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Abstract—The Cray Gemini Interconnect has been recently
introduced as a next generation network architecture for building
multi-petaflop supercomputers. Cray XE6 systems including
LANL Cielo, NERSC Hopper, and the proposed NCSA Blue-
Waters, as well as the Cray XK6 ORNL Titan leverage the
Gemini Interconnect as their primary Interconnection network.
At the same time, programming models such as the Message
Passing Interface (MPI) and Partitioned Global Address Space
(PGAS) models such as Unified Parallel C (UPC) and Co-Array
Fortran (CAF) have become available on these systems. Global
Arrays is a popular PGAS model used in a variety of application
domains including hydrodynamics, chemistry and visualization.
Global Arrays uses Aggregate Remote Memory Copy Interface
(ARMCI) as the communication runtime system for Remote
Memory Access (RMA) communication. This paper presents a
design, implementation and performance evaluation of scalable
and high performance communication ARMCI on Cray Gemini.
The design space is explored and time-space complexities of
communication protocols for one-sided communication primitives
such as contiguous and uniformly non-contiguous datatypes,
atomic memory operations (AMOs) and memory synchronization
is presented. An implementation of the proposed design (referred
as ARMCI-Gemini) demonstrates the efficacy on communication
primitives, application kernels such as LU decomposition and
applications such as Smooth Particle Hydrodynamics (SPH).

I. INTRODUCTION

Scalable programming models are pivotal in extracting the
peak performance of of high-end systems. While the Message
Passing Interface (MPI) [1], [2] is ubiquitous, Partitioned
Global Address Space (PGAS) programming models are gain-
ing traction with performance portability and productivity.
PGAS models rely on underlying communication subsystems
to abstract network interfaces and provide one-sided com-
munication primitives for get/put, atomic memory operations,
synchronization and datatypes. Scalable and convenient ab-
stractions have resulted in an increased adoption of PGAS
models [3].

Global Arrays [4] (GA) is a popular PGAS model used
in science domains such as computational fluid dynamics,
groundwater simulation, astrophysics, climate modeling, and
chemistry [5], [6]. Global Arrays uses the Aggregate Remote
Memory Communication Interface (ARMCI) [7] for network
communication. The scalability of GA and its related ap-
plications depend on time-space efficient protocols of the
ARMCI communication runtime. To meet these objectives,

design of scalable communication protocols on native high-
speed interconnects has been proposed on today’s advanced
systems such as InfiniBand [8], Cray XTs, and IBM BlueGene
systems [9], [10].

Recently, the Cray Gemini Interconnect has been introduced
as a next generation network architecture for building multi-
petaflop supercomputers. The Cray Gemini Interconnect is
integrated as a part of Cray XE6/XK6 systems. The prominent
features include hardware support for remote memory access
(RDMA), atomic memory operations (AMOs) and symmetric
heap to accelerate the transition of communication libraries to
the newly proposed architecture. Cray XE6 systems including
LANL Cielo, NERSC Hopper, and the proposed NCSA Blue-
Waters, as well as the Cray XK6 ORNL Titan use the Gemini
Interconnect as their primary interconnection network. Appli-
cations which use GA such as Smooth Particle Hydrodynamic
(SPH), NWChem must extract the best performance on these
systems to advance the science. Hence, it is critical to design
a scalable PGAS communication subsystem on Cray Gemini
Interconnect.

A. Contributions

The major contributions of the paper are:
• A detailed discussion on Cray Gemini userspace libraries

and applicability of these libraries for PGAS models. The
paper presents a performance and productivity argument
in using the userspace libraries.

• An exploration of solution space using Distributed
Shared Memory Application (DMAPP) [11] interface
and propose a native one-sided communication run-
time system using ARMCI (The proposed design is
referred as ARMCI-Gemini). The communication pro-
tocols which utilize the network concurrency and com-
munication/computation overlap protocol for accumulate
operations are presented. The time-space complexity of
communication protocols for contiguous, uniformly non-
contiguous datatype communication, atomic memory op-
erations and memory synchronization is analyzed.

• The proposed design (ARMCI-Gemini) is implemented
and the performance is evaluated using up to 8192
processes. The efficacy of ARMCI-Gemini is demon-
strated using communication primitives (contiguous, non-



contiguous, atomic memory operations), communication
benchmarks (shift, transpose), application kernels (LU
decomposition, Lennard Jones simulation) and an ap-
plication (Smooth Particle Hydrodynamics). ARMCI-
Gemini achieves a get latency of 1.3 µs and a peak
bandwidth of 6 GB/s, incurring negligible overhead on
DMAPP userspace library.

The rest of the paper is organized as follows: Section II
provides a brief background of the proposed work. Sec-
tion III presents possible solutions for designing scalable and
high performance PGAS communication runtime (referred
as ARMCI-Gemini) on the Cray Gemini Interconnect. Sec-
tion IV presents a performance evaluation of ARMCI-Gemini.
Section V provides related work on scalable communication
runtime systems for high performance interconnects. Finally,
Section VI presents some conclusions and plans for future
work.

II. BACKGROUND

This section presents a background of the proposed work. A
description of the Cray Gemini Interconnect [11] is followed
by a brief description of ARMCI [7].

A. Cray Gemini Interconnect
Figure 1 shows a block diagram of the Cray Gemini ASIC.

Each Gemini ASIC has two Network Interface Cards (NICs),
and a 48-port Cray YARC2 router. The NICs within an ASIC
(Inter-ASIC) are connected to a Netlink block, which provides
internal routing between the NICs. A total of eight links
connect a Netlink block to a router. Each Gemini ASIC is
connected to other ASICs using a 3D Torus topology. A total
of eight links each are used to connect in the ‘x’ and ‘z’
dimensions, and four links are used in the ‘y’ dimension [13],
[11] (The other four links in the ‘y’ dimension are used by
the Netlink block).

Multiple routing algorithms are supported on the Cray Gem-
ini Interconnect: deterministic, hashed and adaptive. “The de-
terministic routing algorithm follows dimension-order routing
of messages with predetermined links within each dimension.
The hashed dimension-order routing algorithm provides more
flexibility in selecting a link on various dimensions. The
adaptive dimension-order routing allows the packets to be
scheduled on lightly loaded links adaptively” [13], [11].

The Cray Gemini Interconnect supports Programmed I/O
using the Fast Memory Access (FMA) protocol, which is used
up to 4096 bytes in the proposed design. Larger message
sizes use Block Transfer Engine (BTE) based protocols, which
use doorbell mechanism for Remote Direct Memory Access
(RDMA).

B. Aggregate Remote Memory Copy Interface
“ARMCI [7] is a communication runtime system which pro-

vides general-purpose, efficient, and widely portable remote
memory access (RMA) operations (one-sided communication)
optimized for contiguous and non-contiguous (strided, scat-
ter/gather, I/O vector) data transfers. ARMCI provides inter-
faces for collective/non-collective memory allocation, atomic

memory operations (fetch-and-add, compare-and-swap), bulk
accumulate operations and mutex operations.” [14], [11]

ARMCI supports the location consistency model. A set of
ARMCI interfaces support pairwise memory synchronization
and collective memory synchronization. ARMCI supports non-
blocking interfaces with explicit and implicit handles and ad-
heres to buffer reuse semantics similar to MPI [1], [2]. ARMCI
is the underlying communication subsystem for higher level
programming models such as Global Arrays [4] and Co-Array
Fortran [15]. The Global Arrays programming model provides
abstractions for distributed arrays and leverages the commu-
nication primitives provided by ARMCI. Figure 2 shows the
software ecosystem of Global Arrays and ARMCI.

ARMCI leverages the low level network primitives provided
by modern networks. It is supported on clusters with commod-
ity interconnects (InfiniBand, Ethernet) and high-end systems
(IBM Blue Gene/L, Blue Gene/P, and Cray XT5/XT4). The
proposed implementation in this article will be available in
future releases.

III. ARMCI-GEMINI DESIGN

This section presents solution space for designing scalable
and high performance PGAS communication runtime systems
on the Cray Gemini Interconnect. This involves designing
efficient time-space complexity protocols leveraging the prop-
erties of the interconnect. A detailed discussion on the design
choices - symmetric heap allocation, network concurrency
for non-contiguous datatype communication, hardware mech-
anisms for load balance counters, adaptive protocols for accu-
mulate operations and constant time memory synchronization
is presented.

A. Userspace Libraries

The Cray Gemini Interconnect supports two userspace
libraries - uGNI and DMAPP. These userspace libraries
are specifically designed for Message Passing (MPI) and
PGAS communication runtime systems, respectively. Table I
shows the primary differences between the properties of these
userspace libraries.

Property DMAPP uGNI
1 EndPoint Management No Yes
2 Registration Cache No Yes
3 Remote Completion Notification No Yes
4 Symmetric Heap Allocation Yes No

TABLE I
PROPERTIES OF USERSPACE LIBRARIES SUPPORTED BY CRAY GEMINI

INTERCONNECT

The DMAPP library abstracts endpoint management and
the caching of memory registration for local communication
buffers. DMAPP uses the udreg module for maintaining local
registration cache entries which are shared with other user
libraries such as the MPI runtime. An advantage of the sharing
is interoperability with the MPI runtime without duplicating
registration cache entries. Automatic endpoint management is



Fig. 1. A Block Diagram of Cray Gemini ASIC [12]

Global Arrays 

Con-guous 
Datatype 

Strided 
Datatype 

Atomic 
Opera-ons 

Synchroniza
-on 

ScalPL (Scalable Protocols Layer) 

Ethernet  InfiniBand  Gemini  BlueGene 

Fig. 2. Global Arrays Software Architecture (Designed Components are
Shown in Green)

a useful abstraction which reduces the effort of designing a
PGAS communication runtime system.

The DMAPP library supports symmetric heap allocation.
The symmetric heap allocation functionality is space-time
efficient. It eliminates a need for collective address exchange
of each memory allocation. For p processes which exchange
a buffer of size m (size of base address pointer of each global
address allocation) using all-to-all broadcast (equivalent of
MPI Allgather), the overall startup time reduces by Θ(p·m)
time units for each global address space allocation.

A high performance PGAS communication subsystem
would cache base addresses of a large subset of processes re-
quiring O(p·m) units of address space. Some implementations
may reduce the space and time complexity by using dynamic
caching of base address pointers and eviction strategies by
requiring address lookup in the critical path. The symmetric
memory allocation eliminates a need for address exchange
completely. The primary limitation of symmetric heap allo-
cation is that the size of the symmetric heap needs to be
predefined before application startup. All processes need to
use a similar amount of memory during allocation to eliminate
address exchange on the fly.

The symmetric heap allocation is not useful for local
communication buffers (equivalent of ARMCI Malloc local).
The size of the local communication buffers may vary between
processes, which would result in different offsets, if this
approach was to be used. This does not result in additional
complexity, since the DMAPP layer abstracts buffer registra-
tion completely.

B. Elements of PGAS Communication Runtime

This section presents design choices for a scalable PGAS
communication runtime system on the Cray Gemini Inter-
connect. The section is divided into protocols for contiguous
datatype, uniformly non-contiguous datatype, atomic memory
operations and synchronization.

1) Contiguous Datatype: Contiguous datatype transfer is
fundamental to many data transfer requests in PGAS models.
Remote Direct Memory Access (RDMA) semantics provided
by commodity and proprietary interconnects such as Infini-

Band [8], and the Cray Gemini Interconnect [11] match very
well with the contiguous datatype transfer. These networks
require that the source and target communication buffers are
contiguous. The buffers are required to be explicitly registered
to prevent the kernel from swapping them out during commu-
nication.

The DMAPP library abstracts the requirement of registra-
tion entirely from the user by using an internal registration
cache for local buffers and symmetric heap allocation for
global address space data. Hence, the contiguous datatype
transfer incurs negligible overhead on the native RDMA
performance.

Let p represent the number of processes, k represent the
maximum number of implicit outstanding data transfer re-
quests from a source (runtime parameter), and d represent the
size of a communication handle. In the proposed design, the
memory requirement for contiguous data transfer is Θ(k·d).
In Cray Gemini interconnect, d is in the order of bytes. For
scalable user-level algorithms, it is expected that the number
of outstanding data transfers (from one source to all targets) to
be O(log(p)) or O(

√
p). For the proposed implementation, a

linear model is used for the number of outstanding messages.
The y-intercept is a predefined constant c and the slope as
log(p), resulting in memory utilization to be Θ(d.(c + log(p)))
.

2) Non-contiguous Datatype: Non-contiguous datatype
transfer is frequently observed with many scientific appli-
cations. Many scientific applications read/update a patch of
a distributed data structure (such as a distributed arrays in
Global Arrays [4]), which results in a non-contiguous datatype
transfer. Application kernels with temporal communication
properties (such as multi-point stencil) update data on mul-
tiple processes in the grid. Updates are contiguous in some
dimensions and non-contiguous in other dimensions.

A special type of non-contiguous datatype communication is
strided (uniformly non-contiguous) datatype communication,
which results in a read/update of a rectangular patch of
global address space data. These datatypes can be expressed
using the datatype interface in MPI [1], [2]. Communication
runtime systems such as ARMCI [7] provide explicit interfaces



Pi 

Pt 

Pr Ps 

Pu 

Fig. 3. Example of Strided Communication

Source 
Target 

l0 l0 

l1 
l1 

Fig. 4. Pipelined Communication Protocol for
Strided Put Communication Primitive

Source 
Target 

l0 l0 

l1 
l1 

Fig. 5. Pipelined Communication Protocol for
Strided Get Communication Primitive

for strided communication, due to their frequent usage by
applications. Memory requirements to express strided com-
munication is Θ(n), where n is the number of dimensions of
data distribution. The frequent usage of strided communication
makes it necessary to design scalable communication protocols
for these datatypes.

Figure 3 shows an example of strided put communication
in ARMCI [7]. In the example, a process Pi updates a patch
of global address space data by expressing the dimensions of
the patch. The underlying metadata manager queries the data
distribution and transforms the request into multiple strided
datatype put communications from the nodes which hold the
data. Each data request from process Pi to Pr, Ps, Pt, and Pu

results in a strided datatype communication.
Unlike contiguous datatype communication, strided

datatype communication is not supported natively in the
Cray Gemini hardware. The Send-Gather, Receive-Scatter
functionality available with InfiniBand [8] is not truly
one-sided. The solution space for communication protocols
involves eager and rendezvous protocols for communication
similar to MPI communication protocols.

The eager protocol involved local packing of the data;
sending the data to an intermediate buffer on the remote node
and unpacking of the data on the remote node. To expedite
communication progress, asynchronous agent(s) are used. The
previous approaches to designing scalable PGAS communi-
cation subsystems involve using one or more asynchronous
agent(s) [16], [17]. Copy based protocols are accelerated using
memory allocation which is shared among processes on a
compute node. The agents are allowed to perform read/update
on behalf of processes on the remote node. The copy based
protocols require flow control, intermediate buffering and
frequently suffer from overhead due to tradeoffs between
polling and interrupt driven approaches.

Let M represent the size of an intermediate packing buffer,
p represent the number of processes, β represent the overall
size of data transfer. For β ≤ M , the space requirement
of the above design is Θ(M log(p)) on each process to
allow a log(p) number of outstanding messages at any point .
Multiple intermediate packing buffers may be required when
β > M . The space requirement at the asynchronous agent
is (M · p) to support eager protocol in the worst case. The
rendezvous protocol may use a buffer pool to reduce the
space complexity for intermediate buffers on the processes and
asynchronous agent(s). However, this result cost of additional

control messages in the rendezvous protocol.
To alleviate the memory cost of legacy protocols and

effectively utilize the high network concurrency of modern
interconnects, a zero copy based communication protocol is
used for strided communication. The communication protocol
performs a pipelined data transfer of individual contiguous
chunks using non-blocking DMAPP communication primi-
tives.

Figure 4 shows the communication protocol for strided put
data transfer. Each contiguous chunk of data is transferred
using the implicitly non-blocking data transfer DMAPP inter-
face. When the total number of contiguous chunks exceed the
maximum number of allowed non-blocking communication
requests, the implementation waits for the completion of out-
standing data transfers. The get strided communication prim-
itive is implemented similarly using DMAPP non-blocking
get communication primitive. The put/get primitives provide
faster design and implementation of strided protocols on Cray
Gemini Interconnect.

Let s represent the number of dimension(s) in strided
datatype communication and li represent the number of bytes
in ith dimension. The space requirements of the pipelined
communication protocol is d.

∏s−1
i=1 li (Note that β =

∏s−1
i=0 li).

The number of bytes in the first dimension is the contiguous
chunk for the pipelined transfer.

There are multiple methods to scale this memory require-
ment. Most data transfers use up to four dimensions of
read/update. The memory requirements of each transfer is
proportional to the size of descriptor, which is on the order of
bytes. In certain cases, when the total number of outstanding
requests are greater than k, the progress engine is invoked to
wait on the completion of some entries. The progress on these
entries does not require an explicit communication progress
from the remote process due to the use of RDMA. The number
of outstanding data transfers is inversely proportional to l0.
The proposed solution is still very scalable since d�M .

3) Atomic Memory Operations: Atomic memory operations
are critical communication primitives for PGAS models. They
provide one-sided reduction of remote data. AMOs are used
for load balance counters (atomic fetch-and-add), lock/unlock
(atomic compare-and-swap) and accumulate (atomic add) op-
erations. The load balance counters and lock/unlock operations
operate on 64-bit value. The accumulate operation may be
performed on bulk global address space data (matrix multipli-
cation is a use case for bulk accumulates).



DMAPP provides quad-word based AMOs (atomic fetch-
and-add, atomic compare-and-swap, atomic add, atomic and,
atomic xor etc), which have native hardware support. An
advantage of using hardware based AMOs is that an asyn-
chronous agent is not required for performing AMOs. The
AMOs on Cray Gemini Interconnect are fast due to caching of
the AMO data on the NIC [13]. Hence, the associated cache
line is resident on the NIC, until it is evicted. This results
in a lower overhead in comparison to software based AMOs,
particularly during the burst modes of load balancing and work
stealing in applications such as Lennard Jones. The caching
on the NIC does incur an overhead for local work stealing.
DMAPP AMOs may not be used with CPU based AMOs on
the same area of memory, since CPU based AMOs are not
coherent with NIC based AMOs.

The accumulate operation maps well to DMAPP using the
non-blocking atomic add operation. Each atomic add is a 64-
bit operation. The number of data transfer requests is m

8 , where
m is the size of data transfer request. This is a reasonable
protocol for small size accumulates. The number of 64-bit
transactions increase with the size of the accumulate data.

For bulk accumulates, a {lock + pipelined get-local
accumulate-put + unlock} protocol is used. In this protocol,
the key is to overlap the get and put phases of the protocol with
the local accumulate. To achieve this overlap, multiple local
buffers are used for requesting NbPut and NbGet phases of
the update/read respectively. Figure 6 shows an example of
the overlap protocol with triple-buffering. For triple buffering,
the first wait on NbPut takes place in the third phase of the
protocol. The pre-fetch phase of the protocol requests on Get
to kick off the computation.

This protocol also requires the target of get to be an
intermediate buffer. To achieve a high degree of overlap, v-
buffering protocol may be used, each requiring communication
buffers of size b (size is determined offline by performing
bandwidth tests). The space complexity of this protocol is Θ(v
· b). The proposed implementation uses triple-buffering.

Get (0) 
NbGet (1) 
Compute (0) 
NbPut (0) 
Wait(1) 

NbGet (2) 
Compute (1) 
NbPut(1) 
Wait (2) 

Wait (0) 
NbGet (0) 
Compute (2) 
NbPut (2) 
Wait (0) 

Prefetch Phase 

Phase 1 

Phase 2 

Phase 3 

Fig. 6. Overlap Phase of get-local acc-put Accumulate Protocol with triple-
buffering Protocol

4) Synchronization: Scalable synchronization in PGAS
models is critical since it involves memory and control syn-
chronization. The control synchronization may be achieved
by using an MPI barrier which has a time complexity of
Θ(log(p)). Theorem III-B4 proves that the time complexity
of memory synchronization for ARMCI-Gemini is Θ(1).

Theorem 1. In the asynchronous agent based design, Let
N denote the number of nodes, and ψ the number of asyn-
chronous agents on the node. The cost of memory synchro-
nization is O(ψ.N )

Proof: In the asynchronous agent based design, the
pack/unpack based communication protocols result in data
transfer to intermediate buffers. The completion of the data
transfer at initiator only indicates the data availability in the
remote intermediate buffer, and not necessarily the user buffer.
At the memory synchronization step, each process needs to
send a request to fence message to each asynchronous agent
involved in the pack/unpack based protocol and wait for fence
acknowledgment, resulting in the cost of synchronization to be
O(ψ.N ).

The O(ψ.N ) cost of memory synchronization tends to
become a stricter bound with strong scaling. With increasing
scale, the data is partitioned in more processes, resulting in
communication with a larger number of processes, particularly
for task-based models. This results in memory synchronization
with a larger set of processes.

Corollary 1. The cost of memory synchronization in ARMCI-
Gemini is Θ(1).

Proof: The proposed design leverages the location con-
sistency semantics provided by the DMAPP library. Each
communication primitive reads/updates user buffer(s) directly,
precluding a need for request to fence and fence acknowl-
edgment protocol. The memory synchronization in ARMCI-
Gemini implementation is a no-op.

C. Implementation Details

The proposed protocols presented in the previous sections
are implemented using ARMCI [7]. An advantage of selecting
ARMCI is that it is used as a communication runtime for
Global Arrays - a programming model used in many applica-
tions.

Registration/Deregistration of Local Buffers: DMAPP
does not require explicit registration of local buffers. DMAPP
maintains an internal registration cache. An important con-
sequence of not registering local buffers is a possibility of
many registration entries in the cache. This situation may be
circumvented by explicitly registering the buffer immediately
after allocation. Due to the high cost of deregistration on
the fly, the local buffers are only deregistered during the
finalization step of ARMCI.

Ordering Issues: We use adaptive routing with ARMCI-
Gemini to alleviate congestion in the network. We also use
relaxed ordering semantics for hypertransport for performance



issues. The current version of DMAPP supports location con-
sistency with these parameters, which is required for ARMCI
communication primitives.

Current Limitations: ARMCI-Gemini supports function-
ality limited to the Remote Memory Access communication
model. ARMCI-Gemini does not support an Active Message
communication model, partly due to missing functionality of
Active Messages in the DMAPP interface. user-level Gemini
Network Interface (uGNI) supports active messages. Another
limitation of ARMCI-Gemini is the requirement of symmetric
heap allocation. These limitations will be addressed in the
future papers.

IV. PERFORMANCE EVALUATION

This section presents a performance evaluation of ARMCI-
Gemini using communication benchmarks and application
kernels. The objective of the performance evaluation is to
provide guidance to application scientists and PGAS model
designers on the expected performance from communication
primitives and PGAS data distributions.

A. Experimental Testbed

The NERSC Hopper Phase II system [12] is used for
performance evaluation. The Hopper Phase II system is a
Cray XE6 system (code name Baker), which has 6384 nodes
with two twelve-core AMD Magny-Cours 2.1 GHz processors
on each node. Each node has 24 cores providing a total of
153,216 cores in the system. A total memory of 32 GB DDR3
1333 MHz is available per node. Each AMD core has an
independent L1 and L2 cache of sizes 64KB and 512 KB,
respectively. A 6MB L3 shared cache connects six magny-
cours processors. The Hopper Phase II system provides a peak
performance of 1.28 PF/s.

B. Performance Evaluation with Communication Benchmarks

This section presents a performance evaluation of ARMCI-
Gemini using contiguous, strided datatype communication,
and atomic memory operations. Each of these tests (except
registration/deregistration, which requires only one process)
uses two processes scheduled on two different nodes within a
Cray Gemini ASIC.

1) Contiguous Datatype Performance: Figure 7 demon-
strates the latency of the get communication primitive and
compares the performance of ARMCI-Gemini implementation
with a similar benchmark designed directly using the DMAPP
interface [11]. A minimum message size of 16 bytes is used
largely because many applications send a minimum of two
doubles (16 bytes). The latency observed by the ARMCI-
Gemini implementation is similar to latency of DMAPP
benchmark. The primary reason is the absence of a protocol
overhead in using ARMCI-Gemini over DMAPP. Both im-
plementations use RDMA for contiguous data transfer, and
overhead for searching the local registration cache (inside
DMAPP library) and posting a descriptor is similar in both
implementations. The observed latency for 16byte message is
1.3µs.

Figure 8 demonstrates the bandwidth observed for the get
communication primitive using get communication bench-
marks designed with ARMCI-Gemini and DMAPP imple-
mentations. It is observed that both implementations perform
similarly. The peak bandwidth observed by these implemen-
tations is 6611 MB/s. The bandwidth test does not exhibit the
concurrency of the Cray Gemini Interconnect because there
is only one outstanding message between the communicating
processes. This is particularly important for medium size
messages, which typically do not achieve the peak bandwidth.
The network concurrency is utilized with the strided commu-
nication benchmarks.

Figure 10 shows the latency observed for the put communi-
cation primitive using ARMCI-Gemini and DMAPP imple-
mentations. We observe that DMAPP and ARMCI-Gemini
implementations achieve a latency of 1µs for 16byte mes-
sages. The ARMCI-Gemini implementation does not incur
any overhead in communication protocol for contiguous data
transfer. Figure 11 shows the bandwidth observed for the put
communication primitive. The peak bandwidth achieved by
DMAPP and ARMCI-Gemini implementations is 6600 MB/s.
We observe a drop in bandwidth at 4Kbytes, which is due to
a change from using the Fast Memory Access (FMA) based
communication protocol to the Block Transfer Engine (BTE)
protocol for both implementations [13], [18]. A discrepancy
is observed with a bandwidth drop in DMAPP at 32Kbytes,
which is likely due to system noise.

2) Strided Datatype Communication Performance: Fig-
ures 12 and 9 show the performance of strided put and strided
get communication primitives, respectively. In each of these
tests, a data transfer of M bytes is split in j chunks, each with
contiguous size of s bytes (M = j·s). The charts demonstrate
bandwidth for different s sizes. These tests demonstrate the
concurrency available with the Cray Gemini Interconnect. For
a constant size M , if s ≈ M , the peak bandwidth achieved
is similar to the contiguous datatype. With increasing j, the
network concurrency is the rate limiting factor resulting in
lower bandwidth.

These tests are important in designing the data distribu-
tion (block, block-cyclic) and replication strategies (partial,
complete) for distributed data structures. Application scientists
may use these charts and determine the performance limiting
factor in their algorithm using these performance results.

3) Atomic Memory Operations: Load Balance Counters:
AMOs are frequently used for load balance counters and
accumulate operations. A communication benchmark in which
every process performs an ARMCI_Rmw (fetch-and-add) op-
eration on memory exposed by process 0 is designed. This
communication scenario is a micro-kernel of many science
domains including Lennard Jones simulation, chemistry and
bioinformatics in which each process requests a unit of work
based on the value of load balance counter. The performance
evaluation is shown in Figure 13.

It is observable that hardware assisted fetch-and-add scales
very well with 5µs latency for 8192 processes, largely due
to caching of atomics on the NIC. The graph demonstrates a
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Fig. 14. Small Messages Accumulate Latency
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Fig. 15. Large Messages Accumulate Latency

step pattern in observed latency. The first step is observed at
64 processes - some (up to 48) of the processes are within the
Cray Gemini ASIC, and other processes are outside the ASIC.
The other step (1K processes) is observed due to increased hop
counts of processes to perform atomic operation on process 0.

Accumulate Operations: Figure 14 demonstrates the per-
formance of the accumulate operation for contiguous datatype
comparing the performance of hardware-based AMOs and
get-local acc-put protocol. A crossover point at 512 bytes is
observed, beyond which the get-local acc-put based protocol
outperforms hardware AMOs protocol. For messages smaller
than 512 bytes, an extra overhead is observed during the
lock and unlock phase of get-local acc-put communication
protocol. With increasing message size, the cost of lock/unlock
operation is amortized by the cost of other phases of the
protocol. The hardware AMOs based protocol needs to send
out m

8 number of messages, which does not scale well with
increasing message size. Figure 15 shows the performance of

contiguous accumulate operation for large messages.
4) Shift and Transpose Communication Operations: The

shift and transpose communication routines are used by Global
Arrays functions such as ga_transpose and collective
communication primitives. These communication operations
demonstrate a time complexity of Θ(m.p) for writing to mem-
ory (m) exposed by all the processes (p). Figures 16 and 17
show the performance of shift and transpose communication
primitives respectively. These benchmarks are expected to
provide Θ(p) time complexity with a constant message size.
The observed trends do not strictly follow this model. With
scale, increased contention is observed on the links due to the
over-subscription of links by intra-job and inter-job processes.
The adaptive routing algorithm is limited, as it still uses the
links in dimension order.

C. Performance Evaluation with Application Kernels

This section presents a performance evaluation of ARMCI-
Gemini using application kernels LU decomposition, and
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Fig. 18. LU Decomposition Performance, Dimen-
sion = 32768
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Fig. 19. Lennard Jones Simulation Performance
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Fig. 20. Smooth Particle Hydrodynamic Performance

Lennard Jones Simulation.
1) LU Decomposition: The LU decomposition is an im-

portant kernel to factor a matrix A of dimension N in L
and U matrices respectively. This factorization is useful in
solving the set of linear equations. A dense LU decomposition
kernel with 2D block data distribution. The broadcast step
of the application kernel is performed using one-sided non-
blocking put operations. These operations provide zero-copy
transfer to processes in the row and column and communi-
cation/computation overlap, with the use of RDMA. In LU
decomposition, communication volume is Θ

√
(p) with 2D

decomposition and the overall computation reduces proportion
to Θ(p). Figure 18 shows the performance of LU decompo-
sition with strong scaling of 32768 matrix size and block
distribution. The overall time decreases from 512 processes
to 1024 processes (130s to 90s) but flattens out at 2048
processes. With strong scaling, we observe that the overall
computation/process decreases and as a result the computation
efficiency bottoms out.

2) Lennard Jones Simulation: The Lennard Jones potential
is a molecular dynamics algorithm that approximates the inter-
action between a pair of neutral atoms or molecules. There are
3 classes of parallelization: Atom, Force and Spatial Decompo-
sition. An implementation based on force decomposition and
Global Arrays (GA) is used. The entire force matrix (N ·
N ) is divided into multiple blocks (m · m) for dynamic load

balancing, where m is the block size and N is the total number
of atoms/particles. The force between two atoms/particles is
approximated by Lennard Jones potential energy function. The
primary communication primitives involved are load balance
counters, put operations and synchronization.

The simulation uses 8192 atoms. At this problem size, the
load balancing algorithm using counters (atomic fetch-and-
add) provides linear scaling in computation(t compute). The
communication volume updated by each process is dependent
on the overall problem size. The update (put operations)
operations dominate the communication time(t communicate)
and remain constant with scale.

D. Performance Evaluation with Smooth Particle Hydrody-
namics (SPH) Application

The SPH application is based on a Lagrangian approach
which uses particles to simulate the behavior of fluid flow in
complex geometries. The parallel implementation of the SPH
algorithm is based on spatial decomposition of the rectangular
simulation domain into subregions. The number of subregions
is equal to the number of available processors and each
processor is responsible for all the particles in the spatial
region assigned to it. The communication template of SPH
represents grid based exchange - computation time complexity
is inversely proportional to Θ(p) and communication time is
proportional to Θ

√
(p).



In the experimentation, 16 million particles are used for sim-
ulation. Figure 20 demonstrates the performance of SPH using
up to 4096 processes. The t compute and t communication
follows the model from 512 to 2048 processes. A super-linear
speedup is observed from 2048 to 4096 processes. At 4096
processes, the grid fits in the cache resulting in lesser mem-
ory traffic. The t communication still follows the expected
model. The consensus in analytical model and empirical results
demonstrates the efficacy of ARMCI-Gemini.

E. Discussion

An important observation is that the overhead of ARMCI
library is negligible. Hence, the ARMCI-Gemini is used as
an intermediate substrate between Global Arrays and DMAPP
layer. An advantage of this approach is that the Global Arrays
layer remains same between different implementations.

Another observation is that the performance of Global
Arrays based applications is not compared against equiva-
lent MPI based applications in this paper. This is primarily
because MPI based codes typically use a static partitioning
based algorithm with two sided implementations. GA based
applications are more appropriate for algorithms, where the
algorithms does not have a regular communication patterns. A
comparison of these implementations typically leads to incor-
rect conclusions, because the programming models facilitate
different algorithms.

V. RELATED WORK

Designing scalable communication subsystems has been of
interest to many research groups with primary focus on two-
sided communication with MPI [1], [2].

Multiple studies have been undertaken on designing scal-
able communication subsystems on Cray Gemini Intercon-
nect. Scalable message passing for Cray Gemini Interconnect
has been proposed [19]. A similar study for Charm++ has
been undertaken [20]. However, these studies have focused
on message passing using uGNI, while ARMCI-Gemini is
specifically designed and implemented for PGAS models.
GASNet, the communication subsystem for Berkeley UPC has
a beta-version of uGNI implementation at the point of final
version of the paper. Hence, a comparison with GASNet is
not undertaken in this paper.

Scalable MPI design on InfiniBand has been addressed by
OpenMPI and MVAPICH/MVAPICH2 with salient features
such as RDMA, Shared Receive Queue (SRQ), Xtended
Reliable Connection, Fault tolerance with Automatic Path
Migration (APM) and multi-rail systems [21], [22], [23], [24],
[25]. Efforts for scalable MPI design in other Interconnects
such as Quadrics, Myrinet, High Performance Switch have
also been performed [26], [27], [28]. However, none of the
efforts above address the one-sided communication aspects,
which are addressed in this article.

A significant body of research has focused on performance
evaluation at the user-access layer for Cray Gemini Intercon-
nect [11], [13]. However, the efforts are for understanding
the communication performance of user-access layers, and

not designing a communication subsystem. The proposed
framework in this paper uses these studies to design scalable
communication protocols for ARMCI.

VI. CONCLUSIONS AND FUTURE WORK

The major contributions of the paper are:
• A detailed discussion on Cray Gemini userspace libraries

and applicability of these libraries for PGAS models. The
paper presents a performance and productivity argument
in using the userspace libraries.

• An exploration of solution space using Distributed Shared
Memory Application (DMAPP) interface is undertaken
and design is proposed for native one-sided communica-
tion runtime system using ARMCI (The proposed design
is referred as ARMCI-Gemini). The communication pro-
tocols which leverage the network concurrency and com-
munication/computation overlap protocol for accumulate
operations are presented. The time-space complexities
of communication protocols for contiguous, uniformly
non-contiguous datatype communication, atomic memory
operations and memory synchronization are analyzed.

• The proposed design (ARMCI-Gemini) is implemented
and the performance is evaluated by using up to 8192
processes. The efficacy of ARMCI-Gemini is demon-
strated using communication primitives (contiguous, non-
contiguous, atomic memory operations), communication
benchmarks (shift, transpose), application kernels (LU,
Lennard Jones simulation) and an application (Smooth
Particle Hydrodynamics). The proposed approach can
achieve a get latency of 1.3 µs and a peak bandwidth
of 6 GB/s, incurring negligible overhead on DMAPP
userspace library.

The performance of ARMCI-Gemini on larger scale for
understanding the fault tolerance and energy efficiency aspects
of our design is an ongoing part of our research. We are
working closely with Cray to leverage this study for their
future generation of network architectures. We plan to release
the proposed implementation for use by the open source
community in future releases of ARMCI.
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