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Abstract—The largest supercomputers in the world today con-
sist of hundreds of thousands of processing cores and many more
other hardware components. At such scales, hardware faults
are a commonplace, necessitating fault-resilient software systems.
While different fault-resilient models are available, most focus on
allowing the computational processes to survive faults. On the
other hand, we have recently started investigating fault resilience
techniques for data-centric programming models such as the
partitioned global address space (PGAS) models. The primary
difference in data-centric models is the decoupling of computation
and data locality. That is, data placement is decoupled from the
executing processes, allowing us to view process failure (a physical
node hosting a process is dead) separately from data failure (a
physical node hosting data is dead).

In this paper, we take a first step toward data-centric fault
resilience by designing and implementing a fault0resilient, one-
sided communication runtime framework using Global Arrays
and its communication system, ARMCI. The framework consists
of a fault-resilient process manager; low-overhead and network-
assisted remote-node fault detection module; non-data-moving
collective communication primitives; and failure semantics and
error codes for one-sided communication runtime systems. Our
performance evaluation indicates that the framework incurs little
overhead compared to state-of-the-art designs and provides a
fundamental framework of fault resiliency for PGAS models.

I. INTRODUCTION

The largest systems in the world today already scale to
hundreds of thousands of cores. With plans under way for
exascale systems to emerge within the next decade, we are
likely soon to have systems comprising more than a million
processing elements. As researchers work toward architecting
these enormous systems, it is becoming increasingly clear
that at such scales, resilience to hardware faults is going to
be a prominent issue that needs to be addressed. Driven by
the needs of large-scale scientific computing applications, a
variety of programming models have beenn introduced over
the past two decades. While the Message Passing Interface
(MPI) [1], [2] has become the de facto standard for writing

parallel programs, PGAS models have recently gained popular-
ity as well [3], [4], [5], [6]. Together with these programming
models, different communication runtime systems to serve
these programming models have also become available [7],
[8].

Fault tolerance in MPI has been an area of significant
research [9], [10], [11], [12], [13], [14]. Most of this research,
however, has focused on allowing the computational processes
to survive fault, through either checkpointing or application-
level resilience to faults. While a process-driven model for
fault tolerance has its benefits, it has the disadvantage that
each process manages its data; thus, a failed node implies
that the processes residing on those nodes as well as their
data are lost and must be recreated or restored. Recently, we
have started investigating fault resilience techniques for data-
centric programming models such as the partitioned global
address space (PGAS) models. The primary difference in
data-centric models is the decoupling of computation and
data locality. That is, data placement is decoupled from the
executing processes, allowing one to view process failure (a
physical node hosting a process is dead) separately from data
failure (a physical node hosting data is dead).

However, the first obstruction in providing such data-centric
fault resilience is that there is a lack of basic fault resiliency
in the underlying communication runtime infrastructure for
PGAS models and other associated components such as the
process manager. Even for the hard faults, there is no low-
overhead fault detection framework and no support for even a
minimal set of fault-resilient collective communication prim-
itives.

In this paper, we take a first step toward data-centric fault
resilience by designing and implementing a fault-resilient, one-
sided communication runtime framework. Emphasizing the
properties of PGAS models for fault resiliency, we present data
redundancy models for continued execution during failure and



a design for a remote node fault detection module that uses
a combination of modern network primitives such as remote
direct memory access (RDMA) [15], send/receive, and data de-
livery notification semantics for high-accuracy fault detection.
Leveraging this fundamental infrastructure, we design and im-
plement non-data-moving collective communication primitives
and provide the foundation for fault-resilient data-moving col-
lectives. We discuss the need for various semantic changes to
write-based operations for recovery with data redundancy, and
we provide a framework for error notification with one-sided
communication primitives. Using Global Arrays (GA) [3] as
an example PGAS model, we implement our design with
Aggregate Remote Memory Copy Interface (ARMCI) [7], the
communication runtime system of Global Arrays [3], and refer
to our solution as fault-tolerant ARMCI, or FT-ARMCI. Our
performance evaluation shows that FT-ARMCI can provide
fault resiliency with low overhead. We are currently designing
and implementing a fault-resilient, high-order computational
chemistry method using Global Arrays. We plan to present
the results in the final version of the paper.

The rest of the article is organized as follows. In Sec-
tion II, we discuss related work. In Section III, we present
the background of our work. In Section IV, we describe
the overall design for FT-ARMCI. In Section V, we present
a performance evaluation of FT-ARMCI. In section VI, we
conclude with a brief summary and discussion of future
directions for research.

II. RELATED WORK

Fault tolerance with high-performance computing has been
studied by multiple researchers with various programming
models and applications. Fagg and Dongarra et al. introduced
FT-MPI [11], discussing the process model on occurrence of a
failure. Approaches include respawning of MPI processes and
patching them with the original communicator or continuing
with the holes in the communicator. Our proposed approach
is similar to the latter model proposed by FT-MPI; however,
fault recovery is done for Global Address space models using
Global Arrays [3]. Gropp and Lusk argued that the statement
”MPI is not fault tolerant” is unfounded because fault tolerance
is a property of the combination of an MPI program and
MPI implementation [9]. While most MPI implementations
choose to abort on a fault, this behavior is not mandated by
MPI standard. Gropp Lusk also discussed methods of recovery
using dynamic process creation and intercommunicators [9].
Our proposed approach performs graceful degradation and
does not require a process-based fault recovery algorithm at the
application level; rather, it requires task-based re-execution.

With MPI [1], [2], fault tolerance using application-
transparent/assisted approaches have been discussed
widely [10], [16], [13], [14]. Gao et al. observed that
user-transparent checkpointing using the Berkeley Lab
Checkpoint Restart is beneficial for NAS Parallel Benchmarks
and that checkpoint aggregation can reduce the overall time of
checkpointing significantly; however, the overhead increases
significantly after a small number of processors [10]. In

our approach, we leverage user-assisted data redundancy
for fault recovery and perform continued execution with
graceful degradation. Bosilca et al. [13] and Bouteiller et
al. have shown that pessimistic message-based logging can
be used for recovery on volatile nodes using MPICH-V;
however, this approach may not be applicable for one-sided
communication libraries such as ARMCI [7] considered in
this work. Another benefit of using the replicated approach
is continued execution, whereas message logging requires
rollback, although it is useful for applications that are more
suited for process-based models.

Researchers have also focused on providing fault tolerance
using virtual machine–based approaches Recent work includes
Xen over high-speed networks [12] in addition to the classical
work based on virtual machines using TCP/IP; however,
these approaches require either checkpointing for postfailure
execution [17] or proactive fault tolerance [12], which depends
on the accuracy of fault prediction. Our proposed approach,
on the contrary, does not depend on the accuracy of fault
prediction, as it is able to perform continued execution upon
occurrence of a failure.

III. BACKGROUND

In this section, we present the background of our work. We
begin with a description of PGAS models, modern intercon-
nects, and their primitives.

A. PGAS Models

Partitioned plobal address space models provide a logical
abstraction of global memory space, which is partitioned in
remote and local data for leveraging the locality of refer-
ence. Many language and library implementations are being
designed and implemented under this model, such as X10 [5],
Chapel [6], High Performance Fortran, Unified Parallel C
(UPC) [4], ZPL, and Titanium. These languages provide mech-
anisms for accessing data in global space and provide efficient
compiler-based implementations to coalesce multiple such data
accesses by resolving write dependencies. They also provide
mechanisms to allow computation to be executed on a remote
node (by using active messages or similar mechanisms).
PGAS models provide data-centric abstractions and decouple
computation from process-based models. We use this property
of PGAS models to provide fault resiliency with FT-ARMCI.
Library-based implementations such as Global Arrays [3] and
SHMEM [18] have also been designed and implemented to
serve the purpose of remote memory accesses. The user of
Global Arrays [3] is expected to explicitly request remote/local
data pointers and make explicit requests to coalesce data
transfers.

The Global Arrays programming model exposes to the
programmer the non-uniform memory access (NUMA) charac-
teristics of high-performance computers. Accesses to a remote
portion of the shared data is slower than to the local portion.
The locality information for the shared data is available, and a
direct access to the local portions of shared data is provided.



Global Arrays uses ARMCI [7] as the runtime system for
communication.

B. Modern Interconnects

In the past decade, high-speed interconnects—both open
standard and proprietary—have become available. In the open
standard community, InfiniBand [19] has become popular
because of its high performance, including features such
as RDMA [15], hardware-assisted collective communication
primitives, and atomic operations. Similarly, 10 Gigabit Eth-
ernet is becoming popular to support legacy sockets-based
applications, while providing primitives for RDMA and zero-
copy communication using send/recv primitives [20], [21]. In
the proprietary interconnects domain, interconnects such as
the IBM Blue Gene Torus network and Cray Seastar [22]
have become popular, providing support for RDMA as well
as for most features using connectionless transport seman-
tics. High Performance Switch (HPS)IBM’s fourth-generation
switch, provides support for connectionless RDMA; reliability
is implemented by using IBM’s LAPI access layer [23], [24],
[25].

In this paper, we use a combination of RDMA semantics and
reliable notification provided by these interconnects to detect
remote-node failure(s). The networks discussed above can be
classified on the basis of data delivery notification. Networks
such as InfiniBand provide “exact once notification” of data
delivery with the reliable connection semantics. This results
in a guaranteed notification of data delivery, offloaded in the
hardware. Other networks such as IBM HPS provide “maxi-
mum once notification.” Typically, this results in notification
when the data delivery is successful; however, data delivery
failures are not notified. Keeping these properties in mind,
we design and implement the remote fault detection layer
presented in Section IV. Our reference implementation over
InfiniBand uses “exact once notification” semantics provided
by the network for remote-node fault detection.

C. Communication Runtime Systems

Communication runtime systems play an important role in
providing efficient, high-performance support to programming
models. For PGAS models such as Global Arrays [3] and
Berkeley Unified Parallel C [4], the communication runtime
systems used are ARMCI [7] and GASNet, respectively.
Each of the communication runtime systems provides general-
purpose, efficient, and widely portable remote memory access
(RMA) operations (one-sided communication) optimized for
contiguous and noncontiguous (strided, scatter/gather, I/O vec-
tor) data transfers. Native network communication interfaces
and system resources (such as shared memory) are utilized to
achieve the best possible performance of the remote memory
access/one-sided communication. Optimized implementations
for each of these communication runtime systems are available
for Cray Portals, Myrinet (GM and MX) [20], Quadrics [21],
GigaNet (VIA), and InfiniBand (using OpenFabrics and Mel-
lanox Verbs API) [19]. In addition, they are available for

leadership-class machines including Cray XT4/XT5 and Blue
Gene/P [26].

IV. OVERALL DESIGN

In this section, we present the overall design of our fault-
resilient communication runtime system for PGAS models. We
begin with a presentation of the properties of PGAS models
suited for fault resiliency. We follow this with discussion of our
application-level data redundancy model. The overall design
is presented in Figure 1.

Communication Network

Fault Tolerant
Process Manager

Applications

Global Arrays Layer

Communication Protocols Layer

Fault Tolerant
Non−Data Moving
Collectives

Remote Node
Fault Detection

ARMCI

Fig. 1. Overall Design of FT-ARMCI

Efficient and accurate detection is critical in designing
fault-resilient communication runtime systems. In addition,
designing a fault-resilient process manager is important, since
most process managers abort on occurrence of a node failure.
Moreover, a framework for fault-resilient collective communi-
cation primitives is needed for data-centric models to maintain
the control flow of the application. We have designed a low-
overhead, high-accuracy remote-node fault detection module
to achieve this purpose. Using this module, we designed and
implemented fault-resilient process manager and fault-resilient
non-data-moving collective communication primitives. The
details are presented in the following subsections.

A. Why PGAS Models?

MPI [1], [2] is the predominantly used programming model
for most scientific applications. A broad range of applications,
requiring frequent synchronization and precisely described
in terms of processes rather than data, naturally fit under
this model. However, one class of applications, classified as
data centric, follow a task-based execution model and define
dependencies in terms of task execution; these applications
naturally fit PGAS models.

An important property of PGAS models is the data-centric
nature of the algorithm and independence from the number of



processes in the execution model. The nature of the algorithm
allows the data requests to be served from arbitrary processes,
as long as data consistency is maintained. Thus, the total
number of processes can grow and shrink arbitrarily. Assuming
a fault model giving a notion of node failure, the data-centric
property of the algorithm allows continued execution with
minimal changes, compared with the process-centric execution
model. Hence, we use PGAS models with Global Arrays as the
candidate programming model for implementing our design.
However, the generic nature of the design is applicable to
runtime systems of other PGAS models such as GASNet [8].

We also use a graceful degradation approach, under which
we continue with the available number of processes, rather
than respawning the processes of the lost node. The fault
recovery with the reincarnation of lost processes becomes
expensive, since the new processes may require a synchronous
continuum on the failure, which can be prohibitive on exascale
systems. The graceful degradation approach also allows to
continue execution when the spare nodes are not available—a
likelihood on exascale systems with capability-class loads.

B. Application-Level Data Redundancy Model

In this section, we discuss the expected data redundancy
model from applications using FT-ARMCI. While the de-
sign and development of these applications is on-going, the
data redundancy model provides guidelines for designing FT-
ARMCI.

Global Arrays [3] use the master process on a node [27],
[28] to allocate buffer for global address space; other processes
on the node attach to the shared-memory segment. Hence the
data redundancy can be achieved at a node level. This can be
done by allocating a shadow copy of the global address space
on the neighboring node. This is shown in the Figure 2 using
four nodes.

Shadow Copy

Node1

Node2 Node3 Node4Node1

Node2 Node3 Node4

Primary Copy

Fig. 2. Global Address Space Redundancy on Multiple Nodes

Figure 2 shows that the shadow copy of the local portion
of global address space is present on the logical neighboring
node. Another assumption in the redundancy model is that
each node has enough memory to store the primary and
shadow copy completely. This is a limitation of the current

model, and we plan to propose space-efficient data redundancy
models.

An important implication of the redundancy is that at least
one of the primary or shadow copies should be in a consistent
state at the time of recovery. To this end, the communication
runtime system must ensure that the same patch of the data
is not updated simultaneously in the primary and the shadow
copies. We discuss this situation in Section IV-E1.

C. Fault Tolerance Management Infrastructure

The fault tolerance management infrastructure consists of
two primary modules: a fault-resilient process manager and a
remote-node fault detection module. We present each of these
components in detail in the following subsections.

1) Remote-Node Fault Detection Module: Highly accurate
detection of component failure is key to designing a fault-
resilient communication runtime system. Methods for remote-
node fault detection have been proposed in the literature using
TCP/IP-based sockets [29], [30]. The kernel involvement and
dependency on an entity on a remote node result in greater
inaccuracy with this method.

Modern interconnects provide memory and channel seman-
tics for data transfer with RDMA and send/receive capabilities,
respectively. The send/receive semantics bypasses the kernel
but requires involvement of remote entity (process/thread on
the remote node) to respond to the health checks. The RDMA-
based approach does not require involvement of a remote
entity. Hence, we use the RDMA-based approach for remote-
node fault detection. Using RDMA Read primitives provided
by most modern networks and data delivery notification se-
mantics, we conclude that remote node is dead if a failure is
received during the read. The details are network specific, and
we present the details for our reference implementation with
InfiniBand in the following subsection.

Reference Implementation with InfiniBand: We leverage the
“exact once” data delivery notification semantics of reliable
connection transport provided by InfiniBand to check the
status of the remote node [31]. A helper thread is created
by the master process (only one thread is created per node)
during initialization of the communication runtime system. A
small buffer is allocated by each thread, which is registered
with the InfiniBand hardware; and the associated information
is exchanged so that the helper threads can perform RDMA
reads on the buffer. The helper thread also performs periodic
RDMA reads from nodes to check their health. In addition, itt
responds to the health check requests (pongs) from arbitrary
nodes. This functionality is also used at multiple execution
points explicitly by the ARMCI library to check the status of
the remote node, such as fence and collective communication
primitives.

The reference implementation creates an unreliable
datagram-based communication channel between all helper
threads. As Koop et al. have presented, the unreliable
datagram-based approach scales well [32]. Since reliable con-
nection transport semantics require pairwise connections [27],
a user-specified topology of reliable connections is also created



between the helper threads, with the default being the ring
topology. The status of a node can be checked by using
RDMA if it is available directly. This is illustrated in Figure 3.
For checking the status of an arbitrary node, an unreliable
datagram-based virtual connection is used if reliable connec-
tion is not available to the node. This is illustrated in the
Figure 4. The status of a node can be checked by sending a
ping message to that node and sending a ping message to a
neighboring node simultaneously. A quorum-based protocol is
used to test whether the remote node is healthy.

Node i Node i+1

RDMA Read

Fig. 3. Remote-Node Fault Detection When RDMA Is Available Directly

Pong Message

Network
Node i Node i+1Node1

RDMA Read

Ping Message

Fig. 4. Remote-Node Fault Detection When RDMA Is Available Indirectly

2) Fault Resilient Process Manager: Process management
plays a crucial role in providing fault resiliency to one-
sided communication runtime systems. While there has been
an effort to standardize process management interfaces with
PMI [33], most of the PMI implementations are geared to
MPI [1], [2]. While fault tolerance is not a property of the MPI
standard or MPI programs, but rather is a combination of these,
state-of-the-art MPI implementations abort on occurrence of
a failure. As a result, process management implementations
are geared toward aborting on occurrence of a failure. Clearly,
this solution does not suffice for the needs of our fault-tolerant
communication runtime system.

To address this issue, we use a process manager distributed
with the MVAPICH/MVAPICH2 libraries [34], and we en-
hance the implementation to prevent aborting of the whole job
on occurrence of a failure. We plan to integrate the changes
required to make the process manager fault resilient with
PMI [33].

D. Fault-Resilient Non-Data-Moving Collective Communica-
tion Primitives

Collective communication primitives are widely used by
programming models to provide abstractions for processes in
a group to perform an operation. MPI [1], [2] provides a wide
variety of data-moving collective communication primitives
such as all-to-all broadcast, all-to-all personalized exchange,
barrier, reduction, broadcast, and variants of these primitives.
However, applications using PGAS models typically use only
a small subset of these primitives. Computational chemistry
codes such as NWChem [35] use barrier indirectly by execut-
ing a sync operation, which performs active target fence and
barrier operatons. Hence, we design and implement a fault-
resilient barrier primitive as a critical component for our fault-
resilient one-sided communication library. We will address the
topic of fault-tolerant data moving collectives in future work.

We begin with using the hypercube algorithm for the barrier
primitive. The key challenge is to continue the execution of
barrier in occurrence of a failur. When a failure occurs, the
processes participating with the failed process during the step
does not receive a message from the failed process. The partic-
ipating processes use the remote-node fault detection module
presented above to detect the fault. Using this information,
these processes communicate with the process, which the
failed process would have communicated to in the next step.
This is illustrated in Figure 5.

Process 0

Available Process

Dead Process

Step 1

Step 2

Process 1

Process 2Process 3

Fig. 5. Execution of Fault-Tolerant Hypercube Algorithm for Barrier

As shown in the figure, step 1 finishes successfully for
process 2 and process 3, while process 0 does not receive any
response from process 1, since process 1 is not alive. Process 0
calculates the destination of process 1 in the next step, process
2, and sends the message to it. Process 2 responds to it in the
next step, when it receives the message. This algorithm can
esaily be extended for an arbitrary number of failures during
execution.



E. Semantics for One-Sided Communication Primitives

In this section, we present the semantics of one-sided
communication primitives, which are required to provide fault
resiliency to the PGAS models.

1) Synchronized Write-Based, One-Sided Communication
Primitives: One-sided communication primitives provide se-
mantics for buffer reusability with variants for blocking and
nonblocking interfaces similar to MPI [1], [2]. Fence is typi-
cally used to ensure the completion of a data transfer operation
at a remote node. For Get-based primitives, completion at
the initiator side results in completion of the data arrival as
well. As presented in Section IV-B, applications using Global
Arrays [3] can leverage a redundant copy of the global address
space to ensure that recovery is possible when a node fault
occurs.

A key issue during recovery is that at least one of the copies
should be in a consistent state to recover. This requires that
any write-based one-sided communication primitive should be
“fenced,” resulting in each write-based primitive also having
to be fenced. This approach guarantees that if a failure
occurs during the write, at least the data from one copy is r
thatecoverable. However, local completion semantics of Get-
based one-sided communication primitives do not require this
change. In Section V, we evaluate the impact of this change
for microbenchmarks with and without faults.

2) Error Propagation and Return Codes: Error return codes
are a key issue for fault-resilient one-sided communication
runtime systems. For our design, we return an error in
transmission only during the Get-based primitives, but we
do not return error codes during the write-based one-sided
communication primitives, put, and accumulate, respectively.

In addition, changes are required in various protocols of
one-sided communication to ensure continued execution dur-
ing occurrence of a failure. Once a process has failed, we
cache the information about the failure, and any further write
requests from application are ignored. However, any read-
based requests result in a failure.

V. PERFORMANCE EVALUATION OF FT-ARMCI

In this section, we present a performance evaluation of FT-
ARMCI. We compare this with the latest release of Global
Arrays, version 4.3, which we refer to as ”Original” for the
rest of the section. We have used Chinook [36], an AMD
Barcelona-based Supercomputer at Pacific Northwest National
Laboratory as the experimental testbed for our evaluation.

A. Experimental Testbed

Chinook [36] is a 160 TFlops system that consists of 2310
HP DL185 nodes with dual socket, 64-bit, Quad-core AMD
2.2 GHz Barcelona processors. Each node has 32 Gbytes of
memory and 365 Gbytes of local disk space. Communication
between the nodes is performed by using InfiniBand with
Voltaire [37] switches and Mellanox [38] adapters. The system
runs a version of Linux based on Red Hat Linux Advanced
Server. A global 297 Tbyte SFS file system is available to all
the nodes.

B. Performance Evaluation without Faults

In this section, we present the performance evaluation of
FT-ARMCI, in the absence of faults. The primary objective
is to understand the overhead of FT-ARMCI when no faults
occur. We design simple microbenchmarks using one-sided
communication primitives and compare the performance of
FT-ARMCI with the Original implementation. We use two
processes for evaluation, with one process on each node.

Figures 6 and 7 show the performance evaluation of ARMCI
Put contiguous and Put strided one-sided communication prim-
itives, respectively. In the tests process 0 initiates the blocking
variant of the communication primitive for a small number
of iterations and reports the observed bandwidth. We observe
that the peak bandwidth achieved by each of the primitives is
similar. However, FT-ARMCI incurs significant overhead for
small message latency, as presented in the Figures 8 and 9.
For each of these primitives, FT-ARMCI increases the 8-
byte message latency to approximately three times. Since each
write-based primitive results in an additional exchange of data
transfer with the remote node, as presented in Section IV-E1,
this overhead is incurred. There are possible performance im-
provements, such as combining the communication primitive
and data transfer for reducing the latency, which we plan to
extend in the near term.

C. Performance Evaluation with Faults

In this section, we present a performance comparison of
the Original implementation with that of FT-ARMCI in the
absence and presence of faults. We evaluate the benchmarks
presented in the previous section on a larger number of
processes. We modify the benchmarks to report the latency
observed at every iteration. At every iteration, each process
invokes a one-sided communication primitive in displaced ring
communication [39], followed by a fence. We compare the
Original implementation with no faults, FT-ARMCI No Fault,
and FT-ARMCI One Fault. To invoke the faults, we manually
kill all the processes on a node at arbitrary points during
benchmark execution, in order to emulate a node failure. The
point of failure is the middle iteration on the charts. We
have chosen this arbitrary communication pattern to show the
worst communication pattern. Other patterns reflecting MPI-
style collective communication primitives should incur less
overhead.

Figure 10 shows the results for the put communication
primitive with 512 processes and 8 bytes. The observed latency
is relative to the latency observed in the first iteration of
the Original implementation. As explained previously, FT-
ARMCI No Fault incurs significant overhead compared to the
Original implementation for small messages. At the point of
failure, the observed latency is high. A finer-grained analysis
of the overheads during the node failure shows that the
most time is taken by the timeout before remote-node fault
detection module is used. The other overhead is due to the
communication protocol of the remote-node fault detection
module. While not noticeable in the chart, the overall latency
decreases after fault occurrence, because the overall number of
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Fig. 9. ARMCI Accumulate Latency
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Fig. 10. ARMCI Put Latency, 512 Processes, 8 Bytes
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Fig. 11. ARMCI Put Latency, 1024 Processes, 8 Bytes
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Fig. 12. ARMCI Get Latency, 512 Processes, 1 MBytes

 0

 5

 10

 15

 20

 2  4  6  8  10  12  14  16  18  20

R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 T

im
e
 t
o
 F

ir
s
t 
It
e
ra

ti
o
n

Iteration

Original, No Fault
FT-ARMCI, No Fault

FT-ARMCI, One Fault

Fig. 13. ARMCI Accumulate Latency, 1024 Processes, 1 MBytes

nodes decrease. Since FT-ARMCI caches the information of
failed nodes, overhead is not incurred on subsequent iterations.

Figure 11 shows the 8-byte latency for the put one-sided
communication primitive for 1,024 processes. We observe
similar trends in the overhead with the FT-ARMCI No Fault
and the FT-ARMCI One Fault casies. Similar trends are
observed with the other one-sided communication primitives,
as presented in the Figures 12 and 13.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have taken a first step toward data-centric
fault resilience by designing and implementing a fault-resilient
one-sided communication runtime framework. Emphasizing
the properties of PGAS models for fault resiliency, we have
presented data redundancy models for continued execution
during failure and a design for a remote-node fault detection
module that uses a combination of modern network primi-
tives such as remote direct memory access (RDMA) [15],
send/receive, and data delivery notification semantics for
high-accuracy fault detection. Leveraging this fundamental
infrastructure, we have designed and implemented non-data-
moving collective communication primitives and provided the
foundation for fault-resilient data-moving collectives. We have
discussed the need for various semantic changes to write-based
operations for recovery with data redundancy, and we have
provided a framework for error notification with one-sided
communication primitives. Using Global Arrays (GA) [3] as
an example PGAS model, we have implemented our design
with Aggregate Remote Memory Copy Interface (ARMCI) [7],
the communication runtime system of Global Arrays [3]; we
refer to our solution as fault-tolerant ARMCI, or FT-ARMCI.
Our performance evaluation has shown that FT-ARMCI is
able to provide fault resiliency with low overhead. We are
currently designing and implementing a fault-resilient, high-
order computational chemistry method using Global Arrays,
and we plan to present the results in the final version of the
paper.

We will also finish the remaining components for providing
fault tolerance. Our immediate goal is to complete the writing

of a fault-resilient high-order computational chemistry method
such as coupled cluster. In addition, we are working on fault-
tolerant data-moving collectives with data-centric abstractions,
rather than process-centric abstractions such as MPI. As we
continue to develop these components, we will conduct large-
scale evaluations and will make performance improvements to
protocols and components.
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