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ABSTRACT
PGAS models are emerging as a popular alternative to MPI pro-
gramming models for designing scalable applications. At the same
time, MPI remains as a ubiquitous communication subsystem due
to its standardization, high performance, and availability on leading
platforms. The evolution of the MPI standard has included speci-
fications for Remote Memory Access (RMA), multi-threading, de-
rived data types, and dynamic process management. These features
are conducive to the development of applications, intermediate li-
braries, and potentially as a communication backend for PGAS
models.

In this paper, we explore the suitability of using MPI in designing a
scalable PGAS communication subsystem. We focus on the RMA
communication in PGAS models which typically includes get, put,
and atomic memory operations. We provide motivating examples
and perform an in-depth exploration of design alternatives based
on MPI. These alternatives include using a semantically-matching
interface such as MPI-RMA, as well as not-so-intuitive interfaces
such as MPI two-sided with a combination of multi-threading and
dynamic process management. With an in-depth exploration of
these alternatives and their shortcomings, we propose a novel de-
sign which is facilitated by the data-centric view in PGAS mod-
els. This design leverages a combination of highly tuned MPI two-
sided semantics and an automatic, user-transparent split of MPI
communicators to provide asynchronous progress. We implement
the asynchronous progress ranks (PR)-based approach and other
approaches with ComEx - Communication runtime for Exascale,
which is a communication subsystem for Global Arrays. Our per-
formance evaluation spans pure communication benchmarks, graph
community detection and sparse matrix-vector multiplication ker-
nels, and a computational chemistry application. The utility of our
proposed PR-based approach is demonstrated by a 2.17x speed-up
on 1008 processors over the other MPI-based designs.

1. INTRODUCTION
Partitioned Global Address Space (PGAS) models such as Global
Arrays [21], Unified Parallel C (UPC) [17], X10 [7] and Chapel [6]
provide productive abstractions and high performance implemen-

tations of distributed data structures on modern high-end systems.
As a result, PGAS models are becoming popular alternatives to
traditional Communicating Sequential Processes (CSP) execution
models like the Message Passing Interface (MPI) [13, 12]. How-
ever, MPI is ubiquitous due to its high performance, standardiza-
tion, and portability. The MPI standard has evolved to incorporate
Remote Memory Access (RMA) operations, multi-threading sup-
port, non-blocking and sparse collective communication primitives,
dynamic process management, and derived data types. The MPI
specification matches well with the requirements of higher level
solver libraries such as PETSc [4] and Trilinos [15], scalable and
productive PGAS programming models, and designing scalable ap-
plications directly.

The communication subsystems of PGAS models such as
ComEx [29, 28], and GASNet [17] primarily rely on network
primitives to achieve the best possible performance. These
communication subsystems have native design and implemen-
tations on many modern networks such as Cray Gemini [28],
IBM Blue Gene/Q [29] and commodity clusters based on Infini-
Band/Ethernet [27]. However, a native implementation of these
communication subsystems is not always feasible. For example,
the device layer below MPI may not be available for direct use
by other libraries as is the case for the communications interfaces
of the K-Computer [2] and Tianhe-1A [31] supercomputers. In
addition, early access (or even any access at all) to many of these
systems is difficult and only available near the system acceptance
period. This exacerbates the situation for many scientific applica-
tions which rely on these PGAS models [18, 24] and need a high
performance implementation as soon as the system is production
ready.

Most system acceptance specifications require MPI to be well
tested and tuned for performance on many scientific applications.
MPI send/receive (two-sided) semantics and collective commu-
nication primitives are heavily optimized with special hardware
acceleration and low latency communication paths. Hence, it is
natural to consider MPI two-sided primitives to be the optimal
choice for designing PGAS communication subsystems. However,
two-sided models require implicit synchronization which is a
semantic mismatch with PGAS models. At the same time, there
are other alternatives such as MPI-RMA which match semanti-
cally very well with the PGAS models, but suffer from severe
performance degradation due to suboptimal implementations on
high-end systems [10]. This leads to our problem statement. What
is the best way to design a PGAS communication subsystem given
that MPI is our only choice?



1.1 Contributions
Specifically, this paper makes the following contributions:

• An in-depth analysis of design alternatives for a PGAS com-
munication subsystem using MPI. We present a total of four
design alternatives: MPI-RMA (RMA), MPI Two-Sided
(TS), MPI Two-Sided with Multi-threading (MT), and MPI
Two-Sided with Dynamic Process Management (DPM).

• A novel approach which uses a combination of two-sided se-
mantics and an automatic, user-transparent split of MPI com-
municators to act as asynchronous progress ranks (PR) for
designing scalable and fast communication protocols.

• Implementation of TS, MT, and PR approaches and their
integration with ComEx - the communication runtime for
Global Arrays. We perform an in-depth evaluation on a spec-
trum of software including communication benchmarks, ap-
plication kernels, and a full application, NWChem[18].

Our performance evaluation reveals that the proposed PR approach
outperforms each of the other MPI approaches. We achieve a
speedup of 2.17x on NWChem, 1.31x on graph community detec-
tion, and 1.14x on sparse matrix-vector multiply using up to 2K
processes on two high-end systems.

This work has demonstrated that highly-tuned two-sided semantics
are sufficient for implementing one-sided semantics in the absence
of a native implementation. This result should continue to affirm
system procurement requirements of optimized two-sided commu-
nication while suggesting that one-sided communication can be
readily improved in the future using the existing MPI interface
based on our proposed approach.

The rest of the paper is organized as follows: In section 2, we
present some background for our work. In section 3, we present
various alternatives when using MPI for designing ComEx. In sec-
tion 4, we present our proposed design and present a performance
evaluation in section 5. We present related work in section 6 and
conclude in section 7.

2. BACKGROUND
In this section, we introduce the various features of MPI and
ComEx which influence our design decisions.

2.1 Message Passing Interface
MPI [13, 12] is a programming model which provides a CSP exe-
cution model with send/receive semantics and a Bulk Synchronous
Parallel (BSP) model with MPI-RMA. In addition, MPI provides a
rich set of collective communication primitives, derived data types
and multi-threading. In this section, we briefly present relevant
parts of the MPI specification.

2.1.1 MPI Two-Sided Semantics
Send/receive and collective communication are the most commonly
used primitives in designing parallel applications and higher level
libraries. The two-sided semantics require an implicit synchroniza-
tion between sender and receiver where the messages are matched
using a combination of tag (message identifier) and communicator
(group of processes). MPI allows a receiver to specify a wildcard
tag (allowing it to receive a message with any tag) and a wildcard
source (allowing it to receive a message from any source).

The send/receive primitives typically use eager and rendezvous
protocols for transferring small and large messages, respectively.
For high performance interconnects such as InfiniBand [27], Cray
Gemini [28] and Blue Gene/Q [29], the eager protocol involves a
copy by both the sender and the receiver, while large messages use
a zero-copy mechanism such as Remote Direct Memory Access
(RDMA). Figure 1 shows these communication protocols.
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Figure 1: Typical Communication Protocols in MPI. The left
side shows eager protocol, and the right side shows the read
based protocol with RTS (request to send) and FIN (finish)
messages. Variants such as Receiver initiated [23] and Write
based [25] protocols exist in literature and practice.

2.1.2 MPI-RMA
MPI-RMA provides interfaces for get, put, and atomic memory
operations. MPI-RMA 3.0 allows for explicit request handles, for
request window memory to be allocated by the underlying runtime,
and for windows that allocate shared memory. MPI-RMA provides
multiple synchronization modes: active target, where the RMA
source and target window owners participate in the synchronization
and passive target, where only the initiator of an RMA operation
is involved in synchronization. The availability of generic RMA
operations and synchronization mechanisms makes MPI-RMA
useful for designing PGAS communication subsystems. However,
there are no known implementations of MPI-RMA 3.0 on high
end systems (a reference implementation of MPI-RMA 3.0 within
MPICH [1] is available). The implementations of previous MPI
specifications (such as MPI 2.0) are available. However, they
perform poorly in comparison to native implementations as shown
by Dinan et al. [10].

2.1.3 Multi-Threading
One of the most important features of MPI is supporting multi-
threaded communication. MPI supports multiple thread levels (sin-
gle, funneled, serialized, and multiple). The multiple mode is least
restrictive and it allows an arbitrary number of threads to make MPI
calls simultaneously. In general, multiple is the most commonly
used threaded model in MPI. In the design section, we explore the
possibility of using thread multiple mode as an option for PGAS
communication.

2.2 Communication Runtime
for Exascale (ComEx)

The Communication runtime for Exascale (ComEx) is a successor
of the Aggregate Remote Memory Copy Interface (ARMCI) [20].
ComEx uses native interfaces for facilitating one-sided commu-
nication primitives in Global Arrays. As an example, ComEx



has been designed to use Openfabrics Verbs (OFA) for Infini-
Band [26] and RoCE Interconnects, Distributed Memory Applica-
tions (DMAPP) for Cray Gemini Interconnect [30, 28], and PAMI
for x86, PERCS, and Blue Gene/Q Interconnects [29]. The speci-
fication is being extended to support multi-threading, group aware
communication, non-cache-coherent architectures and generic
active messages. ComEx provides abstractions for RMA opera-
tions such as get, put and atomic memory operations and provides
location consistency [11]. Figure 2 shows the software ecosystem
of Global Arrays and ComEx.
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Figure 2: Software Ecosystem of Global Arrays and ComEx.
Native implementations are available for Cray, IBM, and IB
systems, but not for Kcomputer and Tianhe-1A.

3. EXPLORATION SPACE
In this section, we begin with a description of two example PGAS
algorithms which motivate our design choices. We then present a
thorough exploration of design alternatives for using MPI as a com-
munication runtime for PGAS models. We first suggest the seman-
tically matching choice of using MPI-RMA before considering the
use of two-sided protocols. While considering two-sided protocols,
the limitations of each approach are discussed which motivate more
complex approaches. For the rest of the paper, the MPI two-sided
and send/receive semantics are used interchangeably.

3.1 Motivating Examples
Self-consistent field (SCF) is a module from NWChem [18] which
we use as a motivating example to understand the asynchronous
nature of communication and computation within PGAS models.
NWChem is a computational quantum chemistry package which
provides multiple modules for energy calculation varying in space
and time complexities. The self-consistency field (SCF) module
is less computationally expensive relative to other NWChem mod-
ules, requiring Θ(N4) computation andN2 data movement, where
N is the number of basis sets. Higher accuracy methods such as
Coupled Cluster, Singles and Double (CCSD) and Triples (T) re-
quire N6 and N7 computation, respectively.

We abstract the primary computation and communication structure
in NWChem and focus on the main elements relevant to this pa-
per. Algorithm 1 abstracts the communication and computation

aspects of NWChem. It uses several PGAS abstractions: GET,
ACCUMULATE and NEXTTASK which is a load-balancing counter
based on fetch-and-add. The above algorithm is entirely depen-
dent on the set of tasks(t) which a process gets during execution.
As a result, there is little temporal locality in NWChem. A pro-
cess only uses indices(i) corresponding to the task id(t) to index
into distributed data structures and does not address the processes
directly. The scalability of NWChem is dependent upon the accel-
eration of these routines. NWChem uses Global Arrays [21] which
itself uses the native ports of ComEx, when available. As an exam-
ple, the GET operation and NEXTTASK are accelerated on native
ports using RDMA and network-based atomics, respectively. The
non-native ports based on MPI two-sided must provide progress for
these operations, as they cannot be accelerated using RDMA (with-
out invoking a protocol) or network atomics. The MPI-RMA based
port [10] can provide the acceleration. However, they typically pro-
vide sub-optimal implementation and performance as reported by
Dinan et al. [10].

Algorithm 1: Self-Consistent Field

Procedure SCF(m,n)
Input: my rank m, total tasks n
Data: current task ID t, data indices i, data d

t← m;
while t < n do

i← CalculateIndices(t);
d← Get(i);
FockMatrix(t, i, d);
Accumulate(t, i, d);
t← NextTask();

end

Triangle Counting (TC), among other graph algorithms, exhibits
irregular communication patterns and can be designed using PGAS
models. In graphs with R-MAT structure such as twitter and face-
book, it is frequently important to detect communities. An im-
portant method to detect communities is by finding cliques in the
graphs. Since CLIQUE is an NP-complete problem, a popular
heuristic is to calculate cliques with a size of three which is equiva-
lent to finding triangles in a graph. We show an example of commu-
nity detection in natural (power-law) graphs, where the algorithm
needs to calculate the number of triangles in a given graph. The
edges are easily distributed using a compressed sparse row (CSR)
format. The number of vertices are divided equally among the pro-
cesses.

As shown in the Algorithm 2, the NEIGHBORLIST function
translates to GET. Since the computation is negligible, the runtime
is bound by the time for the GET function. Other kernels such
as Sparse Matrix-Vector Multiply (SpMV) kernel, which are fre-
quently used in scientific applications and graph algorithms exhibit
similar structure. A PGAS incarnation of SpMV kernel is largely
dependent on the performance of GET routine.

An understanding from the motivating examples can help us in de-
signing scalable communication runtime systems for PGAS mod-
els using MPI. We begin with a possible design choice using MPI-
RMA, followed by other choices.



Algorithm 2: Triangle Counting

Procedure TC(p,m, v, e)
Input: job size p, my rank m, graph G=(v,e)
Data: vertex ID t

t← m ∗ v/p;
while t < (m+ 1) ∗ v/p do

n← NeighborList(t);
for vn ∈ n do

nn← NeighborList(vn);
CalculateIfTriangleExists(t, vn, nn);

end
end

Procedure NeighborList(v)
Input: vertex v

f ← Get(v);
return f

3.2 First Design: MPI-RMA
MPI-RMA 2.0 supports the one-sided operations get, put and
atomic memory operations in addition to supporting active and
passive synchronization modes. MPI-RMA 3.0 has several features
which facilitate the design and implementation of scalable commu-
nication runtime systems for PGAS models. It allows non-blocking
RMA requests, request-based transfers, window-based memory
allocation, data type communication, and multiple synchronization
modes. MPI-RMA 3.0 is semantically complete and suitable for
designing scalable PGAS communication subsystems.

MPI-RMA has completely different semantics than the popularly
used send/receive and collective communication interface. An
important implication is that an optimal design of MPI-RMA
needs a completely different approach than two-sided semantics.
Since MPI-RMA has achieved low acceptance in comparison to
two-sided semantics [10], most vendors choose to only provide a
compatibility port due to resource limitations. At the same time,
PGAS communication runtimes such as ComEx and GASNet [17]
are tailored to serve the needs of their respective PGAS models.
As an example, UPC [17] and Co-Array Fortan [22] need active
messages for linked data structures which are not well supported
by MPI-RMA. Similarly, Global Futures [8] - an extension of
Global Arrays to perform locality driven execution - needs active
messages for scaling and minimizing data movement.

MPI-RMA can be implemented either using native communica-
tion interfaces which leverage RDMA offloading, or by utilizing
an accelerating asynchronous RMA thread in conjunction with
send/receive semantics. Either of these cases require significant
effort for scalable design and implementation. Dinan et al. have
presented an in-depth performance evaluation of Global Arrays
using MPI-RMA [10]. Specifically, Dinan reports that MPI-RMA
implementations perform 40-50% worse than comparable native
ports on Blue Gene/P, Cray XT5 and InfiniBand with NWChem.
This observation implies that vendors are not providing optimal
implementations on high-end systems. Unfortunately, although
MPI-RMA is semantically complete as a backend for PGAS mod-
els, sub-optimal implementations require us to consider alternative
MPI features for designing PGAS communication subsystems.

3.3 Second Design: MPI Send/Receive
MPI two-sided semantics are widely used in most parallel applica-
tions. These include point-to-point and collective communication.
Their nearly ubiquitous use implies that these semantics are heav-
ily optimized for a variety of scientific codes and co-designed with
hardware for best performance. Hence, it is natural to consider
two-sided semantics for designing scalable PGAS communication
subsystems.

A possible design of ComEx using MPI send/receive semantics can
be done by carefully optimizing RMA operations using MPI two-
sided semantics. In this design, every process must service requests
for data while at the same time performing computation and ini-
tiating communication requests on behalf of the calling process.
As a result, this design is never allowed to make synchronous re-
quests; all operations must be non-blocking. Otherwise, deadlock
is inevitable. Furthermore, synchronization barriers and collective
operations must also be non-blocking to facilitate progress while
servicing requests. ComEx does not provide an explicit progress
function, so progress can only be made when any other ComEx
function is called. We consider design issues such as the above
while mapping one-sided semantics onto two-sided semantics in
the following sections.

3.3.1 Put/Accumulate Operations
In PGAS models like Global Arrays, blocking and non-blocking
Put operations can be designed using MPI_Send and MPI_Isend
primitives, respectively, issued from the source process. Due to the
implicitly synchronous semantics of send/receive, the destination
process must at some point initiate a receive in order to complete
the operation. In the case of accumulate, the destination process
must also perform a local accumulate after receiving the data. Fig-
ure 3 illustrates this design.

3.3.2 Get Operations
An MPI get operation can be designed as a request to get + receive
operation at the initiator. The source of the get (the remote process
which owns the memory from where the data is to be read) partic-
ipates in the get operation implicitly by servicing the get request.
A possible implementation would use a combination of MPI probe,
receive and send in that order. Figure 3 illustrates this design.
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Figure 3: One-Sided Communication Protocols using Two-
Sided Communication Protocols in MPI. Protocols for Get, Put
and Accumulate are on the left, middle, and right, respectively.

3.3.3 Other Atomic Memory Operations
Atomic Memory Operations (AMOs) such as fetch-and-add are
critical operations in scaling applications such as NWChem [18].



The AMOs are used, for example, for load balancing in these ap-
plications. AMOs can be implemented by a simple extension of
the Get operation: In addition to servicing a get request, the remote
process also performs an atomic operation on behalf of the initia-
tor. An additional MPI_Send needs to be initiated by the host of
the target to provide the original value before the increment. The
accumulate operations do not need to return the original value to
the initiator.

3.3.4 Synchronization
ComEx supports location consistency with an active mode of syn-
chronization [11]. A ComEx barrier is both a communication bar-
rier (fence) as well as a control barrier e.g. MPI_Barrier. This can
be achieved by using pair-wise send/receive semantics. Each pro-
cess can exit a synchronization phase as soon as it has received the
termination messages from every other process. While synchro-
nizing, all other external requests are also serviced. It is impor-
tant to note that each process needs to receive a termination mes-
sage from every other process. A collective operation such as bar-
rier/allreduce cannot be used for memory synchronization, since it
does not provide pair-wise causality.

3.3.5 Collective Operations
ComEx does not attempt to reimplement the already highly-
optimized MPI collective operations such as all reduce. However,
since this design requires all operations to be non-blocking, enter-
ing into a synchronous collective operation would certainly cause
deadlock. The two-sided design must then perform a collective
communication fence in addition to a control barrier prior to
entering an MPI collective.

3.3.6 Location Consistency
The location consistency semantics required in ComEx can be
achieved by using the buffer reuse semantics of MPI - invoking
a wait on a request handle can provide similar re-use semantics
to ComEx as MPI. In addition, messages are ordered between
all process rank pairings by using the same MPI tag for all com-
munications, implicitly guaranteeing that a series of operations
on the same area of remote memory are executed in the same
order as initiated by a given process. Location consistency can
be guaranteed in conjunction with the exclusively non-blocking
requirement of this design by queuing requests and only testing the
head of the queue for completion before servicing the next item in
the queue.

3.3.7 Primary Issue: Communication Progress
The primary problem with MPI two-sided is the general need for
communication progress for all operations, but especially for Get
and FetchAndAdd primitives. PGAS models are frequently com-
bined with non-SPMD execution models for load balancing and
work stealing. In NWChem and the TC algorithm (2) presented
earlier, it is too prohibitive to predict the computation time of each
task. In the TC code, it is difficult to predict how many edges each
vertex has in its adjacency list, especially for natural graphs, which
follow a power-law distribution. Hence, it is important to provide
a mechanism for asynchronous progress in addition to using MPI
two-sided semantics.

For large put and accumulate messages requiring a rendezvous pro-
tocol, the sending process will not complete the transfer until the
target process has initiated a receive. Unfortunately, the target pro-
cess cannot make progress on requests unless it also has called into

the ComEx library having made a request of its own. The per-
formance of a compute-intensive large-message application would
certainly degrade using this design, unless asynchronous progress
could be made.

There are two main choices to facilitate communication progress:
multi-threading and dynamic process management. In the next sec-
tion, we discuss each of these alternatives in detail.

3.4 Third Design:
MPI Send/Receive with Multi-threading

Multi-threading support is a feature which allows multiple threads
to make MPI calls with different threading modes. It is an impor-
tant feature in the multi-core era to facilitate hierarchical decompo-
sition of data and computation on deep memory hierarchies. Shared
address space programming models such as OpenMP provide effi-
cient support for multi-core/many-core architectures. MPI thread
multiple mode allows invocation of MPI routines from any thread.

The computation model can be broadly classified in terms of sym-
metric and asymmetric work being performed by the threads. The
symmetric model may require different thread support levels, de-
pending upon algorithm design. As an example, a stencil computa-
tion can be performed using a thread multiple model (each thread
reads/updates its individual edge) or thread serialized model (one
thread coalesces reads/updates and sends them out as a sparse col-
lective or individual point-to-point communication).

As an improvement over the previous send/receive design, progress
is made using an asynchronous thread as shown in Figure 4. In
our proposed design of ComEx on MPI multi-threading (MT), the
asynchronous thread calls MPI_Iprobe after it has finished serv-
ing the send requests. We use a separate communicator each for
communication between process-thread and thread-process. This
reduces the locking overhead in the MPI runtime. However, even
with this optimization, it is not possible to completely remove lock-
ing from the critical path.
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Figure 4: One-Sided Communication Protocols using Two-
Sided Communication Protocols in MPI with Multi-threading
(MT). Protocols for Get, Put and Accumulate are on the left,
middle, and right, respectively. Process Pi initiates a request to
process Pj which is handled asynchronously by thread Pj,1.

Designing a communication runtime using MPI multi-threading
is a non-trivial task. The primary reason is that the lock(s) used
by the progress engine are abstracted (for performance portabil-
ity), which results in non-deterministic performance observed with
the MT design. Since the asynchronous thread is frequently in-
voking MPI_Iprobe (even on a separate communicator than the



process thread), it has to frequently relinquish the lock by using
sched_yield. At the same time, if sched_yield is not used,
the resulting performance is non-deterministic.

To eliminate the non-determinism as a result of locking in the crit-
ical sections, a possibility is to use dynamic process management
which we explore in the next section.

3.5 Fourth Design:
Dynamic Process Management

DPM is an MPI feature which allows an MPI process to spawn new
processes dynamically. Using DPM, a new inter-communicator can
be created which can be used for communication. An advantage of
such an approach is that it alleviates a need to use multi-threading,
and yet it provides asynchronous progress by spawning new pro-
cesses.

A possible approach is to spawn a few (x) number of processes
per node and to use them for asynchronous progress. The original
and spawned processes would then attach to the same shared mem-
ory region in order for the spawned processes to make progress on
behalf of the processes within its shared memory domain. This
approach is very similar to the approach proposed by Krishnan et
al.[19]

Unfortunately, dynamic process management is not available on
most high-end systems. As an example, the Cray Gemini system
used in our evaluation does not support dynamic process manage-
ment even though the system has been in production use for two
years. DPM requires support from the process manager, however,
many do not support dynamic process management since it is not
commonly used in MPI applications. Due to a lack of available im-
plementations of DPM, we do not evaluate this approach, although
a design proposed by Krishnan et al.[19] would have been a useful
comparison point.

4. APPROACH: PROGRESS RANKS
In this section, we present our proposed approach which addresses
the limitations discussed in Section 3. Specifically, the proposed
approach uses the two-sided semantics (for performance reasons)
and asynchronous progress by automatically and transparently
splitting the world communicator allowing a subset of processes to
accelerate communication progress.

4.1 Basic Design
The PGAS models provide a notion of distributed data structures
and load/store (get/put) on these structures by using array slice in-
dices. A process does not address another process explicitly for
communication since the meta-data management is handled auto-
matically. This property of PGAS models has substantial impact
on our proposed approach since it can be leveraged to automati-
cally split the user level processes among ones which execute the
algorithm and ones which provide the asynchronous progress. The
data-centric view of the PGAS models facilitates this splitting with-
out requiring any change in the application.

The proposed split of user-level processes facilitates the use of MPI
two-sided semantics and the protocol processing by the progress
ranks (PR). The PR approach alleviates a need of guarding the crit-
ical sections by locks as is the case in the multi-threading approach.
It also eliminates a dependency on MPI-RMA which requires an
entirely separate design for best performance. Figure 5 shows the

split of the processes in compute ranks and progress ranks. As
shown in the figure, a simple configuration change would allow
a user-defined number of progress ranks on a node - without any
source code change in the application. The upcoming section pro-
vides details of our proposed approach, which is subsequently re-
ferred to as the Progress Rank (PR) based approach for rest of the
paper.

N1# N1#

N2#

N3#

Np# N4#

…"

Figure 5: Translation of communication operations in the PR
approach. Left: A typical node with with two PR ranks (blue
and yellow circles). Blue PR is responsible for performing
RMA operations on the memory hosted by green user-level
processes, Right: A user-level process communicates with PR
ranks on other nodes for RMA requests. On-node requests are
performed using shared memory.

4.2 Primary Details
Figure 5 shows the separation of data-serving processes in PR and
user-level processes. The PR approach allows one to create a user-
defined number of PR ranks to allow mapping with NUMA ar-
chitectures and heterogeneous architectures (such as using an Intel
Sandybridge and Intel KNF architecture together). A user-defined
number of PR ranks also allows an application to allocate data
structures with memory affinity. The figure shows a case where
a specific instance of the PR approach uses two PR ranks (depicted
by blue and yellow circles in this case).

The PR approach uses shared memory between the progress rank
and the user-level processes within its shared memory domain, as
shown in Figure 6. The same shared memory is also used for on-
node communication to reduce the number of memory copies and
eliminate superfluous communication with the progress rank. To
minimize the space complexity, shared memory segments are cre-
ated and destroyed on-demand. The cost of creation/deletion of
shared memory segments is amortized since the distributed data
structures (such as arrays) remain persistent for most applications.
Inter-node communication is handled by redirecting the request to
the progress rank corresponding to the target process on its node.
In the following sections, we present communication protocols for
facilitating RMA operations and also discuss space and time com-
plexity analysis of the PR approach.

4.3 Communication Protocols and
Time/Space Complexity Analysis

The effectiveness of our approach is in its simplicity and its poten-
tial for near-optimal performance in comparison to other MPI ports.
However, it is important to present the protocols for important com-
munication primitives and present their space/time complexity.
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Figure 6: One-Sided Communication Protocols using Two-
sided Communication Protocols in MPI with Progress Ranks.
Protocols for Get, Put, and Accumulate are on the left, mid-
dle, and right, respectively. Process Pi initiates a request to the
progress rank Pk for the RMA targeting Pj . Pj and Pk reside
within the same shared memory domain.

Algorithm 3 shows the pseudocode executed by compute processes.
It shows the protocols for each of the Get, Put, Accumulate and
FetchAndAdd communication primitives. The progress function
is invoked as necessary to make progress on outstanding send and
recv requests. Algorithm 4 shows the progress function executed
by the progress ranks. The protocol processing is abstracted to
hide the details such as a LocalAccumulate function, which can
use high performance libraries/intrinsics directly.

4.3.1 Communication Model
Table 1 shows the translation of ComEx communication primitives
to their corresponding MPI two-sided primitives. The purpose of
this equivalence is to qualitatively analyze the performance degra-
dation in comparison to the native ports.

For small messages, the Put primitive is expected to use the eager
MPI protocol which involves a copy by each of the sender and re-
ceiver. However, for large messages, a zero copy based approach
is used in MPI with a rendezvous protocol. Hence, Tput ≈m · G,
which is equivalent to the performance of the native ports. Using a
similar analysis, Tget for large messages is expected to be similar to
native ports. Small message get transfer is impacted by the copies
on both sides. The protocol for get uses a combination of a send
and receive on each side as shown in Algorithms 3 and 4. Hence:
Tget = TRDMAGet+4·γ where γ is the memory copy cost on each
side. RDMA-enabled networks such as InfiniBand [26] and Gem-
ini [30] provide a RDMAGet latency of≈ 1µs, hence the impact of
γ can be non-trivial on the latency for small messages.

The FetchAndAdd operation is translated as an irecv and send on
the initiator side with a PR rank needing to perform a recv of the
request, a local compute, and a send of the initial value back to the
initiator. By using two-sided semantics, our approach cannot take
advantage of hardware atomics on the NIC such as the ones avail-
able for Cray Gemini [30] and InfiniBand [27]. The accumulate
operations are bounded by the performance of the put operation
and the localacc function. For large accumulates, we expect the
performance to be similar to a native port implementation since
there are no known network hardware implementations of arbitrary
size accumulates.

Algorithm 3: ComEx
Input: source address s, target address d, message size m,

target process r
Procedure PUT(s, d,m, r)

r1← TranslateRankstoPR(r);
if m < δ then

buf ← InlineDataWithHeader(m);
Send(buf . . . r1);

else
buf ← PrepareHeader(m);
Send(buf . . . r1);
Send(d . . . s);

end
Procedure GET(s, d,m, r)

r1← TranslateRankstoPR(r);
handle← Irecv(d . . . r1);
buf ← PrepareHeader(m);
Send(buf . . . r1);
Wait(handle);

Procedure ACC(s, d,m, r)
r1← TranslateRankstoPR(r);
if m < δ then

buf ←InlineDataWithHeader(m);
Send(buf . . . r1);

else
buf ←PrepareHeader(m);
Send(buf . . . r1);
Send(d . . . s);

end
Procedure FADD(s, d,m, r)

r1←TranslateRankstoPR(r);
buf ←InlineDataWithHeader(m);
Send(buf . . . r1);
Recv(d . . . r1);

5. PERFORMANCE EVALUATION
We present a performance evaluation of the approaches discussed
in the previous section using a set of communication benchmarks, a
graph kernel, a SpMV kernel, and full application with NWChem.
Table 2 shows the various design alternatives considered in this pa-
per and indicates whether they were considered for evaluation.

The TS implementation is not considered for evaluation because
it is many orders of magnitude slower than rest of the implemen-
tations considered in this paper. As an example, even on a mod-
erately sized system with NWChem, we noticed 10-15x perfor-
mance degradation in comparison to the native approach. The TS
approach requires explicit process intervention for RMA progress
which makes it very slow in comparison to the other approaches.
The DPM approach is not evaluated because dynamic process man-
agement is not supported on the high-end systems considered for
evaluation in this paper. For the rest of the implementations, we
have used process/thread pinning with no over-subscription.

5.1 Experimental Testbed
We have used two production systems for performance evaluation:

NERSC Hopper is a Cray XE6 system with 6,384 compute nodes
made up of two twelve-core AMD MagnyCours processor. The
compute nodes are connected in a 3D torus topology with the Cray



Algorithm 4: ComEx PR Progress
Input: source address s, target address d, message size m,

target process r
Procedure PROGRESS()

while running do
flag ← Iprobe();
if flag then

header ←Recv();
switch header.messageType do

case PUT
if IsDataInline(header) then

CopyInlineData(header);
else

Recv(header.d . . . header.r1);
end
break;

end
case GET

Send(header.s . . . header.r1);
break;

end
case ACC

LocalAcc(header.d);
break;

end
case FADD

counter ← LocalFAdd(header.d);
Send(counter . . . header.r1);

end
endsw

end
end

Gemini Interconnect. We used the default Cray MPI library on
this system. This system is referred to as Hopper for rest of the
performance evaluation.

PNNL Institutional Computing Cluster (PIC) is a 604 node clus-
ter with each node consisting of two sixteen-core AMD Interlagos
processors where the compute nodes are connected using a QLogic
InfiniBand QDR network. We have used MVAPICH2 for the MPI
library on this system. This system is referred to as IB for the rest
of the performance evaluation.

5.2 Simple Communication Benchmarks
The purpose of the simple communication benchmarks is to un-
derstand the raw performance of communication primitives when
the processes are well synchronized. Figures 7 and 8 show the
Get communication bandwidth performance. As expected, NAT

ComEx MPI
Tput Tsend

Tacc Tsend + Tlocalacc

Tamo Tsend + Tlocalacc + Trecv

Tget Tsend + Trecv

Table 1: Translation of ComEx communication primitives to
their corresponding MPI primitives with respect to time com-
plexity.

Approach Symbol Implemented Evaluated
1 Native NAT Yes Yes
2 MPI-RMA RMA Yes [10] Yes
3 MPI Two-sided TS Yes No
4 MPI Two-sided + MT MT Yes Yes
5 MPI Two-Sided + DPM DPM Yes [19] No
6 MPI Progress Rank PR Yes Yes

Table 2: Different Approaches Considered in this paper and
their implementations.

provides the best performance for Gemini and IB. The PR imple-
mentation on Hopper is based on MPI/uGNI, while the native im-
plementation is based on DMAPP [28], so the difference in peak
bandwidth for PR and NAT can be attributed to the use of differ-
ent communication libraries. The RMA implementation provides
sub-optimal performance on all message sizes in comparison to the
NAT and PR implementations. The MT implementation performs
poorly in comparison to the PR implementation primarily due to
lock contention. On IB, the PR and RMA implementations per-
form similarly. The MT implementation uses the default threading
mode, and it consistently performs sub-optimally in comparison to
other approaches. Similar trends are observed for Put communi-
cation primitives in Figure 9 with a drop at 8Kbytes for RMA, PR
and MT implementations due to the change of eager to rendezvous
protocol at that message size.
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It is expected that the NAT implementation provides the best possi-
ble performance. For the rest of the sections, we only compare the
performance of the MT, PR and RMA implementations since they
provide fair comparison against each other.

5.3 Sparse Matrix Vector Multiply
SpMV (A · y = b) is an important kernel which is used in scien-
tific applications and graph algorithms such as PageRank. Here,
we have considered a block CSR format of A matrix and a one-
dimensional RHS vector (y), which are allocated and distributed
using Global Arrays. The data distribution is owner-computes, re-
sulting in local accumulates to b. The y is distributed evenly among
processes. A request for non-local patches of y uses the get com-
munication primitive. The sparse matrix used in this calculation
corresponds to a Laplacian operator using a 7-point stencil and 3D
orthogonal grid.
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Figures 10 and 11 show the performance on Hopper and PIC sys-
tems, respectively. A weak scaling calculation mode is used with
sizes varying from (400 · 400 · 400) to (800 · 800 · 800). The over-
all calculation is dominated by the get time. The MT port provides
the best performance, with RMA being the worst among the three
implementations. The MT port is executed using an asynchronous
thread for every process, while the PR port uses a single rank per
node for accelerating the RMA requests. A large majority of get
requests are served from remote nodes, where a progress rank in
the PR implementation needs to serve the requests of multiple y
patches. The MT implementation has an asynchronous thread for
every process, which reduces the get time in SpMV. However, for
the IB system, the PR implementation performs the best among the
three implementations. This is attributed to the sub-optimal imple-
mentation of the progress engine in MPI.

5.4 Graph Kernel: Triangle Counting
Recalling the proposed Algorithm 2, we allocate a CSR edge
array using one-dimensional Global Arrays. The computation is
distributed equally among processes where each process gets v/p
number of vertices for computation. Figure 12 shows the speedup
of get and trianglecount on the IB system. The PR implemen-
tation provides a speedup of 1.31x, 1.21x and 1.17x on 512, 1024
and 2048 processes respectively. The speedup can be attributed
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to the asynchronous progress made in the PR port by the progress
ranks. The implementation of the TC algorithm reuses the buffers
for getting the neighbor list. This facilitates zero-copy transfer of
the edge list, since most MPI libraries perform lazy deregistration
of buffers for reuse.

The MT implementation performs poorly in comparison to the
RMA and PR implementations. The MT implementation also suf-
fers a slowdown in get communication, since it has to frequently
use the sched_yield operation. However, the overall slowdown is
worse, if the sched_yield operation is not used.

5.5 NWChem
We have evaluated the NWChem CCSD(T) and SCF modules re-
spectively on the Hopper and PIC systems, in each case using naph-
thynes molecules. For 1020 processes on PIC, and 1008 processes
on Hopper, we have used the cc-pvdz basis set which has 170 basis
functions. For 2040 processes on Hopper, we have used the cc-pvtz
basis set which has 380 basis functions. The MT implementation
did not finish execution in its allocated time of 1800 seconds for any
of the process counts. The MT implementation could not be run to
completion due to a limited time allocation on these supercomput-
ers. Hence, we compare the speedup of the PR approach relative
to the RMA approach proposed previously by Dinan et al. [10].
Figure 13 shows the performance of NWChem on 1020 and 2040
processes with the CCSD(T) module on PIC and 1008 processes
with CCSD(T) on Hopper. Relative speedups are calculated for the
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overall time, the SCF and CCSD(T) modules, and time-consuming
functions such as Get, Accumulate and AddPatch.

The PR implementation provides a relative speedup to RMA of
1.72x on 1020 processes (PIC), 1.4x on 2040 processes (PIC)
and 2.17x on 1008 processes (Hopper). The primary consumer of
time in these calculations is CCSD(T), which provides a relative
speedup of 2.41x, 2.47x and 2.83x. For each of the calculations
CCSD(T) takes ≈ 80% of the computation time. The get commu-
nication primitive provides a relative speedup of 2x and 2.5x in
comparison to the RMA implementation on PIC. The SCF module
provides a 3.2x speedup on Hopper, however, it is slightly slower
than the RMA implementation on 2040 processes (PIC). Since
CCSD(T) is the dominant module, the overall speedup is 1.4x.
The overall speedup is slightly abated for each of the runs because
NWChem performs intermediate I/O which performs similarly on
all implementations.
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Figure 13: NWChem CCSD(T) results for PR relative to RMA.
MT did not finish execution in 1800s for 240, 1020 procs and
3600s for 2040 procs.

5.6 Evaluation Summary
Our performance evaluation reveals that the proposed PR approach
outperforms each of the other MPI approaches on a spectrum of
evaluation criteria: communication benchmarks, community de-
tection kernel in graphs, sparse matrix-vector multiply and a full

application, NWChem. In a select few cases MPI-RMA did per-
form as good or slightly better, as was the case for get performance
on the IB system and a few functions profiled within NWChem.
The MT approach showed promise in the communication bench-
marks, however its performance was stagnant for a real application
even though other applications using multi-threaded MPI’s thread
multiple mode have been shown to scale well[9].

6. RELATED WORK
There have been a few efforts in using MPI as a communication tar-
get for PGAS models. We discuss them in this section. Bonachea
et al. have presented the problems in using MPI as a compilation
target for PGAS languages with UPC as a case study [5]. How-
ever, the critique is only partially justified as Bonachea’s argument
does not take into account non cache-coherent architectures, which
is the primary reason for the restrictions on conflicting memory ac-
cesses in MPI 2.0 RMA. Dinan et al. have presented an implemen-
tation of ARMCI using MPI-RMA [10]. They concluded that re-
strictions in the MPI-RMA 2.0 standard and their implementations
lead to significant performance degradation in comparison to native
ARMCI implementations on most platforms including InfiniBand,
Blue Gene/P, and Cray Gemini Interconnect. Dinan’s conclusion
from the paper is a strong indication that while MPI-RMA pro-
vides a matching interface to ComEx, the search for an ideal PGAS
runtime may not be provided by MPI-RMA. Hence, this paper is
an important step to address the limitations. Gropp et al. have
presented issues in designing a multi-threaded MPI implementa-
tion, however, they restrict the design to context-id allocation for
communicators [14]. Balaji et al. have also presented approaches
for fine-grained multi-threading in MPI [3]. Hoefler et al. have
discussed the issues with multiple threads calling MPI_Probe and
MPI_Recv together, which is not safe [16]. However, this issue is
not applicable to our proposed design since only the asynchronous
thread is involved in calling MPI_Probe and MPI_Recv.

7. CONCLUSIONS
As the popularity of PGAS models continue to rise, it becomes
more important that highly tuned communication subsystems are
available to enable these models across a wide range of systems.
This work has demonstrated that highly-tuned two-sided semantics
are sufficient for implementing one-sided semantics in the absence
of a native implementation. This result should continue to affirm
system procurement requirements of optimized two-sided commu-
nication while suggesting that one-sided communication can be
readily improved in the future using the existing MPI interface
based on our proposed approach. This work narrows the perfor-
mance gap between native and MPI-based runtimes for PGAS mod-
els and succeeds in making MPI-based runtimes for PGAS models
an acceptable alternative when native implementations are not fea-
sible to implement or readily available.
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