
Noname manuscript No.
(will be inserted by the editor)

Designing Energy Efficient Communication Runtime Systems: A View from PGAS
Models

Abhinav Vishnu1 · Shuaiwen Song2 · Andres Marquez1 · Kevin
Barker1 · Darren Kerbyson1 · Kirk Cameron2 · Pavan Balaji3

Abstract As the march to the exascale computing gains momentum, energy consumption of supercomputers has emerged
to be the critical roadblock. While architectural innovations are imperative in achieving computing of this scale, it is largely
dependent on the systems software to leverage the architectural innovations. Parallel applications in many computationally
intensive domains have been designed to leverage these supercomputers, with legacy two-sided communication semantics
using Message Passing Interface. At the same time, Partitioned Global Address Space Models are being designed which
provide global address space abstractions and one-sided communication for exploiting data locality and communication
optimizations. PGAS models rely on one-sided communication runtime systems for leveraging high-speed networks to
achieve best possible performance.

In this paper, we present a design for Power Aware One-Sided Communication Llibrary - PASCoL. The proposed design
detects communication slack, leverages Dynamic Voltage and Frequency Scaling (DVFS) and Interrupt driven execution to
exploit the detected slack for energy efficiency. We implement our design and evaluate it using synthetic benchmarks for one-
sided communication primitives, Put, Get and Accumulate and uniformly non-contiguous data transfers. Our performance
evaluation indicates that we can achieve significant reduction in energy consumption without performance loss on multiple
one-sided communication primitives. The achieved results are close to the theoretical peak available with the experimental
test bed.

1 Introduction

As we move forward to the next step of exascale computing, energy consumption of systems is expected to be a significant
hindrance in naively increasing the computational power by three orders of magnitude from current petascale systems.
For example, the U.S. Department of Energy estimates that in order to be able to sustain an exaflop machine, its power
consumption cannot be more than ten-fold that of current petaflop machines [1]. That is, we need to achieve a thousand-fold
increase in performance, while allowing the power consumption to increase by only ten-fold, and hence energy efficiency
must improve by hundred-fold.

Parallel applications in a wide range of scientific domains are being designed to use the proposed exascale systems. Message
Passing Interface [2], [3] has become the de facto standard for writing these applications. However, several of these scientific
domains are a natural fit for Partitioned Global Address Space (PGAS) models [4–7]. These models provide abstractions
for distributed data structures (Arrays, Trees etc) and primitives for one-sided data transfer to provide load balancing with
different execution paradigms. PGAS models use one-sided communication runtime systems to achieve scalability and high
performance, while providing abstractions from variability of networks.

As the runtime systems continue to evolve, many architectural innovations for energy efficient computing are being proposed
in the literature and becoming available with commodity architectures. User-space abstractions such as Dynamic Voltage
and Frequency Scaling (DVFS) have become available, which allow a user process to dynamically change the frequency and

This work was supported in part by the National Science Foundation Grant #0702182 and by Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

1 High Performance Computing Group, Pacific Northwest National Lab
E-mail: {abhinav.vishnu, andres.marquez, kevin.barker, darren.kerbyson}@pnl.gov
2 Scalable Computing Lab, Virginia Polytechnic Institute E-mail: {s562673, cameron}@cs.vt.edu
3Mathematics and Computer Science Division, Argonne National Laboratory E-mail: balaji@mcs.anl.gov



voltage of processing elements. High-speed networks such as InfiniBand [8], BlueGene [9], Quadrics [10] provide methods
for interrupt based notification of data transfer - a powerful mechanism which may be used to exploit communication slack.

In this paper, we design a Power Aware One-Sided Communication Library (PASCoL) using Aggregate Remote Mem-
ory Copy Interface (ARMCI) [11], which leverages the architectural and network abstractions to exploit the communication
slack and achieve energy efficiency. We lay down the design issues of various one-sided communication primitives and asso-
ciated communication protocols for different datatypes, specifically focusing on contiguous and uniformly non-contiguous
datatypes as a use case from many scientific applications. We implement our design and evaluate it using synthetic bench-
marks on an InfiniBand Cluster. Our performance evaluation with benchmarks using various one-sided communication
primitives shows that we can achieve significant energy efficiency with negligible performance degradation. The observed
energy efficiency is close to the theoretical peak provided by the experimental test bed.

The rest of the article is organized as follows. In section 2, we present the background of our work. In section 3, we
present the design of energy efficient communication runtime system - PASCoL using ARMCI. In section 4, we present the
performance evaluation of PASCoL using synthetic benchmarks on an InfiniBand cluster. We present the related work in
section 5. We conclude and present our future directions in section 6.

2 Background

2.1 One-sided Communication Runtime Systems

Many one-sided communication runtime systems have emerged to serve the requirements of programming models. MPI-
Remote Memory Access, Global Address Space Network (GASNet) [4], Aggregate Remote Memory Copy Interface
(ARMCI) [11], Low Level API (LAPI) [12], and Deep Computing Messaging Framework (DCMF) [13], are examples of
one-sided communication runtime systems, which provide put, get and accumulate communication primitives. We specifi-
cally focus on ARMCI [11] in this paper.

The ARMCI [11] communication runtime system provides a general-purpose, efficient, and widely portable one-sided com-
munication operations optimized for contiguous and non-contiguous (strided, scatter/gather, I/O vector) data transfers. In
addition, ARMCI includes a set of atomic and mutual exclusion operations. ARMCI exploits native network communication
interfaces and system resources (such as shared memory) to achieve the best possible performance of the remote memory
access/one-sided communication. Optimized implementations of ARMCI are available for the Cray Portals, Myrinet (GM
and MX) [14], Quadrics [10], Giganet (VIA) and InfiniBand (using OpenFabrics and Mellanox Verbs API) [8,15–18]. It is
also available for leadership class machines including Cray XT4, XT5, XE6 and BlueGene/P [13].

Client Process

Node BNode A

Data Server Master Process

Fig. 1 Communication Structure in ARMCI

Figure 1 shows the communication structure in ARMCI. The terminology between processes on the same node is differen-
tiated to facilitate the implementation of one-sided communication primitives. The process with lowest rank on a node is
called master and the rest of the processes on the node are called clients. The master process creates a thread, data server,
which is used as an agent for remote asynchronous progress.

2



A request for global memory allocation is served by a shared memory segment visible to all processes on a node. One-sided
communication occurs only between global address space data, precluding the requirement of client-client communication.
The data server is used in designing protocols which may be efficiently implemented using copy based approach. Efficient
protocols which require bulk atomic updates (such as accumulates) may also be designed using the data server. Depending
on the workload, the network and the communication protocol, the data server may or may not need to be active all the time.

2.2 Overview of Power Conservation Approaches For High Performance Systems

Multiple researchers are exploring smart utilization of power and energy for large scale high performance clusters with
parallel applications. Some researchers have applied power efficient strategies at the architectural level to the supercomputer.
IBM Blue Gene series [19] and Green Destiny [20] use low frequency processors to build energy efficient systems. However,
this approach requires a large amount of low power processors to achieve better energy consumption (As an example,
Blue Gene/P consists of 73,728 quad core processors and consumes 2.3 MW of power [19]). For higher energy efficiency,
Power Modes [21] techniques using integrated power-aware components have been provided for fine-grained control of high
performance systems, these include low-power settings for network cards, spinning down disk drives when they are not in
use, making systems sleep or remotely shut down components by smart external power devices like PDUs, etc. The challenge
is to balance performance decreases and various low-power operations. While we explore power reduction approaches, high
performance is of utmost priority to the HPC community, and we design PASCoL to minimize the performance penalty,
while maximizing the energy efficiency.

Using software to dynamically control the power states of system level components has become one of the most popular
techniques for power-aware computing. Dynamic voltage/frequency scaling (DVFS) is being widely used for reducing
system power consumption during specific phases of parallel applications. Studies like [22–26] have applied DVFS to
reduce CPU power consumption and discussed the tradeoffs between performance and energy efficiency. At node level,
DVFS enables several levels (P-states) of frequencies that can be switched during runtime. Low and high power states are
corresponding to low and high CPU performance utilization.

However, most of these studies have focused on achieving energy efficiency for two-sided communication. One-sided com-
munication exhibits different properties and requires an asynchronous agent for communication. PASCoL, the focus of our
work relies on uniformly non-contiguous communication with support from asynchronous agent heavily for progress. PAS-
CoL combines DVFS methodology and interrupt driven execution to achieve energy efficiency for one-sided communication
primitives.

3 Overall Design of An Energy Efficient Communication Runtime System

In this section, we present the overall design of an energy efficient one-sided communication runtime system. We explore the
alternatives for energy efficiency - DVFS and Interrupt driven execution and use them to design energy efficient protocols
for one-sided communication primitives.

3.1 Mechanisms for Energy Efficiency

There are multiple mechanisms available for designing energy efficient one-sided communication protocols which are com-
plementary. A combination of these protocols may be used as follows:

– Interrupt based execution allows multiple stages of communication protocols to transition using event driven mecha-
nisms. As an alternative to polling - typically used in high performance computing applications, this method allows
much lower CPU utilization to save energy, particularly if enough communication slack is available to be exploited.

– DVFS can improve energy efficiency by reducing the frequency and voltage of processors, typically on a per-core basis
(frequency) and on a per-socket basis (voltage). Different communication protocols require varying CPU utilization

3



during different phases. Energy efficiency can be achieved using DVFS, if the communication slack is much higher than
the overhead of transitioning between frequency/voltage states.

Interrupt 

DVFS scaling 

Energy Saving & 

increased time 

Get Data 

Polling 

Default 

Get Data 

DVFS 
No Yes 

Get Data 

Interrupt 

Get Data 

Fig. 2 Mechanisms for Energy Optimizations

The use of interrupt based execution and DVFS is shown in Figure 2 using an example of a one-sided get operation. After
the operation is executed, the data becomes available at a later point as shown on the time-line. The default case uses neither
the interrupt nor DVFS mechanisms. Polling in this case is indicated by regular activities along the time-line between the get
primitive and arrival of data (upper-left in the figure). Combining DVFS and polling (upper-right), the frequency of polling
is reduced due to reduced processor frequency but at an expense of transitions between DVFS states. Polling is completely
reduced by using interrupts but can increase in latency results due to interrupt handling.

Keeping the mechanisms discussed above in mind, we design and implement an energy efficient one-sided communication
runtime system. While our framework allows full DVFS scaling due to the limitations of our experimental setup, we are
able to use frequency scaling only.

3.2 Energy Efficient Communication Protocols for One-sided Communication

In this section, we discuss the energy efficient communication protocols for one-sided communication primitives. The
protocols are classified using datatypes - contiguous and non-contiguous.

3.3 Energy Efficient Protocols for Contiguous Data Transfer

One-sided communication of contiguous data transfer is the primary case for using the Remote Direct Memory Access
(RDMA) mechanism provided by most Interconnects such as InfiniBand [8], Quadrics [10], BlueGene [?], Cray Gemini.
RDMA mechanism requires the source and target buffer to be registered for most networks.

Let source and target represent the source and the target buffers respectively used for the one-sided communication primi-
tive. Let registered be the function which checks whether a buffer has been registered. The following algorithm is executed
at the client process:

if registered(source) && registered(target) then
Use RDMAmethod

else
Copy Data in Intermediate Tranmission Buffer

Send Data

end if

When the source and target buffers are registered, the overall communication slack is entirely the network data transfer. A
combination of Interrupt based execution and DVFS is used depending on the expected communication slack. Section 4
helps us define the thresholds for using these mechanisms.

4



In the above algorithm, if either of the source or the target buffer is not registered, a copy-based communication protocol is
used. Since data copy is compute intensive, the DVFS mechanism is used after the copy operation is complete. The interrupt
driven execution is used after the data transfer request is completed.

3.4 Handling Non-Contiguous Data Transfer

Handling non-contiguous data types for energy efficiency is of critical importance to many application domains. Some of
these domains use distributed arrays and perform communication on cartesian blocks of data . This results in uniformly
non-contiguous (strided) data transfer. Energy efficient communication protocols for strided data transfer is pivotal for these
applications.

Many communication protocols have been proposed for handling strided data communication. Some high-speed networks
support strided communication natively by using scatter/gather mechanisms [8]. However, these mechanisms result in high
context memory utilization. Networks which provide high concurrency may also use pipelined data transfer. However, when
individual data size is small, such a protocol results in significant overhead.

Let flatten be a utility which converts a strided data to a contiguous data by copying it in Intermediate Transmission Buffers.
A simplified protocol which is applicable to a wide variety of strided communication primitives is presented below:

Flatten the strided buffer

Copy Data in Intermediate Tranmission Buffer

Send Data

The algorithm for flattening the strided buffer is a recursive operation, resulting in pipelined data transfer. The interrupt
driven execution may be used in conjunctin with DVFS if the pipelined buffer size is above a particular threshold to exploit
communication slack.

3.5 Energy Efficient Asynchronous Agent

To provide asynchronous progress of one-sided communication operations on remote node(s), each node uses an asyn-
chronous agent, such as the data server thread in ARMCI [11]. The asynchronous agent is not involved when RDMA is
used for data transfer between user-level buffers. The asynchronous agent is active when a copy based protocol is used for
data transfer. Hence, the agent may be active only during these phases of communication. In the PASCoL design, we use
a combination of interrupt driven execution and DVFS for the asynchronous agent. The frequency is scaled up after an
interrupt has been received and scaled down just before blocking on the interrupt based execution.

3.6 Discussion

In this section, we discuss the issues currently not considered in PASCoL. We specifically focus on atomic memory opera-
tions and synchronization methods:

Atomic Memory Operations: Atomic memory operations are widely used in many applications for load balancing, en-
abling passive synchronization etc. In PASCoL, we have not considered optimizing atomic operations except accumulate
operations, which are typically performed on a large data block. Word-based atomic operations are latency sensitive and
using DVFS/interrupt based execution may result in significant overhead. We plan to address this limitation in the future
that may provide guidelines for leveraging the interrupt based execution with DVFS.

Synchronization Methods: One-sided communication runtime systems provide active and passive modes of synchroniza-
tion. With active synchronization, origin and target processes are involved in the synchronization. With passive synchro-
nization, only the origin process is involved. ARMCI supports only active mode of synchronization. The synchronization
operation may be optimized by possibly time-stamping the outstanding requests, providing an estimate of the communica-
tion slack. Interrupt based execution with DVFS may be used if the expected communication slack is above a threshold.
Currently, PASCoL does not handle energy efficient synchronization. We plan to address this limitation in the near future.

5



4 Power And Performance Evaluation of PASCoL

In this section, we present a performance evaluation of PASCoL using synthetic benchmarks designed with ARMCI commu-
nication primitives. For one-sided communication primitives - put, get, accumulate, and put strided, we present the relative
latency, relative energy consumption per megabyte of transfer, and relative power consumption of a combination of DVFS
and Interrupt/polling methodologies. We begin with a description of Experimental Test bed.

4.1 Experimental Test bed

We use the Northwest ICE (NW-ICE) test bed at Pacific Northwest National Lab for power and performance evaluation.
The NW-ICE cluster has 192 compute nodes, inter-connected with DDR InfiniBand network adapters and switches. Each
NW-ICE node is an Intel Xeon E5345 dual socket quad core cpu with 2.33 GHz frequency. Each node has 16GBytes of main
memory with each core having a 32KB cache size. Using DVFS, NW-ICE allows frequencies of 2.33 GHz and 1.9 GHz.
By default all processes execute at 2.33 GHz frequency. The interface for changing the frequencies is through a memory
resident file system.

 

Fig. 3 Energy Smart Data Center Test Bed

4.1.1 ESDC Monitoring

Real-time data center energy efficiency depends on real-time data streaming from all the power consuming hardware in
a data center, as well as data acquisition and reduction software. PNNL has developed a real-time software tool, FRED
(Fundamental Research in Energy Efficient Data Centers), to monitor, analyze, and store data from the ESDC-TB facility
instrumentation. FREDs underlying technology is derived from PNNLs experience in developing power plant, distribution,
and facility monitoring and diagnostic systems for applications ranging from nuclear power generation to building manage-
ment. We use the real-time software tool of FRED to analyze the energy consumption for various synthetic benchmarks.

FRED consists of the ESDC-TB monitoring system, the Environmental and Molecular Science (EMSL) facility monitoring
system, a data collector, a central database, and a web-based graphical user interface (GUI) client. The ESDC-TB monitoring
system derives from PNNLs Decision Support for Operations and Maintenance (DSOM) software (R&D100Award), an
advanced, flexible diagnostic monitoring application for energy supply and demand systems. The ESDC-TB monitoring
system interfaces to auxiliary data acquisition systems that collect data specific to NW-ICE.

An example of NW-ICE in operation using FRED Architecture is shown in Figure 3. NW-ICE’s eight racks are shown,
A1-A4 and B1-B4. One of the racks, A2, contains an InfiniBand switch, while the other racks each contain 28 nodes. The

6



installation power used by each rack is shown by the rack number. Also shown in the Figure 3, and stored in the database
are rack temperatures on 3 nodes (front and back) in each rack, as well as cooling information.

4.2 Performance Evaluation Methodology

In this section, we present the performance methodology for evaluating the power and performance of PASCoL. We design
pure communication benchmarks using the one-sided communication primitives - put, get, accumulate and put strided.

To study the impact of approaches proposed in section 3, we design a shift communication pattern benchmark using each
of these communication primitives [27]. Unlike MPI based communication benchmark - which implicitly synchronizes
the communicating processes, the shift benchmark designed with one-sided communication primitives synchronizes the
memory associated with communication. The following algorithm presents an example of designing the shift benchmark
using put primitive:

start timer

for j = 0 to iterations do
for i = 0 to numprocs do
dest← myid+ i

put(data) to dest

fence to dest

end for
end for
end timer

Similarly, the shift benchmark is designed by replacing the corresponding put primitive with get, accumulate and put strided
primitives. A total of four combinations are used for comparison - polling, polling + DVFS, Interrupt and Interrupt + DVFS.
These combinations are used to compare the performance of evaluation metrics discussed below.

4.2.1 Evaluation Metrics

There are three evaluation metrics which are used for evaluation of PASCoL and comparing the performance of various
approaches presented above. The fundamental metric is the latency observed by each of the approaches. Another metric of
interest is the power consumption of the approaches. However, each of the above metrics may not be individually sufficient.
We propose a derived metric- Energy consumed relative to volume of data transfer (Energy/MByte). We specifically focus
on the thresholds beyond which the power and energy/mbyte may be improved without an increase in latency.

4.3 Results

In this section, we present the evaluation of PASCoL for each of the communication primitives using the metrics presented
above, while comparing the performance of the approaches - Polling, Polling + DVFS, Interrupt, Interrupt + DVFS. The
performance results are normalized with the polling approach - the default methodology for most one-sided communication
runtime systems.

Figures 4, 5 and 6 show the normalized latency, power consumption and Energy/Mbyte for the shift communication bench-
mark using the put one-sided primitive on 64 processes, respectively. The polling approach outperforms other approaches
for small and medium size messages, due to their sensitivity to latency and significant overhead of using the Interrupt and
DVFS mechanisms. We observe spikes for Interrupt and DVFS based approaches, due to the limitations of our current test
bed, as the sampling is available once every five seconds.

With increasing message size, the latency for multiple approaches converges significantly (less than 5% difference). At
16KBytes message size, we observe that the latency for all approaches (with a slight exception to Polling + DVFS), con-
verges. A similar trend is observed in the relative power consumption of these approaches. For messages at 256KBytes, the

7



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 L

a
te

n
c
y

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 4 ARMCI Put Performance, Latency

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 P

o
w

e
r 

C
o

n
s
u

m
p

ti
o

n

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 5 ARMCI Put Performance, Normalized
Power Consumption

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 E

n
e

rg
y
/M

B
y
te

s

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 6 ARMCI Put Performance, En-
ergy/MBytes

Interrupt + DVFS approach provides an improvement of 12% in power consumption in comparison to the polling approach.
Smaller improvements are also observed in the power consumption of other approaches.

At the same time, Energy/Mbyte consumption for the Interrupts + DVFS approach improves significantly compared to the
other approaches. Overall, we observe an improvement of 8% in the Energy/Mbytes using Interrupts with DVFS compared
to the default polling case, while an improvement of 5% is observed compared to the Interrupts scheme. For large messages,
the overhead incurred by interrupts is amortized by the overall time of data transfer. We observe that a threshold of 16KBytes
can be used for using Interrupts with DVFS without significant performance degradation.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 L

a
te

n
c
y

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 7 ARMCI Get Performance, Latency

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 P

o
w

e
r 

C
o

n
s
u

m
p

ti
o

n

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 8 ARMCI Get Performance, Normalized
Power Consumption

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 E

n
e

rg
y
/M

B
y
te

s

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 9 ARMCI Get Performance, En-
ergy/MBytes

Figures 7, 8 and 9 show the normalized latency, Power consumption and Energy/Mbyte for the shift communication bench-
mark using the get one-sided primitive on 64 processes, respectively. We observe the trends in the performance similar to the
shift communication benchmark designed using the put communication primitive. The polling approach outperforms other
approaches for all the evaluation metrics and small messages. The limitations of sampling rate produces spikes, which are
prominent for smaller messages and less for the larger messages. An improvement of about 11% is observed in the relative
power consumption by Interrupt + DVFS approach, while much lesser improvements are observed for Interrupt and DVFS
only approaches. The Interrupt approach produces an out-liar at 4KBytes message, which is still under observation. Similar
trends are observed for energy/mbytes metric, where interrupts + DVFS approach outperforms other approaches for larger
messages, but incurs significant overhead for small messages.

Figures 10, 11 and 12 show the normalized latency, Power consumption and Energy/Mbyte for the shift communication
benchmark using the accumulate one-sided primitive on 64 processes, respectively. The shift communication benchmarks
using put, and get primitives use RDMA and the associated communication protocol does not involve the asynchronous
agent. The accumulate one-sided communication primitive uses the pipelined data transfer, and involves the asynchronous
agent for remote progress.

As presented in the section 3, the pipelined communication protocol flattens the buffer and uses the copy based approach.
The copy phase and the atomic update phases of the protocol are CPU intensive. Hence, we do not use DVFS during this
phase. As a result, the overall improvement in relative power consumption and energy/mbyte is reduced in comparison to the

8



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 L

a
te

n
c
y

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 10 ARMCI Accumulate Performance, La-
tency

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 P

o
w

e
r 

C
o

n
s
u

m
p

ti
o

n

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 11 ARMCI Accumulate Performance, Nor-
malized Power Consumption

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 E

n
e

rg
y
/M

B
y
te

s

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 12 ARMCI Accumulate Performance, En-
ergy/MBytes

contiguous data transfer. The improvement in relative power consumption is 8%, while the improvement in Energy/Mbyte
is about 6%.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 L

a
te

n
c
y

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 13 ARMCI Put Strided Performance, La-
tency

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 P

o
w

e
r 

C
o

n
s
u

m
p

ti
o

n

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 14 ARMCI Put Strided Performance, Nor-
malized Power Consumption

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a

liz
e

d
 E

n
e

rg
y
/M

B
y
te

s

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 15 ARMCI Put Strided Performance, En-
ergy/MBytes

Figures 13, 14 and 15 show the normalized latency, Power consumption and Energy/Mbyte for the shift communication
benchmark using the put strided one-sided primitive on 64 processes, respectively. The strided communication primitives
use copy based approach for data transfer. Similar to the shift communication benchmark using accumulate primitive, the
relative latencies converge for messages beyond 32Kbytes and significant improvements in the relative power consumption
and energy/mbyte are also observed.

4.4 Discussion

As presented in the previous section, a combination of interrupt based execution and DVFS mechanisms provides the
maximum energy efficiency for large messages with each of the communication primitives. A summary of the results is
presented in the Table 16 for each of the put, get, accumulate and strided put primitives. In this table, we also indicate the
increase in latency resulting from the DVFS transitions and the interrupt handling, and also the overall decrease in energy
consumption. These metrics are presented relative to the default case of no DVFS and use of polling. Also listed in Table 16
is the message size at which increased energy efficiency is observed.

Primitive Min Message Size (KB) Increase in Latency (%) Decrease in Energy (%)
Get 32 5 6
Put 16 5 6

Accumulate 16 3 5
Strided Put 16 2 6

Fig. 16 Energy Efficiency Advantages For Different Communication Semantics

9



As we described in the previous section, the NW-ICE test bed used for the experimentation has its limitations. In partic-
ular there are only two processor-core frequency levels available - 1.9GHz and 2.33GHz. This limits the potential energy
efficiency that may be observed. Assuming that the processor core power consumption is directly proportional to the fre-
quency then the difference in these two states represents a power difference of 22% and affects just the power used by
the processors. Measurements made on NW-ICE on a rack basis indicate that an idle rack consumes 7.8KW, and a rack
containing all processor-cores performing the all-to-all benchmark consumes 9.4KW resulting in a 16% difference. These
two observations are inline with each other as the rack-based measurements include everything in the rack and not just the
processors.

The energy improvements observed, as listed in Table 16 shows that a significant portion of the 16% maximum savings is
being realized when using the Interrupt and DVFS energy saving mechanisms. Current state of the art processors including
the Intel Nehalem series, and the AMD Magny-Cours have a greater number of DVFS states in comparison to our exper-
imental test bed. In addition the overhead of transitioning between DVFS states is expected to reduce in future processor
generations. These two factors impact expected energy savings in two ways:

– The greater number of DVFS states has a greater potential for energy savings for large-messages when using the com-
bination of Interrupt and DVFS mechanisms for one-sided communications.

– The decrease in transition overheads should reduce the message size at which energy savings will occur.

5 Related Work

Multiple researchers have focused on exploring accurate component and system level power/energy profiling approaches.
Other researchers have designed and developed techniques to efficiently reduce the total power consumption without in-
curring performance penalty. State of the art methodologies focus on measuring the aggregate power consumption of
entire system or building level power [28] through proprietary hardware [29], power panels, or empirical estimations by
rules-of-thumb [30]. Many studies, including both simulations and empirical analysis, have also explored evaluation of
individual system components such as processor [31,32], memory [31], disk [33–35], motherboard [36], CPU and system
fan control [37] and interconnection networks [38]. Due to a high demand for fine-grained system-wide component level
power/energy profiling tools, Ge et al., have designed and developed a power/energy/performance profiling infrastructure
- PowerPack [36] to evaluate energy efficiency and power-aware techniques for parallel applications. Song et al., have
used PowerPack to study the power characteristics of multiple suites in HPCC benchmark [39] at a high granularity [40].
Most of the studies mentioned above have considered evaluation of workloads in context of single node, considering mech-
anisms such as DVFS. Recently, Kandalla et al., have presented a design for power efficient collective communication
algorithms [41]. However, the design is not applicable for one-sided communication primitives which do not exhibit regu-
lar communication structure as collective communication primitives. To facilitate this, we have designed and implemented
PASCoL, which serves this purpose.

Multiple researchers have also focused on reducing total power consumption during runtime without incurring performance
penalty. One of the most common approaches to achieve this is to save CPU power during communication phases by
applying Dynamic Voltage/Frequency Scaling (DVFS), since CPU consumes most power in system-wide for most current
architectures [36,40]. Many researchers have discussed the tradeoff between performance and energy consumption for
scientific applications such as NAS Parallel Benchmark [23], [42], [43], [44], [45]. They have pointed out the importance
of efficient detection of communication regions during runtime [44], [42]. In [44], researchers also combine DVFS with
concurrency throttling technique on multi-core systems to explore the right combination of ”switches”(frequency level and
number of cores being utilized) for saving power. Instead of locating communication phases, work such as [46] monitors
system performance counters to estimate workload in order to predict the proper frequency for next time interval on a
single node. Researchers in [47] and [41] propose energy saving approaches using DVFS and CPU throttling for collective
communication primitives. Liu et al., have provided a detailed empirical study of the benefits of power efficiency of RDMA
compared to the traditional communication protocols such as TCP/IP [48]. However, this work has been done using verbs
level interface, and does not provide guidance for higher level communication protocols for implementation.

None of the studies mentioned above have explored design challenges for one-sided communication runtime systems, while
recent work has focused on designing energy efficient collective communication primitives. To address this limitation of

10



state of the art research, we present PASCoL, which provide power efficient and high performance communication runtime
system for one-sided primitives.

6 Conclusions and Future Work

In this paper, we have designed a Power Aware One-Sided Communication Library (PASCoL) using Aggregate Remote
Memory Copy Interface (ARMCI) [11], which leverages the architectural and network abstractions to exploit the commu-
nication slack for energy efficiency. We have laid down the issues involving various one-sided communication primitives
and associated communication protocols for different datatypes, specifically focusing on contiguous and uniformly non-
contiguous datatypes as a use case from many scientific applications. We have implemented our design and evaluated it
using synthetic benchmarks on an InfiniBand Cluster. Our performance evaluation with benchmarks using various one-sided
communication primitives has demonstrated that we can achieve significant energy efficiency with negligible performance
degradation. The observed energy efficiency is close to the theoretical peak provided by the experimental test bed.

We plan to continue design and development of energy efficient one-sided communication protocols for different platform
and high speed communication networks. We also plan to evaluate the efficacy of these designs on large scale systems using
scientific applications such as NWChem [49] and Subsurface Transport over Multiple Phases (STOMP) [50].

References

1. Crosscutting Technologies for Computing at the Exascale. In http://extremecomputing.labworks.org, 2010.
2. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard.

Parallel Computing, 22(6):789–828, 1996.
3. Al Geist, William Gropp, Steve Huss-Lederman, Andrew Lumsdaine, Ewing L. Lusk, William Saphir, Tony Skjellum, and Marc Snir. MPI-2:

Extending the message-passing interface. In Euro-Par, Vol. I, pages 128–135, 1996.
4. Parry Husbands, Costin Iancu, and Katherine A. Yelick. A Performance Analysis of the Berkeley UPC Compiler. In International Conference on

Supercomputing, pages 63–73, 2003.
5. Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global Arrays: A Nonuniform Memory Access Programming Model for High-

Performance Computers. Journal of Supercomputing, 10(2):169–189, 1996.
6. Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar.

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 519–538. ACM, 2005.

7. B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel Programmability and the Chapel Language. International Journal on High Performance
Computing Applications, 21(3):291–312, 2007.

8. InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.2, October 2004.
9. Hao Yu, I-Hsin Chung, and Jose Moreira. Blue gene system software—topology mapping for blue gene/l supercomputer. In SC ’06: Proceedings of

the 2006 ACM/IEEE conference on Supercomputing, page 116. ACM Press, 2006.
10. F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics Network: High-Performance Clustering Technology. IEEE Micro,

22(1):46–57, 2002.
11. M. Krishnan, Abhinav Vishnu, Bruce Palmer. Aggregate Remote Memory Copy Interface, 2010.
12. Gautam Shah, Jarek Nieplocha, Jamshed H. Mirza, Chulho Kim, Robert J. Harrison, Rama Govindaraju, Kevin J. Gildea, Paul DiNicola, and Carl A.

Bender. Performance and Experience with LAPI - a New High-Performance Communication Library for the IBM RS/6000 SP. In IPPS/SPDP, pages
260–266, 1998.

13. Sameer Kumar, Gabor Dozsa, Gheorghe Almasi, Philip Heidelberger, Dong Chen, Mark E. Giampapa, Michael Blocksome, Ahmad Faraj, Jeff Parker,
Joseph Ratterman, Brian Smith, and Charles J. Archer. The Deep Computing Messaging Framework: Generalized Scalable Message Passing on the
Blue Gene/P Supercomputer. In ICS ’08: Proceedings of the 22nd annual international conference on Supercomputing, pages 94–103, 2008.

14. N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and W. Su. Myrinet: A Gigabit-per-second Local Area Network.
IEEE Micro, 15(1):29–36, February 1995.

15. A. Vishnu, A. Mamidala, S. Narravula, and D. K. Panda. Automatic Path Migration over InfiniBand: Early Experiences. In Proceedings of Third
International Workshop on System Management Techniques, Processes, and Services, held in conjunction with IPDPS’07, March 2007.

16. A. Vishnu, A. R. Mamidala, H.-W. Jin, and D. K. Panda. Performance Modeling of Subnet Management on Fat Tree InfiniBand Networks using
OpenSM. In Proceedings of First International Workshop on System Management Techniques, Processes, and Services, held in conjunction with
IPDPS’07, 2005.

17. Sundeep Narravula, A. Marnidala, Abhinav Vishnu, Karthikeyan Vaidyanathan, and Dhabaleswar K. Panda. High performance distributed lock
management services using network-based remote atomic operations. In CCGRID, pages 583–590, 2007.

18. S. Narravula, A. Mamidala, A. Vishnu, G. Santhanaraman, and D. K. Panda. High Performance MPI over iWARP: Early Experiences. In International
Conference on Parallel Processing, 2007.

19. IBM BlueGene Team. Overview of the IBM Blue Gene/P project. IBM J. Res. Dev., 52(1/2):199–220, 2008.

11



20. W. Feng, M. Warren, and E. Weigle. The bladed beowulf: A cost-effective alternative to traditional beowulfs. Cluster Computing, IEEE International
Conference on, 0:245, 2002.

21. Kirk W. Cameron, Rong Ge, and Xizhou Feng. High-performance, power-aware distributed computing for scientific applications. Computer,
38(11):40–47, 2005.

22. Barry Rountree, David K. Lowenthal, Shelby Funk, Vincent W. Freeh, Bronis R. de Supinski, and Martin Schulz. Bounding energy consumption in
large-scale mpi programs. In SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pages 1–9, New York, NY, USA, 2007.
ACM.

23. Xizhou Feng, Rong Ge, and Kirk W. Cameron. Power and energy profiling of scientific applications on distributed systems. In IPDPS ’05: Proceedings
of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) - Papers, page 34, Washington, DC, USA, 2005. IEEE
Computer Society.

24. Chung-Hsing Hsu, Ulrich Kremer, and Michael Hsiao. Compiler-directed dynamic voltage/frequency scheduling for energy reduction in micropro-
cessors. In ISLPED ’01: Proceedings of the 2001 international symposium on Low power electronics and design, pages 275–278, New York, NY,
USA, 2001. ACM.

25. Thomas D. Burd and Robert W. Brodersen. Design issues for dynamic voltage scaling. In ISLPED ’00: Proceedings of the 2000 international
symposium on Low power electronics and design, pages 9–14, New York, NY, USA, 2000. ACM.

26. Luca Benini and Giovanni de Micheli. System-level power optimization: techniques and tools. ACM Trans. Des. Autom. Electron. Syst., 5(2):115–192,
2000.

27. A. Vishnu, M. J. Koop, A. Moody, A. R. Mamidala, S. Narravula, and D. K. Panda. Hot-Spot Avoidance With Multi-Pathing Over InfiniBand: An
MPI Perspective. In Cluster Computing and Grid, pages 479–486, 2007.

28. LBNL. Data Center Energy Benchmarking Case Study: Data Center Facility 5. 2003.
29. IBM. PowerExecutive. 2007.
30. A.M Bailey. Accelerated strategic computing initiative (asci): Driving the need for the terascale simulation facility(tsf). In Energy 2002 Workshop

and Exposition. IEEE Computer Society, 2002.
31. W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and use of simplepower: A cycle-accurate energy estimation tool. pages 340–345,

2000.
32. David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for architectural-level power analysis and optimizations. In ISCA ’00:

Proceedings of the 27th annual international symposium on Computer architecture, pages 83–94, New York, NY, USA, 2000. ACM.
33. John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind Krishnamurthy, and Randolph Wang. Modeling hard-disk power consumption.

In FAST ’03: Proceedings of the 2nd USENIX Conference on File and Storage Technologies, pages 217–230, Berkeley, CA, USA, 2003. USENIX
Association.

34. David P. Helmbold, Darrell D. E. Long, and Bruce Sherrod. A dynamic disk spin-down technique for mobile computing. In MobiCom ’96: Proceed-
ings of the 2nd annual international conference on Mobile computing and networking, pages 130–142, New York, NY, USA, 1996. ACM.

35. Fred Douglis, P. Krishnan, and Brian N. Bershad. Adaptive disk spin-down policies for mobile computers. In MLICS ’95: Proceedings of the 2nd
Symposium on Mobile and Location-Independent Computing, pages 121–137, Berkeley, CA, USA, 1995. USENIX Association.

36. Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W. Cameron. Powerpack: Energy profiling and analysis of high-
performance systems and applications. IEEE Transactions on Parallel and Distributed Systems, 99(RapidPosts):658–671, 2009.

37. Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh Sharma. Making scheduling ”cool”: temperature-aware workload placement in
data centers. In ATEC ’05: Proceedings of the annual conference on USENIX Annual Technical Conference, pages 5–5, Berkeley, CA, USA, 2005.
USENIX Association.

38. Hang-Sheng Wang Xinping, Hang sheng Wang, Xinping Zhu, Li shiuan Peh, and Sharad Malik. Orion: A power-performance simulator for intercon-
nection networks. pages 294–305, 2002.

39. Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F Lucas, Rolf Rabenseifner, and Daisuke Takahashi. The hpc challenge
(hpcc) benchmark suite. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 213, New York, NY, USA, 2006. ACM.

40. Shuaiwen Song, Rong Ge, Xizhou Feng, and Kirk W. Cameron. Energy profiling and analysis of the hpc challenge benchmarks. Int. J. High Perform.
Comput. Appl., 23(3):265–276, 2009.

41. Sayantan Sur Krishna Kandalla, Emilio P. Mancini and Dhabaleswar K. Panda. Designing Power-Aware Collective Communication Algorithms for
InfiniBand Clusters. Technical Report, June 2010.

42. Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kappiah, Rob Springer, Barry L. Rountree, and Mark E. Femal. Analyzing the energy-time
trade-off in high-performance computing applications. IEEE Trans. Parallel Distrib. Syst., 18(6):835–848, 2007.

43. Vincent W. Freeh, Feng Pan, Nandini Kappiah, David K. Lowenthal, and Rob Springer. Exploring the energy-time tradeoff in mpi programs on a
power-scalable cluster. In IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) -
Papers, page 4.1, Washington, DC, USA, 2005. IEEE Computer Society.

44. Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S. Nikolopoulos, Bronis R. de Supinski, and Martin Schulz. Prediction models
for multi-dimensional power-performance optimization on many cores. In PACT ’08: Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pages 250–259, New York, NY, USA, 2008. ACM.

45. NAS. NAS Parallel Benchmark, 2010.
46. Rong Ge, Xizhou Feng, Wu-chun Feng, and Kirk W. Cameron. Cpu miser: A performance-directed, run-time system for power-aware clusters. In

ICPP ’07: Proceedings of the 2007 International Conference on Parallel Processing, page 18, Washington, DC, USA, 2007. IEEE Computer Society.
47. Reza Zamani, Ahmad Afsahi, Ying Qian, and Carl Hamacher. A feasibility analysis of power-awareness and energy minimization in modern inter-

connects for high-performance computing. In CLUSTER ’07: Proceedings of the 2007 IEEE International Conference on Cluster Computing, pages
118–128, Washington, DC, USA, 2007. IEEE Computer Society.

48. Jiuxing Liu, Dan Poff, and Bulent Abali. Evaluating high performance communication: a power perspective. In ICS ’09: Proceedings of the 23rd
international conference on Supercomputing, pages 326–337, New York, NY, USA, 2009. ACM.

49. Ricky A. Kendall, Edoardo Aprà, David E. Bernholdt, Eric J. Bylaska, Michel Dupuis, George I. Fann, Robert J. Harrison, Jialin Ju, Jeffrey A.
Nichols, Jarek Nieplocha, T. P. Straatsma, Theresa L. Windus, and Adrian T. Wong. High Performance Computational Chemistry: An Overview of
NWChem, A Distributed Parallel Application. Computer Physics Communications, 128(1-2):260–283, June 2000.

50. Subsurface Transport over Multiple Phases. STOMP. http://stomp.pnl.gov/.

12


