. GF tasks (or
futures) are specified as user-defined functions written in the
underlying node language (C/C++, Fortran). GF provides two
modes of execution for futures: active and passive, as well
as a number of mechanisms for detecting completion of the
futures.

The rest of this paper is organized as follows: Section II
presents in detail the design and implementation of Global
Futures; Section III discusses how we use Global Futures to
implement the two-electron contribution phase of the Self-
Consistent Field (SCF) application benchmark; Section IV
presents experimental results based on the SCF application
benchmark; Section V discusses related work; and finally
Section VI presents our conclusions and discusses future
work.

II. GLOBAL FUTURES

We describe the design and implementation of Global
Futures and how it uses GA’s infrastructure and interfaces
with it.

A. Global Arrays Execution Environment

Global Arrays uses a process-based SPMD execution en-
vironment, in which processes are able to use one-sided
communication primitives to directly access remote distributed
array data, without the participation or involvement of the
remote process. These primitives are implemented by GA’s

high-performance communication runtime layer: the Aggre-
gate Remote Memory Copy Interface (ARMCI) [16].

In many cases, these remote accesses can be directly
mapped to network hardware-supported Remote Direct Mem-
ory Access (RDMA) transfers from the remote memory hold-
ing the data to the calling process. There are cases, such as for
irregular and multidimensional strided data access patterns, in
which some support is required and the the data transfer cannot
be completed fully relying on RDMA transfers.

For these scenarios, GA’s software architecture provides for
a communication support agent running on each SMP node
of a distributed system. This communication support agent
is typically realized as a data server thread spawned by the
master process on each SMP node. On current GA/ARMCI-
supported platforms it has been sufficient to have a single
thread per SMP node to respond to communication requests.

ARMCI implements a mechanism called Global Procedure
Call (GPC) [17], that enables the execution of arbitrary user
code upon reception of a specific type of ARMCI message by
the data server thread. GPCs are implemented by executing
this arbitrary user code within the context of the data server
thread on the target SMP node. The concept behind executing
GPCs in this form is that the user-defined GPC callback is
executing in the context of the SMP node that owns (i.e. has
direct load/store access) to target PGAS data (GA slice). This
memory-domain based, rather than process-based abstraction,
enables quicker response to incoming requests and reduces
runtime resource utilization (eg., connections, posted buffers,
etc.) by employing process-to-node rather than process-to-
process interactions.
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Fig. 1. ARMCI’s Global Procedure Call (GPC) mechanism

Fig. 1 illustrates ARMCI’s GPC mechanism: in the diagram
process 4 on SMP node i has issued a GPC call target to
process 3 on SMP node j. The user-defined callback for the
GPC executes in the context of the data server thread owned
by process 0 on SMP node j. The diagram indicates that
all processes on SMP node j have direct access to GA data
residing on that node, as well as process-private data.

B. Global Futures’ Architecture

We extend Global Arrays’ basic SPMD execution model
by introducing multithreaded GA processes. This enables the



asynchronous execution of futures without interfering with the
process’s SPMD flow.

Our current implementation uses Intel Threading Building
Blocks’ multithreaded execution library [18] for its ease of
use and multiple modes of execution. The design of Global
Futures is not tied to a specific threading package. In fact, we
also have a preliminary port of Global Futures to Sandia Na-
tional Laboratories’ qthreads multithreaded environment [19],
[20].

Global Futures (GF) extends Global Arrays by enabling
the execution of user-defined computations (futures) on the
locations within the distributed memory system that own slices
of a GA instance. Typically, GA instances are partitioned
amongst the processes in a distributed memory system in such
a way that each process owns a block or set of blocks of the
GA instance. Partitioning of the GA instance can occur in
multiple dimensions and can be handled by the GA runtime
or specified by the application.

GF is written in C++ and exposes an imperative C-style ex-
ecution API to the application, with the intent to enable access
to the API to Fortran applications as well. GF’s functionality
is divided into five main categories: initialization, finalization
& registration; execution; completion; GA thread safety; and
remote data caching. The subsequent sections describe in detail
these five categories. Table I summarizes the functionality of
the GF API.

1) Initialization, finalization & registration: Global Fu-
tures, as any other parallel execution environment for dis-
tributed memory systems, must be properly initialized and
terminated. User-level functions to be executed as futures must
be registered with the system and must follow a particular
function prototype. Initialization, finalization and registration
are all collective operations requiring agreement by all pro-
cesses participating in the SPMD execution. All future tasks
created for a specific function are called futures of that type.

2) Execution: This is GF’s principal capability: the ability
to remotely execute an user-defined function on the location
where a GA instance’s array slice resides. GF provides two
mechanisms to invoke futures: active and passive2. Active
futures are intended to execute on the process that owns the
data server thread on an SMP node (see Fig. 1) and have direct
access to all GA data on that node. Passive futures are intended
to execute on the process that owns the GA slice according to
how the GA instance is distributed. The application will use
one mechanism or the other depending on what level of access
is needed to the target process’s private data.

As mentioned previously, we use ARMCI’s GPCs to im-
plement the remote invocation of futures. As described, when
a GPC is called from a process on one node to a target on
another node, the GPC will be executed by the data server
thread on the target SMP node. Active futures directly utilize
this mechanism to create a TBB enqueued task upon reception
of the GPC call. TBB enqueued tasks are an alternative

2This definition differs from the usage in communication runtimes such as
MPI [21]

mechanism to the standard depth-first, Cilk-style TBB task
execution mode. Enqueued tasks are actively executed by
worker threads upon their appearance in the TBB environment.
The GPC execution in the data server thread immediately
finishes upon the creation of the TBB enqueued task (it doesn’t
wait for it to finish). Active futures are invoked using the
GFExecute() API function.

Passive futures require a more complex execution support
environment. In this case, when the GPC call is received
by the target data server thread, a record is placed onto a
Boost library [22] process-based shared memory queue that
will be picked up by the target process at a later time. The
GPC call then finishes. Passive futures are invoked using the
GFEnqueue() API function.
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Fig. 2. Execution of futures

In both cases, the application-defined future function can
create and invoke more futures. The user-defined future func-
tion can also execute arbitrary local and GA operations (via
the GF wrapper functions described in Section II-B5). User-
defined future functions are not allowed to execute collective
operations, including the registration of a new future inside a
user-defined future function.

Fig. 2 presents the flow for execution of both active and
passive futures from the perspective of the target SMP node.
The future is shown arriving at the node as the orange arrow
on the left of the diagram. The data server thread attached to
the master process on the node receives the future request as
a GPC callback. If it is an active future, then it immediately
creates a TBB enqueued task. This TBB task is then available
for execution by the TBB worker threads on the master
process. If it is a passive future then the data server thread
adds an entry to the Boost message queue corresponding to the
target process. The passive future will then be picked up for
execution by the TBB worker threads on the target process (see
Section II-B3 for more details on passive future execution).

When active futures are targeted towards the same SMP
node as the calling process resides on, then the GPC callback
is executed by the calling process not by the data server thread.
This is correct in the sense that ARMCI’s GPC callbacks are
intended to execute where the PGAS data is available, thus



Routine Collective Functionality
GFInitialize() Y Initializes the Global Futures library
GFFinalize() Y Finalizes the use of the GF library & releases resources
GFType GFRegister() Y Registers a user-defined function for execution as a future
GFHandle GFEnqueue(type,
g_a, lo, hi, arg)

N GF will execute a passive future at the target GA instance location

GFHandle GFEexecute(type,
g_a, lo, hi, arg)

N GF will execute an active future at the target GA instance location

GFWait(hndl) N Calling process will block until future is executed
GFQuiesce(type) N Calling process will block until all its spawned futures of the type are executed
GFQuiesce() N Calling process will block until all its spawned futures are executed
GFAllQuiesce(type) Y Calling process will block until all futures of the type spawned by all SPMD

processes are executed
GFAllQuiesce() Y Calling process will block until all futures spawned by all SPMD processes are

executed
GF_Get(), GF_Put(),
GF_Acc() and others

N Wrapper functions for GA thread-safe operations

GF_CachedGet() N Blocking get with caching of remote GA data
GF_CachedNbGet() N Non-blocking get with caching of remote GA data
GF_CachedNbWait() N Finalize non-blocking get operation with caching of remote GA data
GF_CachedAcc() N Local element-wise accumulation of data for later accumulation onto GA instance

data
GF_CacheReadOnlyEmpty() N Flush read-only cached remote data
GF_CacheAccFlush() N Element-wise accumulate of locally cached data onto GA instance data

TABLE I
GLOBAL FUTURES API SUMMARY

rendering the calling process on the same SMP node as the
data equivalent to the data server thread for this purpose.

3) Completion: GF only provides asynchronous execution
semantics for future tasks: that is the execution of a future task
happens asynchronously with respect to the invoking process
and the process has to explicitly check for completion of that
task. GF provides three levels of completion functions for
future tasks: one-sided, single future; one-sided, single-source
futures; and collective, multi-source futures. In all cases, the
GF runtime system signals completion of the future back to
the originating process by execution of an ARMCI_Put() on
a preallocated PGAS data location.
GFWait(handle) is the API function to detect the com-

pletion of a single future. It takes as an argument the future
handle returned by a previous call to GFExecute() or
GFEnqueue. It will block until the future indicated by the
handle has completed.
GFQuiesce() and GFQuiesce(type), respectively,

detect the completion of all futures invoked by the calling
process or all of futures of certain type invoked by the calling
process.
GFAllQuiesce() and GFAllQuiesce(type), re-

spectively, detect the completion of all futures invoked by all
processes participating in the SPMD execution, or all futures
of a certain type invoked by all processes.
GFWait(handle), GFQuiesce() and

GFQuiesce(type) are one-sided functions in the
sense that only the calling process waits for completion of
the respective futures. The target processes where the futures

were spawned does not participate, keeping in line with GA’s
one-sided communication framework.

GFAllQuiesce() and GFAllQuiesce(type) are de-
signed to be called collectively by all processes participating in
the SPMD execution. These collective calls have special prop-
erties in the context of Global Futures: first, passive futures
that were created for execution on target processes, are actually
executed at this time (target processes examine their respective
Boost shared memory queues for execution records); second,
since all processes are executing the respective AllQuiesce
call, no new futures are being created by the main thread of
the SPMD processes, which implies that any nested futures
being created while inside an AllQuiesce call must be
the residual effect of previously created futures. All correct
Global Futures applications should eventually stop creating
nested futures and all futures will thus have completed after
the AllQuiesce call finalizes.

4) GA remote data caching: One principal advantage of
running in a multithreaded execution environment is that the
relatively large shared memory within a node can be used in a
number of different ways compared to the tighter constraints
of a pure process-based SPMD execution environment. GF
provides a mechanism for automatically caching GA data
read from remote nodes via get() primitives. Remote data
read by one thread can then be used by another thread
without having to reissue the costly network transfer. We
also cache data resulting from Global Arrays’ accumulate
operations (NGA_Acc(), where a local data buffer is added
in an element-wise manner to a size-compatible GA slice.



Cache usage is fully under the control of the application, the
programmer must make sure that data is either fully read-
only or that there is a single writer. This is similar to the
base put/get mechanism in GA’s traditional SPMD execution
model. GF provides mechanisms to completely flush the read-
only caches and to accumulate data to the GA space that has
been accumulated locally on the cache.

5) GA thread safety: Global Arrays’ current implementa-
tion is not thread safe. For this reason, we add a number of
wrapper functions with GF prefixes (in contrast to GA’s NGA_
and GA_ prefixes) that utilize a single lock to serialize access
under concurrent calls to the GA library. We acknowledge that
this solution is not optimal and are actively working to develop
thread-safe infrastructure for GA, which can tolerate a greater
level of concurrent calls into the library by using finer-grained
locking.

III. SELF-CONSISTENT FIELD CALCULATION

We have prototyped the use of Global Futures for molecular
science applications in the context of the Self-Consistent
Field (SCF) calculation [23]. We have selected a standalone
SCF application benchmark that is packaged as an example
within the Global Arrays software distribution. Within that
application, we have focused on the two-electron contribution
to the Fock matrix build and have converted it into a Global
Futures-based computation. This algorithm is the most time-
consuming part of this calculation.

The two-electron contribution involves a computationally-
sparse n4 calculation over a n2 data space. These n4 tasks
need to be enumerated and evaluated. Most of those tasks do
not add any significant contribution to the Fock matrix, in fact,
only a small percentage of them (< 1% for larger inputs) do.

The traditional way this calculation is organized in Global
Arrays is by having a dynamic counter-based approach in
which GA processes contend to obtain the next task identifier
from the n4 pool. The task identifier is used to determine
the associated data for the task, which is then inspected
to see whether it will add a significant contribution to the
Fock matrix. As mentioned before, most tasks do not add
a significant contribution to the Fock build. This approach
introduces significant additional communication to inspect the
insignificant tasks, and does not scale well to large process
counts due to the fact that tasks can be assigned to processes
in any order without regard for locality. Tasks that do add a
contribution then execute a 4-deep loop nest to compute the
necessary integrals and contribute to the Fock matrix.

The SCF benchmark uses Global Arrays to store the princi-
pal data structures: the Schwarz matrix, the density matrix
and the Fock matrix. All of these matrices are distributed
equally amongst the running processes using a 2-dimensional
distribution, where each process stores a single contiguous
block. The SCF application benchmark uses the basis sets for
Beryllium atoms.

A. Two-electron Calculation in GF
Each task in the two-electron calculation needs to obtain

four equal-sized tiles of data (using NGA_Get()): two from

the distributed Schwarz matrix and two from the density
matrix. The value of the elements of the two tiles from the
Schwarz matrix determines whether the task will contribute
to the Fock matrix or not. The results are accumulated onto
equivalent-sized tiles of the Fock matrix (using NGA_Acc()).

With respect to locality, the second tile of the Schwarz
matrix and the first tile of the density matrix are co-located and
will be owned by the the same process (or set of processes) due
to their identical GA distribution. The first tile of the Schwarz
matrix and the first tile of the resulting Fock matrix are also
co-located.

We describe the different steps to perform the two-electron
calculation using Global Futures. The overall SCF calculation
is an iterative, fixed-point process which continues until certain
desired numerical tolerance has been reached. Even though the
number of tasks for the two-electron calculation is large (n4),
these tasks do not need to be computed on every iteration
of the SCF calculation. It is enough to inspect them and
determine which tasks do contribute to the Fock matrix build
(“real tasks”) and keep track of which tasks from the n4 space
need to be executed by each GA process rank. Thus, the
checking and redistribution phases described in Section III-A1
and III-A2 need to be performed only once as part of the first
SCF iteration. All the steps in the calculation use active futures
only.

We use the collective GF_AllQuiesce() routine to
check for completion of all futures after the checking phase,
after the redistribution phase and after the execution phase. We
use the collective routine since it also implies a synchroniza-
tion barrier and guarantees that all GA processes have reached
the same step in the computation.

1) Checking phase: In the Global Futures-based imple-
mentation each process enumerates n4

p tasks (where p is the
number of processes), each process will inspect only tasks for
which the first Schwarz tile is local, other tasks are packaged
into futures and sent to their home processes for checking.
This checking step involves testing the tile to see if any of its
elements is above the required tolerance level: ∃ t ∈ T, t·s ≥ ε,
where ε is the tolerance level and s is the maximum value of
any element of the Schwarz matrix.

This step significantly reduces the amount of communica-
tion required since all Global Array accesses become local
operations. It also significantly reduces the total number of
tasks to execute later (by 94% for a 256 Beryllium atom
system).

Tasks that pass this first checking step are then packaged
into futures and sent over to the GA process that owns the
second Schwarz tile. These tiles are then examined to see if
any of their elements has an absolute value above the tolerance
level: ∃ t ∈ T, ‖t‖ ≥ ε. The number of tasks sent over for
this second round of checking is significantly smaller than the
original n4 set of tasks. Tasks that pass this second check are
stored in a local queue on the process that owns the second
Schwarz tile.

At the end of this phase, processes will have stored in
local queues only tasks that do contribute to the Fock matrix



build. However, the number of tasks per process will be highly
unbalanced with respect to other processes due to the inherent
sparsity of the task space.
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Fig. 3. Load imbalance in the two-electron calculation after task checking

Fig. 3 illustrates the imbalance after the checking phase, by
plotting the number of tasks that each GA process rank has
in its local queue (“real tasks” that will actually contribute to
the Fock matrix build). The plot is for a 256 Beryllium atom
system executing on 64 GA processes.

2) Redistribution phase: The tasks stored in the local GA
processes’ queues are local with respect to the GA operations
on the second Schwarz tile (already used in the checking
phase) and the first tile of the density matrix. However, as
can be seen from Fig. 3, the number of tasks per GA process
rank is heavily unbalanced. We rebalance the number of tasks
per GA process rank at the cost of reduced locality and
increased network communication. Note that all the tasks in
the processes’ queues are “real” and will contribute to the Fock
matrix build. Each task has a similar computational cost (four-
deep loop nest), but different communication costs if moved
to non-local processes.

We use a MPI_Allgather() operation to exchange the
number of tasks that each process has and compute a schedule
to determine how many tasks need to be sent from processes
with a larger number of tasks to those with a lower number of
tasks. The task identifiers are packaged into futures and sent
to the respective processes for insertion into their local task
queues.

3) Execution phase: We now have a fully computationally
balanced set of tasks on each GA process rank. Each process
uses local futures (essentially local TBB tasks) to compute the
contributions of its portion of the task space to the Fock build.

As discussed before, this is the only phase that has to be ex-
ecuted on every SCF iteration. The checking and redistribution
phases happen only once.

We use the GF remote data cache to improve performance
and reduce communication in the execution phase. We cache
the tiles of the Schwarz matrix that each GA process reads
on a permanent basis since the matrix is a read-only data

structure. We also cache the tiles of the density matrix on a
per-iteration basis, that is after every SCF iteration the density
matrix cache must be flushed. The density matrix is a read-
only data structure in the context of the two-electron routine,
however it is updated on every SCF iteration. We also use the
accumulate cache for the tiles of the Fock matrix produced by
each GA process. The Fock matrix tiles in the cache must be
accumulated onto their locations in the Fock GA instance at
the end of the two-electron routine.

In our SCF implementation, the available memory per node
is sufficient to hold all the data that is being cached. However,
for larger problem sizes more sophisticated techniques for
reusing space in the remote data cache should be used. Also,
our current implementation of the cache is sensitive to the tile
sizes being used in the GA data requests, which is appropriate
for the two-electron routine in which all requests are of the
same size, i.e. array slice specification for NGA_Get()s are
of the same size. For other algorithms or applications GA data
requests might involve array slices of different sizes and thus
our current data cache will store duplicate information. A more
sophisticated scheme that is not sensitive to tile size needs to
be developed.

IV. EXPERIMENTAL RESULTS

We present two sets of experiments: a microbenchmark that
indicates the performance potential and quantifies the overhead
of Global Futures, as well as results on the use of Global
Futures to implement the two-electron contribution for the
SCF application benchmark.

We present results using two platforms: Trinity, a 12-node
QDR InfiniBand cluster with dual-socket, quad-core Intel
Nehalem processors and Chinook, a 2,310 node DDR In-
finiBand cluster with dual-socket, quad-core AMD Barcelona
processors.

A. Microbenchmark

We ran the microbenchmark on Trinity to understand the
overhead of Global Futures and the costs of creating them and
checking for completion. The experiment consists of creating
20,000 zero-sized futures on one SMP node and sending them
for execution on another node. We use a single process on
each SMP node and run the experiment with an increasing
number of TBB worked threads on the target node (used to
respond to future requests). We reserve one core on each node
for the GA data server thread.

Fig. 4 presents the number of futures created per second
for both active (execute) and passive (enqueue) futures. The
number of TBB worker threads on the target node increases
from one to seven. As can be seen from the graph, active
futures are significantly faster with a creation time of 8.5 µs
per future, while passive futures take 86 µs per future. The
throughput does not increase significantly as the number of
worker threads increases. The lower performance of passive
futures needs further investigation (and optimization). We
believe the current performance is due to inefficiencies in the
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Fig. 4. Futures created per second for both passive (enqueue) and active
(execute) future types

manner that we are using the Boost library shared queue or
in its implementation.

B. SCF application benchmark

We executed the full SCF application benchmark on Chi-
nook using up to 6,144 cores for two different problem sizes:
a 256-atom system and a 352-atom system.

Fig. 5 plots the execution time for the two-electron contri-
bution in SCF on Chinook using from 48 cores to 3,072 cores
for the 256 Beryllium atom system. We used a single GA
process per node (8 nodes to 512 nodes) and 6 TBB worker
threads per node. We reserve two cores per node for the GA
data server thread and Linux system daemons. We plot the
ideal time assuming perfect speedup at 48 cores.

For comparison, we include the performance of a modified
version of the dynamic-counter, process-based implementa-
tion. We ran this version from 48 to 384 cores, but its lack
of scalability prevented us from running larger experiments.
We added the use of the remote data cache to this version,
as well as a schedule cache. During the first iteration of the
SCF calculation, each process really goes and grabs a task
identifier from the counter until all n4 tasks are exhausted.
Our optimized process-based implementation keeps track of
which tasks that the process obtained are “real” (in the sense
that they contribute to the Fock matrix build), and reuses this
information for the second and subsequent iterations of the
SCF calculation. Thus, the cost of dynamically discovering
the “real” tasks (using the dynamic counter) is only paid once.
In spite of these two optimizations, the scalability is limited
due to the very high cost of this dynamic discovery phase.
The Global Futures implementation avoids this overhead by
performing discovery of the “real” tasks almost fully locally
(i.e. without GA communication) and establishing the task
schedule on each GA process again almost fully locally
(futures need to be sent between processes for part of the
checking phase and for balancing the load between processes).
It is feasible to perform further optimization on the process-
based implementation to perform local task discovery and

utilize GA or MPI-based communication to exchange tasks
for load balance purposes. However Global Futures enables
a more natural and simpler way of expressing these locality-
driven optimizations.
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Fig. 5. Execution time on Chinook for the 256-atom system
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Fig. 6. Execution time on Chinook for the 352-atom system

Fig. 6 plots the execution time for the two-electron con-
tribution to SCF on Chinook using from 72 cores to 6,144
cores for the 352 Beryllium atom system. We used a single
GA process per node (12 nodes to 1024 nodes) and 6 TBB
worker threads per node. We reserve two cores per node for
the GA data server thread and Linux system daemons. We
plot the ideal time assuming perfect speedup at 72 cores. For
this larger input system, we could not run the process-based
implementation even at lower core counts.

At larger numbers of cores (3,072 and 6,144) we observe
some divergence of the performance compared to the ideal
time. We believe this is due to the effect of the single heavy
lock protecting concurrent calls into the GA library. At larger
core counts, the computation time (number of tasks per pro-
cess) becomes smaller (19.6 seconds for the 256 atom input, 41
seconds for the 352 atom input) and thus the communication



time becomes a larger fraction of the total time. Since we
execute the tasks using local futures to maximize use of the
local cores, the GA library needs to be protected. Further work
is under way to reduce the cost of thread safety for Global
Arrays.

V. RELATED WORK

Halstead describes futures [24] in the context of the Multil-
isp programming language. His design focuses on introducing
a “future” modifier into the Multilisp type system to indicate
that expressions need not be evaluated immediately, thus
introducing the possibility of evaluating them concurrently.
His design and implementation are tied to the shared-memory
semantics of the Multilisp language and are focused on the
fine-grained parallelism available in expression evaluation. The
Global Futures model is designed to work in concert with the
Global Arrays PGAS environment on both distributed memory
and shared memory systems.

The programming model for the Cray MTA-2 [25] and the
Cray XMT [26], [27] provide extensions to the C language to
enable the definition and execution of futures in the context of
their shared-memory multithreaded execution model. Futures,
in this context, are tied to the underlying semantics of the
proprietary programming & execution model.

The Charm++ programming model [28] has several fea-
tures in common with Global Futures and Global Arrays
including the asynchronous execution of user-defined func-
tions (“chares” in Charm++), detection of quiescence and the
use of communication serving threads as part of the runtime
system. Charm++ relies on a virtualized execution environ-
ment, whereas Global Futures and Global Arrays maintain
compatibility with MPI’s SPMD execution model.

As mentioned previously, the X10 [8] and Chapel [9]
languages implement the APGAS execution model [10] based
on the asynchronous execution of activities on nodes in a
distributed memory system. Both models require similar ca-
pabilities to what Global Futures provides in terms of activity
creation, management & completion detection.

VI. CONCLUSIONS

We have presented the design and implementation of Global
Futures, an Asynchronous PGAS execution model extension
to Global Arrays. We have illustrated its use to enhance the
performance and scalability of the two-electron contribution
to the Fock matrix in a Self-Consistent Field (SCF) computa-
tional chemistry application benchmark.

Global Futures is a library-based model which is fully
compatible with Global Arrays and with MPI, as well as
fully interoperable with their underlying SPMD execution
environment. GF enables the execution of arbitrary user-
defined functions on the locations that own array slices of
a GA instance. GF provides two modes for execution of
futures (active and passive) as well as multiple mechanisms
for detecting completion of those futures.

We have presented results that show how we used GF to
increase the scalability of the two-electron contribution to the

Fock matrix build in SCF on up to 6,144 cores (1024 dual-
socket, quad-core AMD Barcelona nodes) of a DDR Infini-
Band cluster. We have also shown that GF’s multithreaded
execution model has a relatively small overhead compared
to the traditional SPMD model when running on the same
number of cores for this application, which has a relatively
high computation to communication ratio (for real tasks).

Future work includes completing the port of Global Futures
to Sandia’s qthreads library, so that we can compare
between different intra-node multithreaded environments. We
also plan to experiment with other applications by porting
their key kernels to Global Futures, in particular we want to
look at more communication-intensive applications in order to
optimize the thread-safety mechanisms for Global Arrays. An-
other interesting aspect would be the comparison of the Global
Futures approach to a more traditional hybrid OpenMP/GA
multithreaded execution.
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