Efficient Shared Memory and RDMA based design
for MPI_Allgather over InfiniBand*

Amith R. Mamidala, Abhinav Vishnu, and Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University
{mamidala, vishnu, panda}@cse.ohio-state.edu

Abstract. MPI_Allgather is an important collective operation which is used in
applications such as matrix multiplication and in basic linear algebra operations.
With the next generation systems going multi-core, the clusters deployed would
enable a high process count per node. The traditional implementations of All-
gather use two separate channels, namely network channel for communication
across the nodes and shared memory channel for intra-node communication. An
important drawback of this approach is the lack of sharing of communication
buffers across these channels. This results in extra copying of data within a
node yielding sub-optimal performance. This is true especially for a collective
involving large number of processes with a high process density per node. In
the approach proposed in the paper, we propose a solution which eliminates the
extra copy costs by sharing the communication buffers for both intra and inter
node communication. Further, we optimize the performance by allowing overlap
of network operations with intra-node shared memory copies. On a 32, 2-way
node cluster, we observe an improvement upto a factor of two for MPI_Allgather
compared to the original implementation. Also, we observe overlap benefits upto
43% for 32x2 process configuration.

Keywords: MPI, MPI_Allgather, RDMA, Shared Memory

1 Introduction

Clusters of commodity PCs are being increasingly deployed for high-end computing
owing to their high performance-to-price ratios. Infact, many top 500 supercomputers
are large scale clusters. These high-end systems are typically equipped with more than
one processor per node such as a 2-way /4-way/8-way SMP or NUMA architecture. Also,
the next generation systems feature multi-core support enabling more processes to run
per processor. Already systems with dual-core and quad-core support have entered the
high performance computing arena. This is expected to increase in future with even
higher multi-cores being inducted to build ultra-scale clusters.

Message Passing Interface (MPI) [9] has evolved as the de-facto programming model
for writing parallel applications. MPI provides many point-to-point and collective prim-
itives which can be leveraged by these applications. Many parallel applications [7] em-
ploy these collective operations. MPI_Allgather is one such important operation which
is used in applications involving matrix multiplication, solving differential equations

* This research is supported in part by Department of Energy’s Grant #DE-FC02-
01ER25506; National Science Foundation’s grants #CCR-0204429, #CCR-0311542 and
#CNS-0403342; grants from Intel and Mellanox; and equipment donations from Intel, Mel-
lanox, AMD, Apple, Advanced Clustering and Sun Microsystems.



and in basic linear algebra operations. Thus, optimizing the performance of this op-
eration on the emerging next generation cluster architecture presents an important
problem.

Recently, InfiniBand has emerged as one of the leaders in the high performance net-
working domain [4]. It provides RDMA which enables a process to directly write data
to a remote process’s address space. We have shown the benefits of using this feature
for various collective operations such as MPI Barrier, MPI_Allgather, MPI_AlltoAll
[5] [8] [11] [10]. But, these approaches are optimal for one process running per node.
With the next-generation systems going multi-core, it is essential to choose the fastest
communication methods offered by the underlying system and network interconnect
for efficient collective operations. In the existing approaches, collective communication
is performed by utilizing two different channels, shared memory channel for intra-node
communication and network channel for communication across the nodes. The major
drawback of this approach is that as these two channels do not share the communi-
cation buffers, multiple copies are involved in the whole operation. This significantly
degrades the performance on large clusters especially with multiple processes running
on a single node. Also, since these channel do not have common buffers, overlapping
communication across shared memory and network is difficult to accomplish.

In this paper, we propose a combined shared memory and RDMA based design
which overcomes the problem outlined above. The copy costs are eliminated in our de-
sign by allowing the data buffers to be shared for both communication within the node
and across the nodes. Our design extends the traditional recursive doubling algorithm
for Allgather to accommodate more processes per node. Also, since the communica-
tion buffers in our design are shared, there is a benefit of overlapping of intra- and
inter-node communication. We have implemented our designs and integrated them
into MVAPICH [6] which is a popular MPI implementation for InfiniBand used by
more than 375 organizations worldwide. We have evaluated our designs on two differ-
ent cluster configurations. For a 32x2 configuration, our design improves the latency of
the MPI_Allgather by a factor of two. Further, we observe that the overlapping network
and shared memory communication improves the performance upto 43% in the latency
of MPI_Allgather.

The rest of the paper is organized in the following way. In Section 2, we provide
the background of our work. In Section 3, we explain the motivation for our scheme. In
Section 4, we discuss detailed design issues. We evaluate our designs in Section 5 and
talk about the related work in Section 6. Conclusions and Future work are presented
in Section 7.

2 Background
2.1 Recursive Doubling Algorithm for Allgather

In this algorithm, a pair of processes exchange data for every step. The total number of
steps in the algorithm is of the order of log(p) where p is the number of processes in the
operation. Also, the data involved for each step doubles as the operation progresses,
hence the name recursive doubling. The total communication time of this algorithm is:

Trd:ts*log(p)+(p_1)*m*tw (1)

Where,

ts = Message transmission startup time, t,, = Time to transfer one byte, m = Message
size in bytes and p = Number of processes. MPICH [3] [12] uses Recursive doubling
algorithm for power of two and up to medium size messages. For non-power of two



processes, Bruck’s Algorithm [2] is used for small messages. In this paper, we consider
only the power of two case and hence we focus on the recursive doubling technique.

2.2 InfiniBand Overview

The InfiniBand Architecture [6] defines a switched network fabric for interconnecting
processing and I/0 nodes. In an InfiniBand network, hosts are connected to the fab-
ric by Host Channel Adapters (HCAs). InfiniBand utilities and features are exposed
to applications running on these hosts through a Verbs layer. InfiniBand Architec-
ture supports both channel semantics and memory semantics. In channel semantics,
send /receive operations are used for communication. In memory semantics, InfiniBand
provides Remote Direct Memory Access (RDMA) operations, including RDMA Write
and RDMA Read. RDMA operations are one-sided and do not incur software overhead
at the remote side. Regardless of channel or memory semantics, InfiniBand requires
that all communication buffers to be registered. This buffer registration is done in two
stages. In the first stage, the buffer pages are pinned in memory (i.e. marked unswap-
pable). In the second stage, the HCA memory access tables are updated with the
physical addresses of the pages of the communication buffer.

2.3 Point-to-Point MPI operations in MVAPICH

The two main protocols used for MPI point-to-point primitives are the eager and
rendezvous protocols. In the eager protocol, the message is copied into communication
buffers at the sender and destination process before it is copied into the user buffer.
These copies are not present if rendezvous protocol is used. However, in this case an
extra handshake is required to exchange user buffer information for zero-copy of the
message. In this paper we deal with small to medium messages which are sent using
the eager protocol and thus copy operation is involved at both the sender and the
receiver. For intra-node communication, a separate shared memory channel is used for
communication. In MVAPICH, the shared memory channel involves each MPI process
on a local node attaching itself to a shared memory region at the initialization phase.
This shared memory region can then be used amongst the local processes to exchange
messages and other control information. Each pair of the local processes has its own
send and receive queues. Small and medium messages are sent eagerly, where as a
packetization approach is used for large messages.

3 Motivation

The traditional implementation of
MPI_Allgather for multi-way SMP-based /¢ 4l
clusters uses MPI point-to-point opera- 1
tions. Depending on the pair of processes = P
communicating, these operations use ei- D sy Chenmel
ther the network channel or the shared Isten? | sreva
memory channel for communication. Con- juevor Creme P
sider a scenario where eight processes are
involved in Allgather with two processes
per node as shown in Figure 1. The total [ & X ., S Nodes 1 here Memory Buffers
number of steps involved in the operation \ f gy
is 3 which is log(8).

Network Channel

Network Buffers

Shared Memory Channel

Fig. 1. Separate communica-
tion buffers



Depending on which pair is communicating at a step, the communication either
proceeds over one of the two channels. Also, these two channels are designed separately
and consequently do not allow sharing of buffers across the channels.

In the example considered, the first two steps involve the inter-node communication
over the network channel. The third step involves the shared memory channel. Please
note that we have taken this sequence of operations to illustrate the main idea. The
network and shared memory operations can be scheduled in a different order depending
on how the processes are launched on these nodes. As seen from the figure, separate sets
of pinned buffers are associated with each channel for transmitting the data. As a result,
though all the data for a given step has arrived at a node from other processes, it cannot
be copied to every process local to the node. This is important in Allgather which
involves an All-to-All broadcast of data. The reason why the data cannot be copied is
because the network buffers are exclusive to a network channel and only the process
communicating via this channel can access these buffers. Hence, a separate shared
memory channel is needed resulting in extra copying of the data. Also the total amount
of data exchanged increases linearly with the total number of processes participating
in the operation. Thus, on a large cluster with more than one process per node, the
copy costs play a dominant role degrading the performance of the collective operation.
Another aspect to be taken into consideration is that since the buffers are not shared
across the channels, overlapping shared memory and network communication becomes
difficult to do. This further degrades the performance of this all-to-all operation.

This leads us to the following two questions:

1) What mechanisms are needed to optimize MPI_Allgather for the emerging multi-
core/multi-way InfiniBand Clusters?

2)How can we schedule the operations so as to easily allow overlap of network and
shared memory operations?

We address these questions in this paper.

4 Design and Implementation

The basic idea used in our approach is to use a common memory segment both for intra
and network communication. This memory segment is shared across all the processes
local to the node. Further, this segment is pinned so that it can be accessed directly
by the NIC for the network operation. We now outline the main steps involved in our
approach.

Our Approach: We extend the recursive doubling algorithm discussed earlier to
be performed across the nodes rather than across the processes. In this fashion, a
single message is exchanged per a pair of nodes irrespective of how many processes are
scheduled on a node. This is accomplished by making all the local processes write their
data into the shared memory segment in the initial step. This is the step 0 as shown
in the Figure 2. Once all the processes have written the data into this buffer, the data
exchange starts over the network. In the first step, node pairs 0, 1 and 2, 3 exchange
the data. Note that the data exchanged in this step is one fourth the size of the total
data. After this step, the second step as shown in the Figure 3 begins. The size of the
data exchanged in this step is doubled as seen from the figure. The pairs which are
involved in this exchange are now 0, 2 and 1, 3. Once this step is completed, each node
has the data from all the processes. In the final step, which is the step four, the data
is copied out of the shared memory segment.

As can be seen from the above example, in our approach the data is exchanged
across the nodes in a recursive pair-wise fashion with a single data transfer operation
between each pair of nodes. The number of steps would be equal to log(n) where n is



the number of nodes involved in the operation. In the example considered, the number
of steps is log(4) which is two. Note that by providing a common set of buffers for
both network and intra-node data transfers, we eliminate the extra copying that would
otherwise occur.

Overlap benefits: The main benefits of having a shared buffer is the potential of
overlap between the network operations and the memory copy operations. By referring
to the same Figures 2 and 3, it can be observed that the data arrived in step 1 of the
operation can be copied to the processes’ buffers concurrently with network operation
in step 2. Thus, we need not wait till all the network operations are completed before
the data is copied out of the shared memory segment. For a large scale cluster, this
benefit is significant as both the size of the data involved is large and also there are
more steps involved in the algorithm.

(Shared Memory copy)
STEPO STERQ STEP }Shared Memory copSyr)EP 3
STEP1
(Network Channel) ) Node 0 Node 1

Node 0 Node 1 ‘
| STEP2 steP2 |
1 (Network Channel) (Network Channel)
Node 2 Node3 | f
STEP1 7 Node 2 Node 3
(Network Channel)
\srero STEPO, STEP3 STEP3
(Shared Memory copy) (Shared Memory copy)
Fig. 2. Steps 0,1 Fig. 3. Steps 2,3

Implementation Details: The initial implementation step in our approach is cre-
ating a shared memory segment per node. This is done by making all the processes local
to a node do a mmap of a shared file. After this step, this shared segment is pinned
so that data can be accessed directly by the NIC for the network operation. In our
design, the shared buffer is pinned by all the processes. This enables all the processes
to issue network operations from this memory segment. RDMA is used for network
data transfers as it is proven to be an efficient method for inter-node communication.
In our implementation, we let one given process issue the network operations from a
node. This can be easily accomplished as the processes have local ranks ranging from
0 to p-1 where p is the total number of processes per node. We choose the process
with local rank 0 to issue network operations. Note that the addresses of this mem-
ory segment are exchanged before the Allgather is initiated. The data notification is
done by doing a RDMA write of a one byte flag. These flags are also shared within
a node and thus all the processes local to the node can poll for data arrival. This is
useful for achieving overlap between network and shared memory copy operations. For
synchronizing between the processes within a node another separate set of flags are
used.

5 Performance Evaluation

In this section we compare the performance of the new scheme proposed in the paper
with the already existing approach. The comparison is made by measuring the Allgather
latency for the two schemes across different message sizes and for two different cluster



configurations. The test was conducted for 1000 iterations for each message size. The
abbreviations used for the comparison are as follows:

— new: The new shared-memory and RDMA based solution proposed in the paper.
— original: The original algorithm using MPI point-to-point operations

5.1 Experimental Testbed

We have carried tests on two different clusters:

1) Cluster A: Each node in this testbed has dual Opteron 2.4 GHz processors, 1024
KB L2 cache. They are equipped with MT25204 InfiniBand HCAs with PCI-Express
interfaces.

2) Cluster B: Each node in this cluster is a Xeon 2.66 GHz processor with 512
KB L2 cache. Each node is connected with MT23108 InfiniBand HCA with PCI-X
interface.

5.2 Latency of MPI_Allgather

As the results indicate our approach outperforms the original approach for the different
cluster configurations considered. For Cluster A we observe benefits upto a factor of
1.47 and 1.39 for 32 and 64 processes as indicated by Figures 4 and 5 respectively. On
cluster B, we observe an improvement by a factor of 1.97 and 1.82 for the considered
configurations, 16x2, 32x2. These are shown in Figures 6 and 7 respectively.

We have also measured the impact of overlap of network operations and shared
memory communication on these clusters. The non-overlap approach is implemented by
making the processes copy the data from the shared buffers at the end after the network
operations are completed. But, for the overlap case the processes copy the data as soon
as it arrives and concurrently issue network operations. This is the approach taken in
this paper. With the shared buffer RDMA design proposed the overlap improves the
performance of the collective upto 30% for Cluster A and 43% for Cluster B as shown
in the Figures 8 and 9.

6 Related Work

Utilizing shared memory for implementing collective communication has been a well
studied problem in the past. In [13], the authors proposed to use remote memory op-
erations across the cluster and shared memory within the cluster to develop efficient
collective operations. They apply their solutions to Reduce, Bcast and Allreduce oper-
ations on IBM SP systems. In our approach we consider a different collective Allgather
which has different communication pattern and present the results on commodity clus-
ters. In [1], the authors implement collective operations over Sun systems. In [14], the
authors improve the performance of send and recv operations over shared memory and
also apply the techniques for group data movement. We have also designed and imple-
mented collectives, MPI_Barrier, MPI_AlltoAll, MPI_Allgather, [5] [8] [11] [10]based
on RDMA. However, these collectives are optimized for a single process running on a
node.

7 Conclusions and Future Work

MPI_Allgather is an important collective operation which is used in applications such
as matrix multiplication and in basic linear algebra operations. The next generation
systems feature multi-core architecture enabling a high process count per node. The



Latency (us)

Latency (us)

Latency (us)

3500

3000 -
2500 -
2000 -
1500 r
1000 r
500

7000

6000 -
5000 -
4000
3000 -
2000 -
1000 r

0

6000

5000
4000 r
3000
2000

1000 r

1024 2048 4096 8192 16384

" Original ——
New s

s s il "" )

4 16 64 256 1024 4096 16384

msg size
Fig. 4. Cluster A:(16x2)

‘ Origihal -
New -

msg size
Fig. 6. Cluster B:(16x2)

4 16 64 256 1024 4096 16384

Overlab —

0

No-Overlap - |

msg size
Fig. 8. Cluster A:(32x2)

Latency (us)

Latency (us)

Latency (us)

7000

6000 -
5000 -
4000
3000 -
2000 -
1000 r

1400
1200
1000
800
600
400
200

10000
9000 r
8000 r
7000 r
6000 r
5000 r
4000 -
3000 ¢
2000 r
1000

" Original ——
New s

4 16 64 256 1024 4096 16384
msg size
Fig. 5. Cluster A:(32x2)
0 — :
Original ——
0t New --—
O L
0 L
0 L
O L
0 L
0 e — | L
4 16 64 256 1024 4096 16384
msg size

Fig. 7. Cluster B:(32x2)

Overlap‘ —
No-Overlap "

0 1 1 1
1024 2048 4096 8192 16384

msg size
Fig. 9. Cluster B:(32x2)




traditional implementations of Allgather use two separate channels, namely network
channel for communication across the nodes and shared memory channel for intra-node
communication. Since there is no buffer sharing across these channels, the performance
achieved is sub-optimal due to the extra copying of data within a node. This is true
especially for a collective involving large number of processes with a high process density
per node. In the approach proposed in this paper, we eliminate the extra copy costs by
sharing the communication buffers for both intra and inter node communication. Also,
we optimize the performance by allowing overlap of network operations with intra-node
shared memory copies. On a 32, 2-way node cluster, we observe an improvement upto
a factor of two for MPI_Allgather compared to the original implementation. We also
observe overlap benefits upto 43% for 32x2 process configuration. For our future work,
we plan to evaluate our design with multi-core enabled clusters and also study the
application-level impact.

References

1. M Bernaschi and G Richelli. Mpi collective communication operations on large shared
memory systems. In Parallel and Distributed Processing, 2001. Proceedings. Ninth Eu-
romicro Workshop, 2001.

2. J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient Algorithms for
All-to-All Communications in Multiport Message-Passing Systems. IEEE Transactions
in Parallel and Distributed Systems, 8(11):1143-1156, November 1997.

3. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implementa-
tion of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789-828,
1996.

4. InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.1.
http://www.infinibandta.org, October 2004.

5. Sushmitha P. Kini, Jiuxing Liu, Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda.
Fast and Scalable Barrier using RDMA and Multicast Mechanisms for InfiniBand-Based
Clusters. In EuroPVM/MPI, Oct. 2003.

6. Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kinis, Darius Buntinas, Weikuan Yu, Balasubra-
man Chandrasekaran, Ranjit Noronha, Pete Wyckoff, and Dhabaleswar K. Panda. MPI
over InfiniBand: Early Experiences. Technical Report, OSU-CISRC-10/02-TR25, Com-
puter and Information Science, the Ohio State University, January 2003.

7. NASA. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/.

8. Amith R.Mamidala, Jiuxing Liu, and Dhabaleswar K. panda. Efficient Barrier and Allre-
duce InfiniBand Clusters using Hardware Multicast and Adaptive Algorithms . In Pro-
ceedings of Cluster Computing, 2004.

9. Marc Snir, Steve Otto, Steve Huss-Lederman, David Walker, and Jack Dongarra. MPI-
The Complete Reference. Volume 1 - The MPI-1 Core, 2nd edition. The MIT Press,
1998.

10. S. Sur, U.K.R. Bondhugula, A.R. Mamidala, H.-W. Jin, and D. K. Panda. High perfor-
mance RDMA based All-to-All Broadcast for InfiniBand Clusters. In (HiPC), 2005.

11. S. Sur, H.-W. Jin, and D. K. Panda. Efficient and Scalable All-to-All Exchange for
InfiniBand-based Clusters. In International Conference on Parallel Processing (ICPP),
2004.

12. R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of Collective communica-
tion operations in MPICH. Int’l Journal of High Performance Computing Applications,
19(1):49-66, Spring 2005.

13. V Tipparaju, J Nieplocha, and D K Panda. Fast collective operations using shared and
remote memory access protocols on clusters. In International Parallel and Distributed
Processing Symposium, 2003, 2003.

14. Meng-Shiou Wu, R A Kendall, and K Wright. Optimizing collective communications on
smp clusters. In ICPP 2005, 2005.



