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Abstract. In cluster computing, InfiniBand has emerged as a popular high per-
formance interconnect with MPI as the de facto programming model. However,
even with InfiniBand, bandwidth can become a bottleneck for clusters execut-
ing communication intensive applications. Multi-rail cluster configurations with
MPI-1 are being proposed to alleviate this problem. Recently, MPI-2 with sup-
port for one-sided communication is gaining significance. In this paper, we take
the challenge of designing high performance MPI-2 one-sided communication
on multi-rail InfiniBand clusters. We propose a unified MPI-2 design for dif-
ferent configurations of multi-rail networks (multiple ports, multiple HCAs and
combinations). We present various issues associated with one-sided communi-
cation such as multiple synchronization messages, scheduling of RDMA (Read,
Write) operations, ordering relaxation and discuss their implications on our
design. Our performance results show that multi-rail networks can significantly
improve MPI-2 one-sided communication performance. Using PCI-Express with
two-ports, we can achieve a peak MPI Put bidirectional bandwidth of 2620 Mil-
lion Bytes/s, compared to 1910 MB/s for single-rail implementation. For PCI-X
with two HCAs, we can almost double the throughput and reduce the latency
to half for large messages.

1 Introduction

High computational power of commodity PCs combined with the emergence of low
latency and high bandwidth interconnects has led to the trend of cluster computing.
In this area, Message Passing Interface (MPI) [6] has become the de facto standard
for writing parallel applications. MPI-2 has been introduced as a successor of MPI-1
with one-sided communication as one of its main additional features. Recently, In-
finiBand Architecture [8] has been proposed as the next generation interconnect for
inter-process communication and I/O. Due to its open standard and high performance,
InfiniBand is becoming increasingly popular for cluster computing. However, even with
InfiniBand, network bandwidth can become the performance bottleneck for communi-
cation intensive applications. This is especially the case for clusters built with SMP
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(2-16 way symmetric multiprocessor systems) machines, in which multiple processes
may run on a single node and must share the node bandwidth. Multi-rail [11](multiple
ports, multiple HCAs and combinations) cluster configurations with MPI-1 are being
proposed to alleviate this problem. Compared to MPI-1, MPI-2 is the next generation
MPI standard with one-sided operations (such as MPI Put and MPI Get). This leads
to the following challenges:

1. How to design support for one-sided operations on multi-rail InfiniBand clusters?
2. How much benefits can be achieved compared to the single-rail implementation?

In this paper, we take on these challenges. We propose a unified MPI-2 design with
different configurations of multi-rail networks (multiple ports, multiple HCAs and com-
binations) for one-sided communication. We present various issues associated with one-
sided communication (multiple synchronization messages, scheduling of RDMA (Read,
Write) operations, scheduling policies, ordering relaxation) and discuss their implica-
tions on our design.

We implement our design on MVAPICH21 and evaluate it with micro-benchmarks
on different multi-rail configurations. Our performance results show that multi-rail
networks can significantly improve MPI-2 one-sided communication performance. Using
two-ports on EM64T cluster with PCI-Express, we can achieve an MPI Put bandwidth
of 1500 Million Bytes/s (MB/s), and a bidirectional bandwidth of 2620 MB/s. Using
two-HCAs on IA32 cluster with independent PCI-X buses, we can achieve a MPI Put
bandwidth of 1750 MB/s, and a bidirectional bandwidth of 1810 MB/s.

The rest of the paper is organized as follows: In section 2, we provide background
information for InfiniBand, MVAPICH2 and multi-rail configurations. In section 3,
we describe the multi-rail MPI-2 design for one-sided communication and discuss the
design issues. In section 4, we present performance results of our multi-rail MPI-2
implementation. In section 5, we present the related work. In section 6, we conclude
and discuss our future directions.

2 Background

In this section, we provide background information for our work. First, we provide
a brief introduction of InfiniBand. Then, we discuss some of the internals of MPI-2
one-sided communication and their implementations over InfiniBand. We also present
a brief overview of multi-rail InfiniBand clusters.

2.1 Overview of InfiniBand

The InfiniBand Architecture (IBA) [8] defines a switched network fabric for inter-
connecting processing nodes and I/O nodes. It provides a communication and man-
agement infrastructure for inter-processor communication and I/O. In an InfiniBand
network, processing nodes and I/O nodes are connected to the fabric by Host Channel
Adapters (HCA). HCAs sit on processing nodes. InfiniBand Architecture supports both
channel and memory semantics for Reliable Connection service. In channel semantics,

1 MVAPICH/MVAPICH2 [13] are high performance MPI-1 and MPI-2 implementations from
The Ohio State University, currently being used by more than 250 organizations across 28
countries.
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send/receive operations are used for communication. In memory semantics, InfiniBand
supports Remote Direct Memory Access (RDMA) operations, including RDMA write
and RDMA read. RDMA operations are one-sided and do not incur software overhead
at the remote side. In these operations, the sender can directly access remote memory
by posting RDMA descriptors.

2.2 MPI-2 one-sided communication

In MPI-2 one-sided communication, the sender can access the remote address space
directly. Such one-sided communication is also referred to as Remote Memory Access
or RMA communication. In this model, the origin process (the process that issues the
RMA operation) provides necessary parameters needed for communication. The area
of memory on the target process accessible by the origin process is called a Window.
MPI-2 specification defines various communication operations:

1. MPI Put operation transfers the data to a window in the target process
2. MPI Get operation transfers the data from a window in the target process
3. MPI Accumulate operation combines the data movement to target with a reduce

operation

As per the semantics of one-sided communication, the return of the one-sided oper-
ation call does not guarantee the completion of the operation. In order to guarantee the
completion of one-sided operation, explicit synchronization operations must be used.
We mainly focus on active synchronization in this paper.

2.3 Multi-Rail InfiniBand Configurations

Multi-rail networks can be built by using multiple HCAs on a single node, or by using
multiple ports in a single HCA. In an MPI application, any pair of processes can com-
municate with each other. This is implemented in MPICH2 designs by an abstraction
called virtual channel. A virtual channel can be regarded as an abstract communication
channel between two processes. In [11], we have proposed enhanced virtual abstraction
to provide a unified solution to support multiple HCAs, multiple ports, and multiple
paths in a single port. In our proposed design, a virtual channel can consist of multi-
ple virtual subchannels (referred as subchannels from here on-wards). Each subchannel
refers to a path of communication between end nodes.

2.4 MVAPICH2

MVAPICH2[13] is our high performance implementation of MPI-2 over InfiniBand. The
implementation is based on MPICH2. As a successor of MPICH[6], MPICH2[1] sup-
ports MPI-1 as well as MPI-2 extensions including one-sided communication. One sided
communication can be implemented using a variety of approaches. One approach is to
use the point to point implementation provided by MPICH2 for one-sided communica-
tion. This approach involves the remote host for communication and synchronization
operations. In the second approach, the one-sided operations are implemented at the
CH3 level by extending the CH3 interface [10, 9]. This approach shows benefits with
respect to latency and bandwidth for regular communication patterns. It also provides
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better overlap between computation and communication along with scalability. We re-
fer to the first approach as Point to Point Based and second approach as Direct One
Sided. Fig. 1 shows the path taken by these approaches. In this paper, we design the
Direct One Sided over multi-rail InfiniBand clusters implementation along with active
mode of synchronization.

3 Multi-rail Layer Design for MPI-2 One Sided

Communication

In this section, we present the design issues involved with MPI-2 one-sided communi-
cation on multi-rail InfiniBand clusters.

3.1 Basic Architecture

The basic architecture of our design to support multi-rail networks for MPI-2 one-sided
communication is shown in Figure 2. In the figure, we can see that besides the MPI-2,
Direct One Sided layer and InfiniBand layer, our design consists of an intermediate
layer, Multi-rail Layer.

This layer takes the responsibility of scheduling messages on the available subchan-
nels. Besides this, it takes care of the correctness issues like Multiple Synchroniza-
tion Messages and efficiency issues like Scheduling Policies, Ordering Relaxation and
Scheduling of RDMA Read and RDMA Write Operations.

In this section, we discuss the design challenges involved for multi-rail MPI-2 design
associated at the Multi-rail Layer.

Multiple Synchronization Messages: In order to initiate the one-sided communi-
cation, the origin process calls win start to open a window. The target process posts
the buffers for the window. Once the one-sided communication is done, a synchroniza-
tion message needs to be sent to the target process. The receipt of synchronization
message guarantees the data transfer of previously issued RMA operations. However,
when multiple subchannels are used, data transfer on one subchannel might not have
finished even though other subchannels would have received the synchronization mes-
sage. Hence, we need to issue synchronization messages on each subchannel. It is to
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be noted, that when the load on subchannels is balanced, the transfer of synchroniza-
tion messages along multiple subchannels takes place in parallel, incurring very small
overhead.

Scheduling of RDMA Read and RDMA Write Operations: In MPI-1, usu-
ally the two sided communication uses either RDMA Write or RDMA Read for data
transfer in InfiniBand. For many MPI-2 applications, in one-sided communication, the
MPI Put and MPI Get operations are implemented using RDMA Write and RDMA
Read, respectively. Since RDMA Read and RDMA Write utilize bandwidth in different
directions, it is important to schedule them independently with respect to each other’s
load on different subchannels.

In order to achieve this, we propose a load based fragmentation policy discussed
in the next section, which maintains independent queues of MPI Put and MPI Get
operations issued in an epoch. Trivally, this policy would fragment the messages equally
on all subchannels in the presence of only one kind of one-sided operation. In presence
of a combination of one-sided operations, each having the same size, this policy would
fall back to equal fragmentation.

Scheduling Policies Classification based on Message Size: In this paper, we
classify the policies used for scheduling based at different layers. As proposed in [7],
we use reordering and no reordering policies at the CH3’ (Direct One Sided) Layer. At
the multi-rail layer, we do a classification of the policies based on the message size. We
employ the following policies:

– Round Robin
– Load Balanced Fragmentation

For small messages, we employ round robin policy. In this policy, the complete message
is sent using one of the available subchannels in a round robin fashion. Fragmentation
incurs overhead of posting descriptors on multiple subchannels, which is significant for
small messages. Hence, we employ a switchover threshold, messages of size less than this
threshold are scheduled in a round robin fashion. For large messages, we primarily use
Load Balanced Fragmentation policy. In this policy, we divide the message in chunks
and schedule them, so that the load on all subchannels is balanced. This policy leads
to optimal utilization of all subchannels for medium to large messages.

Ordering Relaxation: Two-sided communication requires messages to be processed
in order at the receiver side. One sided communication imposes no ordering require-
ments for messages within an epoch, by the definition from the semantics. As a result,
the one-sided approach does not need to maintain ordering at the receiver side. We
simplify our design by incorporating this fact, reducing the overhead of bookkeeping
at the receiver side.

4 Performance Evaluation

In this section, we evaluate the performance of our multi-rail MPI-2 design over Infini-
Band. We show the performance benefit which can be achieved with multi-rail design
compared to the single-rail implementation.
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4.1 Experimental Testbed

We evaluated our implementation with multiple HCAs on IA32 systems comprising of
independent PCI-X buses, and on EM64T systems comprising of PCI-Express bus and
multiple ports per adapter. Our experimental testbed comprises of two clusters.

IA32 Cluster with Multiple HCAs: This cluster consists of two SuperMicro SU-
PER X5DL8-GG nodes with ServerWorks GC LE chipsets. Each node has dual Intel
Xeon 3.0 GHz processors, 512 KB L2 cache, and PCI-X 64-bit 133 MHz bus. We have
used InfiniHost MT23108 Dual-Port 4x HCAs from Mellanox. The ServerWorks GC
LE chipsets have two separate I/O bridges and three PCI-X 64-bit 133 MHz bus slots.
To reduce the impact of I/O bus contention, the two HCAs are connected to separate
PCI-X buses connected to different I/O bridges.

EM64T Cluster with Multiple ports: This cluster consists of two EM64T nodes
having 8X PCI Express slots. Each node has two Intel Xeon CPUs running at 3.4
GHz processors, 512 KB L2 cache and 1 GB of main memory. This cluster uses III
Generation MT25208 4X Dual Port HCAs from Mellanox. A combined unidirectional
bandwidth of 8X can be used, when both ports are used for communication.

4.2 One Sided Communication Micro-Benchmarks

In this section, we introduce the micro-benchmarks used to evaluate the MPI-2 one-
sided operation performance. We use such as uni- and bi-directional bandwidth, as well
as micro-benchmarks with other communication patterns.

Two processes are involved in uni-directional bandwidth test. The origin process
starts a window access epoch, issues a window of RMA operations (MPI Put for
MPI Put bandwidth test, MPI Get for MPI Get bandwidth test), and ends the access
epoch. The target process just starts and ends a window exposure epoch. This step is
repeated for multiple iterations. For bidirectional bandwidth test, both processes starts
and end a window exposure epoch.

In the Interleaving test, the origin process issues a window of MPI Put operations
followed by a window of MPI Get operations. Due to the impact of reordering at CH3’
layer, interleaving of these operations provides almost bidirectional bandwidth through-
put in comparison to unidirectional throughput.

4.3 Performance Benefits of Multi-Rail Design

To evaluate the performance benefits of our multi-rail MPI-2 design, we compare it
with our original MVAPICH2 design, which can only use only one-port of a nic. In
the multi-rail design, we use load balanced fragmentation for large messages and round
robin scheme for small messages. We present performance comparisons using latency
for MPI Get operation and bandwidth and bidirectional bandwidth for MPI Put oper-
ations.
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Microbenchmark Evaluation for Basic One Sided Operations In Figures 3
and 5 we present the results for MPI Put bandwidth and bidirectional bandwidth
respectively for the IA32 cluster with multiple HCAs. We show the results for EM64T
with two-ports on PCI-Express in Figures 4 and 6.

In Figure 3, we observe that for small messages (less than or equal to 1KBytes),
both multi-rail design and the original implementation perform comparably. For large
messages, multi-rail design outperforms the original implementation considerably. With
multi-rail design, we can achieve a maximum peak unidirectional MPI Put bandwidth
of 1750 MB/s in comparison to 880 MB/s for our original implementation. We also
notice, that due to the absence of rendezvous protocol, medium size messages (2KB -
16KB) can take advantage of load balanced fragmentation policy for multi-rail design.

 0

 500

 1000

 1500

 2000

4 64 1K 16K 256K 1M

B
a
n
d
w

id
th

 (
M

B
/s

)

Message Size (Bytes)

two-nics
one-nic

Fig. 3. MPI Put Bandwidth on the IA32
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Cluster

We observe a similar trend for dual-port on EM64T in Figure 4. For messages of size
greater than 8KBytes, we use fragmentation policy. We can achieve a peak bandwidth
of 1500 MB/s using multi-rail design, in comparison to 971 MB/s for the original
implementation capable of using only one-port of a nic.
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Fig. 5. MPI Put Bidirectional Bandwidth
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In figures 5 and 6, we compare the performance of MPI Put bidirectional bandwidth
for IA32 cluster and EM64T cluster, respectively. For IA32 cluster, due to the bottle-
neck of PCI-X, we can achieve only 941 MB/s for original implementation. However,
using multi-rail design we can achieve a peak bidirectional bandwidth of 1810 MB/s.
For EM64T cluster, we can achieve a peak bidirectional bandwidth of 2620 MB/s with
two-ports in comparison to 1910 MB/s using the original implementation.

In figures 7 and 8, we present the results for MPI Get latency for IA32 and EM64T
cluster, respectively. We observe that we perform almost similar with the original im-
plementation for small messages. For large messages, we can improve the latency by
45% for IA32 cluster and 33% for EM64T cluster by using multi-rail design.
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ter
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Impact of Reordering on One Sided Communication Figure 9 shows the perfor-
mance achieved by a combination of policies at the CH3’ layer and Multi-rail layer. At
the multi-rail layer we use load balanced fragmentation policy. At the CH3’ layer, we
compare impact of reordering with no reordering, when combined with the multi-rail
policy specified above.
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Fig. 9. Interleaved throughput on the IA32
Cluster
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For IA32 cluster using two-nics, we can achieve almost 1703 MB/s without reorder-
ing, which is close to the multi-rail peak unidirectional bandwidth. With single-rail
implementation, we can achieve a peak bandwidth of 880 MB/s without reordering.
We notice that with reordering for two-nics, we can almost achieve 1800 MB/s, almost
the peak bidirectional bandwidth with two-nics. With single-rail implementation, due
to the limitation of PCI-X, we can achieve only 907 MB/s.

In figure 10, we evaluate the performance of CH3’ layer reordering, compared to the
no reordering policy for the EM64T cluster. We use the load balanced fragmentation at
the multi-rail layer. Using two-ports and reordering, we can achieve 2604 MB/s, which
is almost the peak bidirectional bandwidth available with two-ports. It is interesting
to notice, that reordering with single-rail implementation outperforms the combination
of no reordering with multi-rail implementation. We attribute it to the fact that, PCI-
Express can achieve 8X bidirectional bandwidth with one-port. However, due to the
contention at the NIC, we cannot achieve a combined 8X unidirectional bandwidth
using two-ports. Using reordering with single-rail implementation, we can achieve 1900
MB/s. However we can only achieve a peak bandwidth of 1474 MB/s using multi-rail
implementation with no reordering. With no reordering for single-rail implementation,
we can achieve 962 MB/s, which is close to the unidirectional bandwidth available with
the single-rail implementation.

5 Related Work

In this section we discuss related work on one-sided communication model as well as
multi rail networks. In [15], reordering of one sided operations is proposed to reduce the
cost of lock synchronization operation. Besides MPI, some other programming models
which provide one-sided communication are ARMCI [14], GASNET [2] and BSP [5].
Using interconnection networks for different topologies has been studied in [4]. Using
multirail networks to build high performance clusters is proposed in [3].

However, none of the above works have focussed on design of MPI-2 one-sided
communication operations with multirail InfiniBand clusters.

6 Conclusions and Future Work

In this paper, we have presented the challenges (Multiple synchronization messages,
handling multiple HCAs, scheduling policies, ordering relaxation) associated with desig-
ining MPI-2 one-sided communication over multirail Infiniband networks. We have im-
plemented our design and presented the performance evaluation for microbenchmarks.
We have observed that multirail InfiniBand clusters can significantly improve the per-
formance for one-sided communication. Using a two rail cluster, we have achieved
almost doubled the throughput and reduced the latency to half with MPI Put and
MPI Get operations for large messages. We have also observed that reordering policy
can significantly improve the performance for communication patterns with a mix of
one-sided operations.

In future, we plan to evaluate our implementation on large scale clusters for applica-
tions with one-sided communication. We also plan to evaluate the scheduling policies in
depth, to take care of different communication patterns for one-sided communication.
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7 Software Distribution

As indicated earlier, the open-source MVAPICH2 [12] software is currently being used
by more than 250 organizations world-wide. The latest release is 0.6.5. The proposed
MPI-2 multirail one-sided communication solution will be available in the 0.7.0 release.
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