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Abstract—The Cray Gemini Interconnect has been recently
introduced as the next generation network for building scalable
multi-petascale supercomputers. The Cray XE6 systems, which
use the Gemini Interconnect are becoming available with Message
Passing Interface (MPI) and Partitioned Global Address Space
(PGAS) Models such as as Global Arrays, Unified Parallel C, Co-
Array Fortran and Cascade High Performance Language. These
PGAS models use one-sided communication runtime systems such
as MPI-Remote Memory Access, Aggregate Remote Memory
Copy Interface and proprietary communication runtime systems.
The primary objective of our work is to study the potential
of Cray Gemini Interconnect by designing application specific
micro-benchmarks using the DMAPP userspace library. We
design micro-benchmarks to study the performance of sim-
ple communication primitives and application specific micro-
benchmarks to understand the behavior of Gemini Interconnect
at scale. In our experiments, the Gemini Interconnect can achieve
a peak bandwidth of 6911 MB/s and a latency of 1µs for get
communication primitive. Scalability tests for atomic memory
operations and shift communication operation up to 65536
processes show the efficacy of the Gemini Interconnect.

I. INTRODUCTION

The Cray Gemini Interconnect [1] has been recently pro-
posed to be the next generation Interconnect for designing
scalable multi-petascale systems. The Gemini Interconnect is
the primary architectural difference between the Cray XE6
systems and the previous-generation XT-based supercomput-
ers, which use the SeaStar Interconnect [2]. Cray Gemini is
a custom system-on-a-chip architecture ASIC which has a 3D
Torus Interconnect, and connects to its six nearest neighbours.

Message Passing Interface (MPI) [3], [4], the de facto
model for writing parallel applications has become available
on the Cray XE6 systems. Partitioned Global Address Space
(PGAS) Models such as Global Arrays [5], Unified Parallel
C (UPC) [6], Co-Array Fortran [7] and Cascade High Per-
formance Language (Chapel) [8] have also become available.
These PGAS models use one-sided communication runtime
systems, such as MPI-Remote Memory Access (RMA) [4],
Aggregate Remote Memory Copy Interface (ARMCI) [9] and
proprietary one-sided communication runtime systems.

The primary objective of our work is to design micro-
benchmarks motivated from application case studies using

the Cray DMAPP [10] userspace library. We specifically de-
sign the communication micro-benchmarks for PGAS models
and one-sided communication runtime systems. The intended
outcome of this study is to provide designers of one-sided
communication runtime systems with an in-depth performance
analysis of performance parameters of the Cray Gemini In-
terconnect. Our study includes designing micro-benchmarks
for simple one-sided communication primitives (put, get, and
atomic memory operations (AMOs)) with various inter-process
configurations, handling contiguous and non-contiguous data-
types, simultaneous request of message transfers, scalability
analysis of atomic memory operations for dynamic load bal-
ancing and shift communication operation with different rout-
ing options. In our experiments, the Cray Gemini Interconnect
can achieve a peak bandwidth of 6911 MB/s and a latency
of 1µs for get communication primitive. Scalability tests on
atomic memory operations and shift communication operation
up to 65536 processes show the efficacy of the Cray Gemini
Interconnect. We plan to release the tests in the near future,
which may be extended to study the use-cases not studied in
this paper. They may also be used for making design choices
with PGAS applications and communication runtime systems.

The rest of the paper is organized as follows. In section II,
we present the related work. In section III, we present an in-
depth performance of Cray Gemini Interconnect with commu-
nication primitives. We conclude and present future directions
in section V.

II. RELATED WORK

Performance analysis of high-speed Interconnects has been
widely studied by researchers in the last couple of decades.
Liu et al. performed the comparison of InfiniBand [11],
Myrinet [12] and Quadrics [13] using micro-benchmarks [14].
Liu concluded that InfiniBand outperforms Myrinet and
Quadrics for simple micro-benchmarks. However, the perfor-
mance comparison does not show a significant performance
improvement on NAS Parallel Benchmarks [15]. Govindaraju
et al. presented design of IBM High Performance Switch
(HPS) Interconnect and performance evaluation using simple
micro-benchmarks [16], [17]. IBM HPS provides Remote



Direct Memory Access (RDMA) capability on connectionless
transport semantics. Petrini et al. presented an evaluation of
Quadrics Interconnect using simple user-level access bench-
marks [13]. The article presents an in-depth performance
analysis of leveraging offloaded collective communication
capabilities provided by Quadrics Interconnect. Leveraging the
communication and scalability primitives provided InfiniBand,
Panda et al. have presented design of Message Passing Inter-
face (MPI) using InfiniBand DDR Interconnect, InfiniBand
QDR Interconnect and Offloaded collective communication
primitives using InfiniBand QDR Interconnect [18], [19], [20].

Alverson et al. have studied the performance of the Cray
Gemini Interconnect with simple micro-benchmarks [1]. The
above work provides an in-depth micro-architecture of the
Gemini System Interconnect, with initial performance evalua-
tion. The objective of our work is to analyze the performance
of Cray Gemini Interconnect in much more detail at the
userspace level with primary focus on PGAS programming
models and associated communication runtime systems.

III. PERFORMANCE EVALUATION

In this section, we present performance evaluation of
the Cray Gemini Interconnect using micro-benchmarks. The
micro-benchmarks evaluate the performance of simple primi-
tives such as put, get, and atomic memory operations (AMOs).
Using dynamic load balancing counters as a use-case, we
study the scalable performance of AMOs. We also study
the performance of non-contiguous datatypes supported by
Distributed Memory Applications (DMAPP) [10]. Lastly, the
performance of shift communication pattern is studied, com-
paring the performance of routing options provided by the
Cray Gemini Interconnect. We begin with a description of our
Experimental Testbed.

A. Experimental Testbed

We use the NERSC Hopper Phase II system [21] for
performance evaluation. The Hopper Phase II system is a
Cray XE6 system, which has 6384 nodes with two twelve-
core AMD Magny-Cours 2.1 GHz processors per node. Each
node has 24 cores providing a total of 153,216 cores in the
NERSC Hopper Phase II system. A total memory of 32 GB
DDR3 1333 MHz is available per node. Each AMD core
has an independent L1 and L2 cache of sizes 64KB and
512 KB, respectively. A 6MB L3 shared cache connects six
magny-cours processors. The Hopper Phase II system provides
a peak performance of 1.28 PF/s. Figure 1 shows a block
diagram of the AMD Magny-Cours processor in Hopper Phase
II supercomputer.

The Cray Gemini Interconnect is the most significant dif-
ference in Cray XE6 systems in comparison to the previous
generation Cray XT systems. A block diagram of Cray Gemini
ASIC is shown in Figure 2. Each Gemini ASIC has two
Network Interface Cards (NICs), and a 48-port YARC router.
The NICs within an ASIC are connected to a Netlink block,
which provides internal routing between the NICs. A total of
eight links connect a Netlink block to a router. Each Gemini

Fig. 1. Block Diagram of AMD Magny-Cours Processor [21]

Fig. 2. Block Diagram of Gemini ASIC [21]

ASIC is connected to other ASICs using a 3D Torus topology.
A total of eight links each are used to connect in the ’x’ and ’z’
dimensions, and four links are used in the ’y’ dimension [1].

The Cray Gemini Interconnect supports multiple routing
options. Each routing algorithm is dimension-order, but pro-
vides different flexbility in using the links in each dimension.
The adaptive dimension-order routing allows the packets to be
scheduled on lightly loaded links adaptively [1], while hash
deterministic routing provides lesser flexibility. (More details
on the exact routing algorithm for hash-deterministic are not
publically available).

B. Evaluation Methodology

We evalute the one-sided communication primitives (put,
get, atomic memory operations) for multiple configurations:

• Intra-NIC: The communicating processes are scheduled
on the same socket and communicate using the same NIC.

• Inter-NIC, Intra-Gemini ASIC: The processes are sched-
uled on nodes sharing the same Gemini ASIC.

• Inter-ASIC: The processes are scheduled on nodes at-
tached to different ASICs.

The Intra-NIC configuration has other possible combina-
tions, such as processes scheduled on different sockets. How-
ever, a communication runtime system is expected to use
load/stores and/or shared memory based based communication
for processes scheduled on the same node, whenever possible.
The intra-NIC configuration is primarily for pedantic purposes.
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Fig. 5. Put Latency
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Fig. 6. Put Bandwidth with Different Configurations

With Inter-ASIC configuration, other factors may impact the
overall performance, including the hop-distance and dimen-
sion(s). For each of the tests involving exactly two nodes, we
ensure that the processes are scheduled in either the ’x’ or ’z’
dimension with a distance of one-hop. For each of the tests,
we use a relaxed ordering protocol for HyperTransport and
adaptive routing for Inter-ASIC communication, unless spec-
ified otherwise. The DMAPP [10] layer ensures the location
consistency even for relaxed ordering protocol, ruling out the
possibility of getting a stale data for a get operation, which
immediately follows a put to the same memory region.

C. Performance Evaluation of Simple Primitives

In this section, we present a performance evaluation of
Cray Gemini Interconnect by designing micro-benchmarks
of simple primitives. We use Distributed Memory Applica-
tions (DMAPP) [10] interface for designing these micro-
benchmarks. DMAPP is not intended for end applications, but
for designing one-sided communication runtime systems.

1) Memory Allocation and Registration: The Gemini In-
terconnect supports symmetric memory allocation through the
DMAPP Interface [10]. This precludes a need for on-the-
fly registration and address exchange for the distributed data

structures of PGAS models such as GA, UPC and CAF. The
local buffers for communication may not be allocated using
a symmetric heap and may require on-the-fly registration.
Figures 3 and 4 show the cost of on-the-fly registration for
pagesizes of 4Kbytes and 2Mbytes, respectively. The regis-
tration cost increases linearly for each of the pagesizes. For
buffers of size greater than 2Mbytes, the cost of registration
for 2Mbytes pagesize is 3.8 times faster than the 4Kbytes page
size. However, the cost of deregistration is more than the cost
of registration. These costs of registration and de-registrations
are an important factor in deciding the optimal pagesize, and
total size of local buffers to be registered, since the cost of
on-the-fly deregistration is expensive. To limit the registration
overhead which an application would otherwise incur as the
result of on-the fly memory registration, DMAPP implements
an internal memory registration cache. For achieving best per-
formance, PGAS runtime systems should avoid small dynamic
memory registrations in favor for larger ones.

2) Put Communication Primitive : Figure 5 shows the
latency of put communication primitive with three different
configurations. For Inter-NIC configurations, a latency of .9µs
is observed. The DMAPP blocking interface provides location
consistency - a return from a blocking interface (put, get,
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Fig. 9. Get Latency with Different Datatypes, Inter-Gemini ASIC
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Fig. 10. Get Bandwith with Different Datatypes, Inter-Gemini ASIC

AMOs) indicates that source buffer is reusable and the result
of the operation is globally visible. The Intra-NIC latency is
.72µs.

Figure 6 shows the bandwidth achieved by the put commu-
nication primitive. The test is designed to run several hundred
iterations with exactly one outstanding put from a source to a
target. The Inter-NIC configurations achieve a peak bandwidth
of 6681 MB/s. The Intra-NIC configuration achieves 4758
MB/s. The Intra-NIC performance is limited by the achievable
bandwidth from HyperTransport, since the DMA engine has to
read from memory and write to the memory on the same link
simultaneously. DMAPP [10] provides a tunable threshold for
using Programmed I/O (PIO) and DMA. In our experiments,
the messages greater than the size of 2Kbytes use DMA, which
results in a slight performance drop, as observed from the
Figure 6.

Figure 7 shows the aggregate bandwidth of Inter-ASIC
communication using the put primitive with 6, 12 and 24
processes per node (PPN). In every iteration of the test, each
process on one node performs a put operation on the memory
of the symmetric process on other node. The Inter-ASIC con-
figuration is used for performance evaluation. Simultaneous
communication is frequently observed with applications such

as STOMP [22] and NWChem [23], which use PGAS models,
in addition to the legacy MPI applications. The small messages
- bounded by the injection rate, show the best performance
with 12 and 24 PPN. For large message sizes, a significant
contention is observed for 12 and 24 PPN, while 6 PPN
achieves a peak aggregate bandwidth of 6675 MB/s.

3) Get Communication Primitive: Figure 8 shows the la-
tency of the get primitive with different configurations. A
latency of 1.24µs is observed for Inter-ASIC configuration.
The other configurations show a latency of 1µs. Completion
semantics of blocking get primitive follow location consis-
tency, as discussed in the previous section.

Figure 9 shows the latency of a blocking get operation
for different datatypes in the Inter-ASIC configuration. Per-
formance of double-word (4 bytes), quad-word (8 bytes) and
double quad-word (16 bytes) is identical and almost constant
at 1.2µs for up to 512 bytes. The performance of datatype byte
is considerably worse. Cray Gemini Interconnect requires that
local and remote addresses and length of PIO get must be at
least double-word aligned. The DMAPP API however supports
get with byte granularity and must use a properly aligned
temporary buffer to work around the hardware restriction,
which leads to poor performance for byte-aligned data transfer.
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Fig. 14. Strided Bandwidth Performance

For double-word, quad-word and double-word-alignment, the
peak bandwidth achieved is 6919 MB/s, as shown in the
Figure 10.

Figure 11 shows the bandwidth of get communication
primitive with different configurations. For large messages, we
observe similar trends as the put communication primitive. The
Intra-NIC configuration achieves a peak bandwidth of 5215
MB/s, due the simultaneous use of bi-directional HyperTrans-
port. The Inter-NIC configurations achieve a peak bandwidth
of 6893 MB/s.

4) Atomic Memory Operations: Figures 12 and 13 show
the performance of the atomic memory operations (AMOs)
with different configurations. Cray Gemini supports quad-
word atomic operations only. The AMOs which do not return
the original value (ADD, AND, OR and XOR) have a latency
of 1.24µs for Inter-NIC, Inter-ASIC configuration. The atomic
operations which return the original value (FAND, FADD,
FXOR, FCOMPSWP) have a latency of 1.25µs for Inter-NIC,
Inter-ASIC configuration. The AMOs are non-coherent with
the HyperTransport(s) which connect the individual Magny-
Cours sockets.

D. Emulating Application Specific Communication Pattern
Microbenchmarks

In this section, we design micro-benchmarks to emulate
the communication patterns incurred by scientific applica-
tions. These micro-benchmarks study the performance of
uniformly non-contiguous (strided) operations used by ap-
plications in computational chemistry [23], and sub-surface
modeling [22]. A micro-benchmark to design accumulate
operation using AMOs is also presented, which emulates
the native implementation of accumulate operation with help
from the asynchronous agent . To study the scalability of
the Gemini interconnect, we design two micro-benchmarks
motivated from application domains - use of AMOs for
dynamic load balancing counters [23] and study the impact
of routing options in the Cray Gemini Interconnect for shift
communication pattern. The shift communication operation
is frequently observed in many PGAS and MPI applications
in forms of collective communication primitives and kernels
including Fourier Transform.

Figures 14 and 15 show the bandwidth and latency observed
for two processes with Inter-ASIC configuration. For the test,
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a stride of 128 bytes was used and the contiguous data
size was increased, as shown on the horizontal axis. Strided
communication is heavily used by NWChem [23], where a
block of data in multi-dimensional global address space is
requested from a task [5]. To optimize the performance of
this datatype, typically a copy-based protocol with is used with
help from a remote asynchronous progress agent [9]. While
Gemini provides support for native strided communication, the
observed bandwidth is much lower than the peak bandwidth
observed with contiguous datatypes in the previous section.
The peak bandwidth observed is 312 MB/s for get communica-
tion primitive, and 420 MB/s for put communication primitive.

Figure 16 shows the latency of an accumulate operation for
contiguous data designed using AMOs (ADD). The accumu-
late operation is designed using non-blocking ADD AMOs.
We compare the performance to contiguous and strided put
with the performance of accumulate operation. For one-sided
communication runtime systems like ARMCI [9], the accu-
mulate operation is implemented using a remote asynchronous
agent. The latency of an accumulate operation for contiguous
data is bounded from below by the performance of the con-
tiguous put communication primitive. We observe that for up
to 128bytes, the latency of contiguous put and an accumulate

operation using AMOs is similar. With increasing message
size, the latency of non-blocking AMO ADD increases signif-
icantly, while the of contiguous put increases slightly.

Figure 17 shows the performance of atomic FADD with
increasing number of processes. The test is designed to study
the efficacy of Cray Gemini Interconnect AMOs for a use-case
of dynamic load balancing counter. The hardware atomics are
cached on the Gemini NIC (non-coherent with the system bus),
resulting in excellent scalable performance. For applications
in computational chemistry [23], the excellent scalability of
atomic operations is critical. The startup and completion
phases of dynamic load balancing can be effectively imple-
mented with hardware AMOs in Gemini.

Figure 18 shows the performance evaluation of the shift-
communication pattern benchmark using up to 65536 pro-
cesses [24]. The shift-communication benchamrk is a rep-
resentative of many collective communication operations in
MPI [3], [4]. The shift communication pattern is also used to
design transpose operation in PGAS models such as UPC [6]
and GA [5]. The Gemini Interconnect supports multiple rout-
ing algorithms, including hash-deterministic, and adaptive.
The Gemini Interconnect uses dimension-order routing for
hash-deterministic and adaptive routes, but provides complete



flexibility in using multiple links within each dimension for
adaptive routing. The routing algorithm is not fully adaptive,
but provides better utilization of the lightly loaded links [1].
We observe that the adaptive routing outperforms the hash-
deterministic routing by 12% for 32768 and 65536 processes,
respectively. A super-linear increase in latency is observed
from 16384 to 32768 processes, since the number of ’y’ links
used in the shift communication increase significantly. The ’y’
links support only half the peak bandwidth of ’x’ and ’z’ links,
resulting in super-linear latency increase.
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V. CONCLUSIONS AND FUTURE WORK

The primary objective of our work is to design micro-
benchmarks motivated from application case studies using the
Cray DMAPP [10] userspace library specifically designed for
PGAS models and one-sided communication runtime systems.
The intended outcome of this study is to provide designers of
one-sided communication runtime systems with an in-depth
performance analysis of performance parameters with the Cray
Gemini Interconnect. To meet this objective, our study in-
cludes designing micro-benchmarks for one-sided communica-
tion primitives (put, get, and atomic memory operations) with
various inter-process configurations, handling contiguous and
non-contiguous data-types, simultaneous request of message
transfers, scalability analysis of atomic memory operations for
dynamic load balancing and shift communication operation
with different routing options. The Gemini Interconnect can
achieve a peak bandwidth of 6911 MB/s and a latency of
1µs for get communication primitive. Scalability tests for
atomic memory operations and shift communication operation
up to 65536 processes shows the efficacy of the Cray Gemini
Interconnect.

We plan to use this study to design efficient communication
protocols for one-sided communication runtime systems such
as ARMCI [9] and MPI-RMA [4]. We also plan to study the
performance of these communication runtime systems with
applications in computational chemistry [23] and sub-surface
modeling [22].
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