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Abstract—In the last decade or so, clusters have observed a
tremendous rise in popularity due to excellent price to perfor-
mance ratio. A variety of Interconnects have been proposed
during this period, with InfiniBand leading the way due to
its high performance and open standard. Increasing size of
the InfiniBand clusters has reduced the mean time between
failures of various components of these clusters tremendously.
In this paper, we specifically focus on the network component
failure and propose a hybrid hardware-software approach to
handling network faults. The hybrid approach leverages the
user-transparent network fault detection and recovery using
Automatic Path Migration (APM), and the software approach
is used in the wake of APM failure. Using Global Arrays as the
programming model, we implement this approach with Aggregate
Remote Memory Copy Interface (ARMCI), the runtime system
of Global Arrays. We evaluate our approach using various
benchmarks (siosi7, pentane, h2o7 and siosi3) with NWChem, a
very popular ab initio quantum chemistry application. Using the
proposed approach, the applications run to completion without
restart on emulated network faults and acceptable overhead for
benchmarks executing for a longer period of time.

I. INTRODUCTION

The computational needs of today’s scientific scientific

applications has led to the augmentation of high performance

computing. Combining commercial off the shelf processors

with commodity interconnects has led to cluster comput-

ing [1], a very effective methodology for achieving excellent

price-to-performance ratio. As the commodity processors con-

tinue to grow, commodity interconnects such as Myrinet [2],

Quadrics [3], and InfiniBand [4] have been introduced to

combine these commodity processors. As reflected by the

TOP500 [5] rankings, InfiniBand in particular has been ob-

serving wide acceptance due to its high performance and open

standard, with 28% of the systems using InfiniBand as their

interconnect. The current largest InfiniBand cluster uses more

than 60000 processor cores at TACC [6], and larger scale

systems are being planned for the near future. 1
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The increasing scale has tremendously reduced the mean

time between failures (MTBF) of various components of these

clusters. In this paper, we specifically focus on the network

component failure, which includes the failure of network

cables and switches. Failure of these network components

breaks the existing path of communication between application

processes, resulting in the execution failure of the application

and requiring re-execution. In our previous work, we have

designed various programming model independent modules

based on InfiniBand Automatic Path Migration [7]. This

approach requires an alternate path to be specified statically,

which is used as an escape route, when the primary path

ceases to failure. This approach performs well in the presence

of a healthy alternate path. it is inadequate for unhealthy

alternate path scenarios. Even with popular Constant Bisection

Bandwidth (CBB) Fat Tree topology, it is difficult to find

completely non-intersecting paths always. The situation is

further excaerbated with over-subscribed Fat Tree topologies

in systems like Atlas [8] and Chinook [9]. Clearly, APM

approach alone is not sufficient for handling all network faults

in the system.

To handle this limitation, we propose a hybrid hardware-

software approach (Hybrid - InfiniBand Network Fault Toler-

ance (IBNFT)) for handling network faults with InfiniBand.

The hybrid approach leverages the user-transparent network

fault detection and recovery using APM as much as possible.

The failure in hardware approach results in notification being

sent to the software based network fault tolerance module.

The hardware and software based approaches are referred to

as Hardware-IBNFT and Software-IBNFT, respectively. Com-

pared to the previously proposed approach Software-IBNFT

approach leverages the early network fault detection and

a scalable out-of-band connection management mechanism

for connection re-establishment. Using Global Arrays [10],

a widely used shared memory programming model, we im-

plement our hybrid approach using Aggregate Remote Mem-

ory Copy Interface (ARMCI) [11], the run time system of

Global Arrays. We evaluate our Hybrid-IBNFT using up to

1024 tasks and multiple benchmarks (siosi7, pentane, h2o7



and siosi3) with NWChem [12], a very popular ab initio

quantum chemistry application. Using the proposed approach,

the application runs to completion for different benchmarks

without restart on emulated network faults and acceptable

overhead for benchmarks executing for a longer period of

time. To the best of our knowledge, this is the first design

and implementation of a hybrid hardware-software approach

for network fault tolerance with InfiniBand.

The rest of the paper is organized as follows. In section II,

we present the background of our work. We present the

motivation of our work in section III. In section IV, we present

the design of Hybrid-IBNFT. The performance evaluation of

the approach implemented is presented in section V. We

present the related work in section VI. We conclude and

present our future directions in section VII. We begin with

the description of the background work.

II. BACKGROUND

In this section, we present the background of our work.

We begin with an introduction to InfiniBand [4] and the state

transitions associated with a Queue Pair (QP). We also provide

a brief introduction to Automatic Path Migration, Global

Arrays [10] and Aggregate Remote Memory Copy Interface

(ARMCI) [11].

A. Overview of InfiniBand and QP Transition States

The InfiniBand Architecture (IBA) [4] defines a switched

network fabric for interconnecting processing nodes and I/O

nodes. An InfiniBand network consists of switches, adapters

(called Host Channel Adapters or HCAs) and links for commu-

nication. InfiniBand supports different classes of transport ser-

vices (Reliable Connection, Unreliable Connection, Reliable

Datagram and Unreliable Datagram). In this paper, we focus

on the reliable connection and unreliable datagram model. In

reliable connection model, each process-pair creates a unique

entity for communication, called queue pair. Each queue pair

consists of two queues; send queue and receive queue. Figure 1

shows the communication state transition sequence for a QP.

Each QP has a combination of communication state and path

migration state. Figure 1 shows the communication state of

the QP. Figure 2 shows a combination of communication and

path migration state for the QP.

At the point of QP creation, its communication state is

RESET. At this point, it is assigned a unique number called

qpnum. From this state it is transitioned to the INIT state

by invoking modify qp function. The modify qp function is

provided by the access layer of InfiniBand [4]. During the

RESET-INIT transition, the QP is specified with the HCA

port to use in addition to the atomic flags. Once in the INIT

state, the QP is specified with the destination LID DLID and

the destination QP from which it will receive the messages.

A modify qp call brings it to READY-TO-RCV (RTR) state.

At this point, the QP is ready to receive the data from the

destination QP. Finally, QP is transitioned to READY-TO-

SEND (RTS) state by specifying associated parameters and

making the modify qp call. At this point, the QP is ready

to send and receive data from its destination QP. Should any

error(s) occur on the QP, the QP goes to the ERROR state

automatically by the hardware. At this state, the QP is broken

and cannot communicate with its destination QP. In order to

re-use this QP, it needs to be transitioned back to the RESET

state and the above-mentioned transition sequence (RESET-

RTS) needs to be re-executed. The RTS-SQD transition is

an important mechanism to ensure that the outstanding data

requests have completed. After a QP is in SQD state, it can

be transitioned to RTS state directly to allow messages to be

sent/received from the communicating pair.

1) Data Transfer Requests and Completion Queue: The

data transfer requests are initiated by posting a send/receive

descriptor to the send/receive queue of the QP. Once the

request is completed, an entry is generated at the completion

queue. The completion queue entry can be checked to see if

the request was a success. We use this InfiniBand mechanism

in the design of Softare-IBNFT.

2) Unreliable Datagram: The unreliable datagram model

uses connection-less model for communication. Each process

creates a QP for every other process in the job. The under-

lying layer does not guarantee data delivery, however, it does

guarantee, maximum once delivery of data with checksum. In

this paper, we use the unreliable datagram as the out-of-band

mechanism for connection re-establishment.

3) LID Mask Count and Shared Receive Queue: LID is a

local identifier, which is used for identifying network ports

in a InfiniBand switch. Each port can have more than one

LID depending up on the value of LID Mask Count (LMC).

LMC is an InfiniBand mechanism to provide multi-pathing.

InfiniBand defines a subnet manager, which is responsible for

finding multiple routes and specifying the InfiniBand routing

tables. LMC value 0-7 can be specified by the user and the

subnet manager uses this value to create a maximum of 128

paths between any pair of nodes. in practice, since most

InfiniBand topologies are a variant of Fat Tree [13], multiple

paths typically span multiple switches.

We presented the queues associated with a QP above.

Shared receive queue is a mechanism by which multiple

QPs can share the same receive queue. This leads to a

much better memory and buffer utilization compared to the

individual receive queues. Sur et al. have presented a design

for MPI, which achieves much better memory utilization than

the previously proposed schemes [14].

B. Overview of Automatic Path Migration

Automatic Path Migration (APM) is a feature provided by

InfiniBand which enables transparent recovery from network

fault(s) by using the alternate path specified by the user.

Automatic path migration is available for Reliable Connected

(RC) and Unreliable Connected (UC) QP Service Type. In

this paper, we have used the RC QP service type. For this

feature, InfiniBand specifies Path Migration States associated

with a QP. A valid combination of communication and path

migration states are possible. This is shown further in Figure 2.

In the figure, the path migration state of the QP is shown using
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oval shape. The possible communication states of the QP are

shown using curly brackets. At any point of time, only one of

the communication states is applicable to a QP.

APM defines a concept of alternate path, which is used as

an escape route should an error occur on the primary path of

communication. The alternate path is specified by the user.

This specification of the alternate path can be done at any

point, beginning the INIT-RTR transition of the QP. Once

this has been specified, the HCA can be requested to begin

loading this path. This is done by specifying the QP’s path

migration state to REARM. Once the path has been loaded,

the path migration state of a QP is ARMED. During this

state, the alternate path can be switched over to function as a

primary path. This can be done by HCA automatically, should

an error occur on the primary path of communication. This

is shown with dotted line in Figure 2. As an alternative, a

user can manually request the alternate path to be used as the

primary path of communication. This is shown with solid line

in Figure 2.

C. Global Arrays and ARMCI

“The Global Arrays programming model provides an ef-

ficient and portable “shared-memory” programming interface

for distributed-memory computers. Each process in a MIMD

parallel program can asynchronously access logical blocks of

physically distributed dense multi-dimensional arrays, without

need for explicit cooperation by other processes. Unlike other

shared-memory environments, the GA model exposes to the

programmer the non-uniform memory access (NUMA) charac-

teristics of the high performance computers and acknowledges

that access to a remote portion of the shared data is slower than

to the local portion. The locality information for the shared

data is available, and a direct access to the local portions of

shared data is provided.” [10]. Global Arrays uses Aggregate

Remote Memory Copy Interface (ARMCI) [15], as the runtime

system for communication.

The purpose of the ARMCI library is to provide a general-

purpose, efficient, and widely portable remote memory access

(RMA) operations (one-sided communication) optimized for

contiguous and non-contiguous (strided, scatter/gather, I/O

vector) data transfers. In addition, ARMCI includes a set

of atomic and mutual exclusion operations. ARMCI exploits

native network communication interfaces and system resources

(such as shared memory) to achieve the best possible per-

formance of the remote memory access/one-sided commu-

nication. It exploits high-performance network protocols on

clustered systems. Optimized implementations of ARMCI

are available for the Cray Portals, Myrinet (GM and MX),

Quadrics, Giganet (VIA) and InfiniBand (using OpenFabrics

and Mellanox Verbs API). It is also available for leadership

class machines including Cray XT4 and BlueGene/P.

III. MOTIVATION

As discussed in the previous section, APM provides user-

transparent network fault detection and failover. Hence, appli-

cations performing long computation phases can benefit from

this feature immensely. The software based approach would

discover the failure of data transfer requests at the end of the

computation phase. Hence, it is almost always beneficial to

use the APM as much as possible.

Figure 3 shows a popular 144-port switch topology for

InfiniBand clusters [16], [17]. In this topology, there are twelve

completely disjoint paths between any pair of nodes, which are

connected to different leaf blocks. In our previous work [18],

we have shown that with LID Mask Count (LMC) mechanism

provided by InfiniBand, multiple disjoint paths are being

configured by the InfiniBand subnet manager. We noticed

that the subnet manager is able to use different spine blocks

completely for creating alternate paths. As an example, to

communicate between a node attached to block 1 and block 2,

the subnet manager is able to define paths traversing blocks 1-

13-2, 1-14-2 . . . , (not necessarily in that order) and so on. Each

of these paths can be used by specifying an identifier (PathID)

during QP creation. We note that these paths are completely

disjoint above the leaf blocks. Hence, faults occurring in the

spine blocks and links connecting them to leaf blocks can

be handled by APM by specifying an alternate path with a

different PathID than the primary path.
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Using the previously shown 144-port switch as the building

blocks, we can realize a larger multi-stage oversubscribed Fat

Tree topology as shown in the Figure 4. We have not shown the

specific inter-connectivity between the leaf 144-port switches

and the spine 144-port switches. A possible realization can be

achieved by connecting the output ports available to the end

nodes of the leaf 144-port switches, to the spine switches. This

variant is used in Chinook [9], where eight output ports of the

leaf switches are available to the end nodes and the other four

output ports are connected to spine switches. Other variants

can be achieved by connecting the spine switch ports of the

leaf 144-ports switches. With these topology variants, it is very

difficult and sometimes impossible to find completely disjoint

paths between end nodes. This problem is exacerbated with

increasing number of nodes, and increasing oversubscription

of Fat Trees.

With an inability to find completely disjoint primary and

alternate path for APM, the chances of APM failure on a

network fault increase significantly, particularly for increased

oversubscription of Fat Trees. To the best of our knowledge,

most large scale InfiniBand clusters use the variant of the

topology discussed in Figure 4. Given the benefits of APM

described above, it is important to design a software based

approach in conjunction with APM for network fault tolerance.

In the next section, we present the design of Hybrid-IBNFT,

which achieves this objective.

IV. HYBRID-IBNFT DESIGN

In this section, we present the design of our Hybrid-

InfiniBand Network Fault Tolerance (Hybrid-IBNFT). We

begin with the description of Automatic Path Migration based

approach [7]. This approach is referred to as Hardware-IBNFT

for the rest of the paper. We also present the design of the

Software-IBNFT approach. Figure 5 shows the overall design

of Hybrid-IBNFT. The Hybrid-IBNFT interfaces between the

InfiniBand Access Layer and ARMCI. The interfaces between

different layers are bi-directional to indicate the data transfer

requests being sent to the InfiniBand Access layer and com-

pletions being sent to the Global Arrays layer.

A. Hardware-IBNFT

The Hardware-IBNFT uses an Alternate Path Specification

Module, Path Loading Request Module and Path Migration

Module for providing network fault tolerance [7]. The Al-

ternate Path Specification Module allows us to specify an

alternate path. The current framework allows to specify an

alternate port/route as an alternate path. The InfiniBand access

layer does not allow an alternate adapter to be used as an

alternate path. The Path Loading Request Module is used

to request the loading of a path in APM state machine, as

discussed in section II. Since invoking Path Loading Request

Module is expensive [7], this module is typically invoked im-

mediately after invoking Alternate Path Specification Module.

The conventional wisdom says to invoke this module as late as

possible. We intend to study the impact of this delay in future,

when the overhead of incurring Path Loading Request Module

is reduced. The interaction of these modules is presented in

Figure 6.

The Path Migration Module can be optionally used by user

to manually transition an alternate path as the primary path for

data transfer. We do not use this module in this paper. With

Hardware-IBNFT, the primary and alternate pathIDs used by a

QP can be represented by using consecutive values in a round

round-robin fashion with respect to the total number of paths

available in the network.

At the occurence of a network fault, InfiniBand Access

layer generates an event at each of the end nodes of the QP,

indicating the successful completion of the path migration. At

the occurence of this event, we query the current attributes

of the QP, and invoke the alternate path specification module

and the path migration module to specify the alternate path

and request the transition. However, as discussed in section III,

Hardware-IBNFT works successfully only if the alternate path

is in healthy state as well. In the next section, we present the

design of Software-IBNFT, which is initiated with the failure

of Hardware-IBNFT.

B. Software-IBNFT

In this section, we present the design of the Software-

IBNFT. We present the mechanisms provided by InfiniBand

for an Early Detection of Network Fault and design for

Scalable Out-of-Band Connection Manager, which Software-

IBNFT uses for connection re-establishment. We also discuss

the framework for putting these mechanisms altogether in

order to provide Software-IBNFT.

1) Early Detection of Network Fault: InfiniBand provides

mechanisms to register event notification handler with the



Hardware − IBNFT

Software − IBNFT

Hybrid−IBNFT

InfiniBand Access Layer

Global Arrays

Aggregate Remote Memory Copy Interface (ARMCI)

Fig. 5. Overall Design of Hybrid-IBNFT and Interface with ARMCI and
InfiniBand Access Layer

Path Migration Module

Hardware−IBNFT

Alternate Path Specification Module

Path Loading Request Module

Fig. 6. Overall Design for Hardware-IBNFT [7]

adapter. Using this event handler, the registered client can

perform corrective actions, on the occurence of an event.

Events corresponding to the state of the path migration, and

QP state are generated, whenever possible. We leverage this

event generation mechanism provided by InfiniBand for early

detection of network fault(s). As discussed above, the path

migration success generates an event marking success of the

path migration. Similarly, an event is generated on the failure

of path migration. We leverage this event for early detection

of network fault.

There are certain cases, when the failure event in not

generated, particularly when the path loading request module

is active, however the alternate path has not been loaded

completely in the APM state machine. An event is also

generated on the receiver side, when the data transfer has been

initiated and the network fault occurs during the transfer. We

also use this event as much as possible for early detection of

a network fault. These features are not available with uDAPL

based network fault tolerance work done in our previous

paper [19]. Clearly, this limits us to detect the network faults

only at the communication progress by the main thread.

The event generation mechanism requested only increases

with the number of active communication instances, and not

with the number of outstanding data requests on these tasks.

Hence, the overhead observed only increases with the number

of active communication processes.

2) Scalable Out-of-Band Connection Manager: With

Software-IBNFT, we use an unreliable datagram based con-

nection manager, for connection re-establishment. This out-of-

band connection manager is setup at the ARMCI Initialization

phase. The connection manager scales very well, since its

resource usage does not increase linearly with the increasing

number of processes in a job. We use this connection manager

to initiate connection re-establishment protocol, at the detec-

tion of the network fault. To ensure a timely response for

connection-reestablishment, we implement the event listener

portion of the connection manager as a separate thread block-

ing on an event. This thread is activated only in the presence of

a network fault handled unsuccessfully by Hardware-IBNFT.

An important property of reliable connection transport is

that the data transfer request to a QP in error state results

in transition of the initiator QP to be in the error state.

In our previous work with uDAPL [19], this can result in

multiple re-tries before the connection can be re-established

successfully. However, with unreliable datagram, the QP does

not transition to an error state on occurence of a network fault.

This results in a very efficient connection re-establishment

protocol, compared to the previously proposed approach.

C. Putting It All Together

Figure 7 shows the overall design of Software-IBNFT. It

has components which are responssible for detection of error

by checking the completion queue and the early fault detection

mechanisms described above. This component is referred to as

Network Fault Detection module. The network fault detection

module does not add any extra overhead, since the completion

queue is checked for notifying the ARMCI layer of the

completion of data transfer requests.

The message re-transmission module is responsible for re-

issue of previously failed data transfer requests. We maintain

a queue of the failed data transfers and re-issue them once the

QP has been re-established for communication. Figure 8 shows

the overall communication protocol for re-establishment with

software-IBNFT.

We use process A and B to explain the communication re-

establishment protocol. On the occurence of a network fault,

the QP on process A is automatically transitioned to ERROR

state by the hardware. At this point, the QP is transitioned to

the SQD state. This ensures that the all the previously posted

data requests on the QP have been posted to the completion

queue. The QP is recycled to the RTS state at this point, and

a request (REQ) for connection re-establishment is sent to the

process B. This request generates an event at process B. This

process in turn transitions its QP to the SQD state and queries

the state of the QP. The ERROR state of the QP requires a

re-cycling of the QP and reply being sent to process A. Once

process A receives the REP, it sends an ACK to the process

B. Note that some of these control messages are sent by the

asynchronous thread.

We use a timeout based mechanism to re-send the messages

of the communication protocol. A timer-pop mechanism is

used to re-send the messages, which have not been acknowl-
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edged after a timeout. Duplicate messages are silently ignored

in the communication re-establishment protocol.

D. Detailed Design Issues

In this section, we discuss the implementation details of

Hybrid-IBNFT. We focus on the usage of Shared Receive

Queue mechanism provided by InfiniBand and a need for

ordering requirements for Out-of-Band connection manager.

1) Shared Receive Queue: Shared Receive Queue provides

memory utilization benefits, since individual queues are not

required for communication. This property has an important

consequence. At the point of the QP transition to error, the

associated SRQ does not transition to the error state. For

normal receive queues, each of the previously posted receive

buffers are flushed to the receive completion queue. With SRQ,

only the buffers which are currently active in communication

are reported to completion queue with error.

2) Ordering Requirements for Out-of-Band Connection

Manager: In order to different a network fault from the

previous network fault between the same pair of processes,

a sequence ID is maintained for each pair of processes. This

is also required, since unreliable datagram messages are not

guaranteed to be delivered in-order on the receiving side.

V. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of

Hybrid-IBNFT. We compare this with the latest release of

Global Arrays, which we refer to as ”Original” for the rest

of the section. We use simple benchmarks to understand the

overheads incurred by our new approach in the absence of

faults. We also discuss the methodology of emulating network

faults, and the behavior of Hybrid-IBNFT in the presence

of emulated network faults. We follow this with the study

of impact of network faults using NWChem with multiple

benchmarks and different number of processors. We have used

Chinook [9], an AMD Barcelona based SuperComputer at

Pacific Northwest National Lab as the experimental tested for

our evaluation.

A. Experimental Testbed

Chinook [9] is a 160 TFlops system that consists of 2310

HP DL185 nodes with dual socket, 64-bit, Quad-core AMD

2.2 GHz Barcelona Processors. Each node has 32 Gbytes of

memory and 365 Gbytes of local disk space. Communication

between the nodes is obtained using an InfiniBand interconnect

from Voltaire [16] Switches and Mellanox [17] Adapters. The

system runs a version of Linux based on Red Hat Linux

Advanced Server. A global 297 Tbyte SFS file system is

available to all the nodes.

B. Methodology for Emulating Network Faults

To evaluate the performance of Hybrid-IBNFT, the best case

would be to have physical access to the supercomputer and

the privilege to unplug a cable during the communication, and

observe the behavior. However, such privilege is prohibitive for

systems like Chinook [9], which continually serve the needs

of scientists at PNNL and worldwide.

Hence we design a software based mechanism to inject a

network fault, which would result in failure of communication,

and initiate the fault recovery mechanism. During the QP

setup phase, we selectively specify incorrect destination LID

for the destination QP. As a result, any data requests on the

QP result in error, initiating the network fault recovery using

Hybrid-IBNFT. The setup at Chinook does not use LMC yet,

which results in only a single path of communication between

any pair of processes. As a result, the emulated network

fault results in APM failure. We are working to remove this

limitation, since usage of LMC does not only benefit network

fault tolerance, it also benefits hot-spot avoidance, as presented

in our previous work [18]. We do not disable the Hardware-

IBNFT path in our implementation. Clearly, this limitation

only results in worse performance than if Hardware-IBNFT

could be used successfully.

C. Performance Evaluation with Microbenchmarks

In this section, we present the results with microbench-

marks. We measure the increment in the QP state transition
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Fig. 12. NWChem, h2o7 Benchmark
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Fig. 13. NWChem, pentane Benchmark
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Fig. 15. NWChem, siosi7 Benchmark

time, as a result of using Hardware-IBNFT. This penalty

is incurred during the QP creation, during the execution

of the Software-IBNFT recovery and successful comple-

tion of Hardware-IBNFT recovery. In addition, we use sim-

ple ARMCI blocking Get (ARMCI Get) and blocking Put

(ARMCI Put) based microbenchmarks, which report the band-

width observed at every iteration and study its performance in

presence of emulated network faults.

Figure 9 shows the time taken in QP transition compar-

ing the Original implementation with Hybrid-NFT. We have

used up to 1024 tasks for the comparison. Leaving small

task count aside, we notice that the QP transition follows a

near linear trend with increasing number of processes. There

is a significant overhead observed in transition time using

Hybrid-IBNFT. This cost is incurred every time an alternate

path is loaded. However, for long running applications, this

cost would be amortized over the length of the application

execution.

Figure 10 shows the results for a unidirectional Get band-

width test at ARMCI level. We compare the results of the

Original implementation with Hybrid-IBNFT using no or one-

fault. The test reports the result at every iteration. For One

Fault case, we take a snapshot of the result and use the

point of failure as the center point in the figure. We see

that the Original, No Fault case shows close to 1500 MB/s

of unidirectional bandwidth. Obviously, the benchmark does

not run to completion in the case of Original, One Fault.

The Hybrid-IBNFT approach shows a very interesting trend



at the point of failure. At the failure, we observe almost

0 MB/s bandwidth. The primary reason is that multiple re-

tries for data transfer are performed before APM transition is

initiated, which results in a failure on our TestBed. We also

use a high value of timeout, which is important to reduce

the false positives of communication failure on large scale

clusters. The timeout typically dominates the total overhead

at communication failure.

We also observe, that there is no overhead incurred by

Hybrid, IBNFT at non-failure iterations. Similar trends in

performance are observed for different implementations using

ARMCI Put unidirectional bandwidth, as shown in Figure 11.

D. Performance Evaluation with NWChem

In this section, we present the normalized execution time of

Hybrid-IBNFT with NWchem [12], using various benchmarks

including h207, pentane, siosi3 and siosi7. We use up to 1024

processors for the performance evaluation. For each of the

benchmarks, we compare the results of the Original case with

Hybrid-IBNFT, No Fault and Hybrid-IBNFT, 1 Fault case.

Figure 12 shows the results for h2o7 benchmark for 256,

512 and 1024 processors respectively. Compared to the orig-

inal implementation, there is a slight overhead incurred by

Hybrid-IBNFT, no fault case. This overhead is due to overhead

incurred in APM transition, as presented in Figure 9. We

observed that this overhead is linear with increasing number of

processes. An overhead is also observed for creating an out-of-

band connection manager. The overhead of creation is constant

with increasing number of processes, due to the connectionless

nature of the unreliable datagram transport of InfiniBand.

The Hybrid-IBNFT, 1 Fault case shows the results with one

network fault. We observe that a slight overhead is observed

for this case, since this case incurs the overhead of no-fault

case, and the overheads of APM failure and multiple re-tries

at the network layer, before software based re-transmission

is initiated. However, the overall overhead for any of the

processor counts is less than 10% with one network fault.

Figure 13 shows the results for h2o7 benchmark for 256,

512 and 1024 processors respectively. We observe an overhead

of less than 5% for Hybrid-IBNFT case for each of the

processor counts. An overhead of 5% is observed with 1

Fault case. For 1024 processors, the benchmark runs for 181

seconds.

Figure 14 shows the results for siosi3 benchmark for 32, 64

and 128 processors respectively. siosi3 is a smaller benchmark

compared to the rest of the benchmarks used in this paper.

We used this benchmark to understand the overhead for

applications potentially running for a small period of time.

The 32 processor run executes for 17 seconds. As shown in

the figure, a considerable overhead is observed for No Fault

and 1 Fault case with Hybrid-IBNFT. It can be concluded

that Hybrid-IBNFT is targetted for applications running for a

longer period of time.

Figure 15 shows the results for siosi7 benchmark for 256,

512 and 1024 processors respectively. This benchmark runs

for 9 minutes and 14 seconds for 1024 processors. As this

can be seen, the overhead observed is negligible for No Fault

and 1 Fault case, compared to the Original execution of time.

VI. RELATED WORK

Providing Network Fault tolerance with high speed inter-

connnects has been studied by many researchers in last couple

of years. Petrini et al. have provided mechanisms for network

fault tolerance with Quadrics [3], [20]. With Quadrics, failover

with multiple alternate paths are used before communicating

processes are notified of the failure. Myrinet [2] uses a

connectionless approach for communication, and hardware

acknowledgement is not provided on data delivery. In our

previous work, we have designed modules for network fault

tolerance using Automatic Path Migration (APM) over In-

finiBand [7]. However, this approach works fine, only if the

alternate path is healthy. We have also worked on designing

software based network fault tolerance approach with uDAPL

based clusters [19]. However, uDAPL does not provide inter-

face for hardware based support for APM, in addition to the

limited reliable connection based data transfer. uDAPL does

not provide support for Shared Receive Queue.

Aulwes et al. have provided a network fault tolerance with

LA-MPIaulwes:europvm03. However, this approach primarily

focusses on TCP based clusters, and does not leverage the

hardware based APM with InfiniBand. It also does not lever-

age the completion queue semantics provided by high speed

interconnects. Similarly, OpenMPI [21], provides supports

for multiple networks and allows striping by linking these

networks at the Byte Teansport Layer (BTL). OpenMPI is

also not able to leverage the hardware based network fault

tolerance provided by InfiniBand.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a hybrid hardware-software

approach (Hybrid - InfiniBand Network Fault Tolerance (IB-

NFT)) for handling network faults with InfiniBand. The hybrid

approach has used the user-transparent fault detection and

recovery using APM as much as possible. Compared to the

previously proposed approached for software based network

fault tolerance, this approach has leveraged the early network

fault notification and a scalable out-of-band connection man-

agement mechanism for connection re-establishment. Using

Global Arrays, a widely used shared memory programming

model, we have implemented our hybrid approach using

Aggregate Remote Memory Copy Interface (ARMCI), the

run time system of Global Arrays. We evaluated our Hybrid-

IBNFT using up to 1024 tasks and multiple benchmarks

(siosi7, pentane, h2o7 and siosi3) with NWChem [12], a very

popular ab initio quantum chemistry application. Using the

proposed approach, the applications executed to completion

without restart on emulated network faults and acceptable

overhead for datasets executing for a longer period of time.

To the best of our knowledge, this is the first design and

implementation of a hybrid hardware-software approach for

network fault tolerance with InfiniBand.



We plan to evaluate Hybrid-IBNFT on larger processor

counts and use LMC to evaluate the performance of hardware

approach. We also plan to combine the hot-spot avoidance

approach, as proposed in our previous work to decide the

best alternate paths with APM. Performance evaluation with

other emerging Global Arrays applications like sub-surface

transport over multiple phases with Hybrid-IBNFT is also of

an immediate interest to us.
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