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Abstract—Component failures in high-end systems are in-
creasingly a norm rather than an exception. While application-
transparent and application-aware approaches for check-
point/restart have been proposed in the literature, they cease
to scale beyond a few hundred nodes. Although, SSDs/NVRAMs
alleviate the check-pointing overhead, the cost of recovery from
failures is still proportional to the system size and not to the
degree of failure. These properties are clearly prohibitive for the
scale of the systems on the horizon.

This paper is a divergence from the classical fault tolerance
methods whereby the proposed approach uses a combination of
Partitioned Global Address Space (PGAS) models to abstract the
replication of critical data structures, and over-decomposition of
computation in to smaller tasks for fine grained recovery. The
proposed Scalable Fault Tolerance (SFT) approach uses the the
critical data classified in read-only/read-write categories, auto-
matically performs selective replication on these data structures,
and uses a fault-tolerant meta-data store for recovery during
faults. The SFT approach guarantees that cost of recovery is
truly proportional to the degree of failure at the expense of
very low time-space complexity. This is achieved by re-executing
only the number of tasks upper bounded by the number of
process failures and performing “continued execution” without
re-spawning new processes. Using NWChem - a highly popular
computational chemistry application - as a case study, the efficacy
of the proposed solution is demonstrated on a commodity cluster
with InfiniBand and actual process faults.

I. INTRODUCTION

Component failures in today’s high-end systems are a major
impediment to high supercomputer utilization. With much
larger scale systems on the horizon, the mean time between
failures (MTBF) of these systems is expected to decrease very
significantly.

Legacy methods for fault tolerance include application-
transparent approaches, under which the complete application
state is saved to a fail-safe permanent storage. Kernel modules
such as Berkeley Lab Checkpoint/Restart (BLCR) proposed by
Hargrove et al. allow an application to transparently save the
image to storage [1]. However, as shown by Gao et al., the
size of the checkpoint is in the order of Gigabytes/process
using these kernel modules, even for a moderate system
size [2]. The recovery method typically requires the job to
be restarted from a previously saved checkpoint, resulting in
the recovery cost being proportional to system size. Pro-active
fault tolerance approaches such as Xen on RDMA enabled

interconnects proposed by Liu et al. [3] promise to reduce
the recovery cost, although at the accuracy of fault prediction.
The pro-active approaches are also prohibitive at scale due
to increased data movement of virtual machine images and
associated energy costs. Message logging based approaches
proposed by Cappello et al. reduce the cost of checkpointing
for hybrid systems [4], [5], however, the cost of recovery is still
proportional to the system size and not to the degree of failure.
Additionally, message logging is useful in applications with
temporal computation and communication patterns, which is
not a characteristic of applications considered in this work.

As a result, Algorithm Based Fault Tolerance (ABFT) based
approaches are becoming increasingly popular, although they
require more involved design of check-pointing and recovery
procedures. ABFT reduces the overall checkpoint space by
identifying the critical data structures, and saving a copy in
the memory hierarchy. The fault recovery is attempted by
restarting the application from previously saved checkpoint.
The checkpoint size is typically much smaller, and hence
the overhead is relatively orders of magnitude lesser than
the application-transparent approaches. However, the cost of
recovery is still proportional to the system size, since the job
still needs to be re-started from a previously saved checkpoint.
Much of the previous research has primarily focused on effi-
cient check-pointing mechanisms, such as recently proposed
Scalable Checkpoint Restart Library by Moody et al. [6].

However, recent literature has shown that with increasing
scale, the cost of recovery dominates the cost of check-
pointing [7]. Hence, a methodology for fault tolerance at
extreme scale must reduce the cost of recovery from failures.
The recovery cost can be drastically reduced by decreasing
the amount of re-computation at the point of failure. This can
be achieved by over-decomposition of data and computation
in tasks - sequential units of computation with input, output
and optional dependencies. Task based execution models are
finding increasing adoption in linear algebra libraries [8], [9].
These models are a divergence from legacy BSP models, as
the data and associated computation are de-coupled from each
other. A task may be scheduled on any process, and computed
as soon as its dependencies are satisfied. The data requirements
(input/output) to task models are typically described using
Partitioned Global Address Space (PGAS) models [10], [1],



[11], [12], which provide one-sided mechanisms for accessing
distributed data structures.

This paper proposes a novel approach for fault tolerance,
where the over-arching objective is to have cost of recovery
in presence of failures to be truly proportional to the degree
of failure, rather than the system size. To this end, the
proposed Scalable Fault Tolerance (SFT) approach extends
Partitioned Global Address Space (PGAS) [10], [1], [11], [12]
models for automatic replication of data based on its properties
(read-only, read-write) and completely abstracts accesses to
this fault tolerant data store. Such an abstraction is useful
in designing selective replication algorithms (such as reed-
solomon encoding for read-only structures) [13], [9] based
on a combination of data properties and architecture (such
as presence of SSDs/NVRAM). The automatic replication is
combined with task based execution models, which leverage
the fault tolerant data store for accessing read-only/read-write
structures. At the point of failure, only the task(s) which
were currently being executed by processes on the faulty
node need to be re-executed - making the cost of recovery
truly proportional to the degree of failure. A combination
of PGAS and task models facilitates divergence from the
fixed process set model - no additional processes need to be
re-spawned at the point of failure. These properties makes
the proposed SFT approach a very attractive solution for
addressing hard faults at scale.

A. Contributions

Specifically, the contributions of the paper are:

• Proposition of a Scalable Fault Tolerance (SFT) approach,
which provides automatic data replication atop PGAS
models using data properties (read-only, read-write). The
proposed approach uses Global Arrays for demonstration,
however, it is readily extensible to other PGAS models.

• Fine-grained recovery requiring only re-execution of
tasks which are bounded by the number of process
failures. The SFT approach performs “continued execu-
tion” with the existing set of processes, facilitated by a
combination of PGAS and task models.

• Detailed time-space complexity analysis of the SFT ap-
proach in presence of different replication strategies, and
probabilistic analysis of multi-node failures to address
the limitations of the SFT approach. Further reduction
of recovery cost by accelerating the fault information
propagation using flexible and scalable dissemination
approaches.

• Integration of the proposed infrastructure with
NWChem [14] - a highly scalable and popular
computational chemistry package. An implementation
of the proposed infrastructure and its evaluation with
NWChem using actual process failures shows the
efficacy of the proposed approach.

For many input decks with NWChem using up to 4096
processes and actual process failures, < 15% overhead is
incurred in terms of execution time. This time includes the cost

for writing to replicas, fault detection of processes and con-
tinued execution with partial re-execution of tasks in presence
of failures. While the SFT approach has been demonstrated
with one production application, it has potential to improve
the resiliency of other applications and intermediate solver
libraries [9].

The rest of the paper is organized as follows: section II
presents the related work. Section III presents the background
of the proposed approach. Section IV presents the solution
space, followed by performance evaluation in section V.
Section VI presents the conclusions and future directions.

II. RELATED WORK

Multiple researchers have studied the approaches for design-
ing fault tolerant algorithms, programming models and com-
munication runtime systems [15], [16], [14], [2], [13], [17],
[18], [19], [20], [21]. Approaches for network fault tolerance
have been considered by many researchers as well. [18], [22].

Efficient scheduling algorithms for task based execution has
been proposed by many researchers [14], [23], [24], [25].
Some scientific domains have a natural fit for task based exe-
cution, such as computational chemistry, and bio-informatics.
There has also been a lot of research on formulating the
problems primarily considered SPMD ambivalent to task based
execution [9]. Dongarra et al. have proposed a broad variety of
linear algebra kernels as task based scheduling problems and
presented the performance advantages of this formulation. For
most of the linear algebra kernels, the problem of scheduling
is simplified due to a regularity in task dependencies [9], [8].

Sadayappan et al. have proposed framework for task based
scheduling and fault tolerance [26], [27], [28]. However, these
approaches assume a fixed process model. In these approaches,
when a new spare node is introduced on failure, each and
every task with an output to the spare node needs to be re-
executed. In our proposed approach, only the task(s) which
were being executed on the faulty node need to be re-executed.
The number of tasks executed on a node at the point of failure
is bounded by the number of processes, hence the recovery
time of the proposed approach is not truly proportional to the
degree of failure.

Fault tolerance with Message Passing Interface (MPI) has
been tackled by multiple researchers [29], [30], [16], [31],
[17], [3], [2]. Dongarra et al. have proposed multiple pro-
cess models on failure using FT-MPI framework [13]. These
approaches include re-spawning of MPI processes up on
failure and patching them with the original communicator or
continuing with holes (created by dead processes) in the com-
municator. The proposed SFT framework in this paper uses
the second approach - to continue with the existing number of
nodes. This approach is incorporated in the Global Arrays [10]
communication runtime system, Aggregate Remote Memory
Copy Interface (ARMCI) [32].

Gropp et al. discussed that the statement “MPI is not fault
tolerant” is unfounded, since fault tolerance is a property of the
combination of an MPI program and MPI implementation [16].
While most MPI implementations choose to abort on a fault



(assuming a checkpoint/restart methodology in place), this
behavior is not mandated by the MPI standard. Gropp et al.
also discussed methods of recovery using dynamic process
creation and inter-communicators [16].

Fault tolerance using application transparent and assisted
approaches have been discussed widely by multiple re-
searchers [2], [33], [31], [17] . Gao et al. have presented that
user-transparent check-pointing using Berkeley Lab Check-
point Restart (BLCR) is beneficial for NAS Parallel Bench-
marks [34] and checkpoint aggregation can reduce the overall
time of check-pointing significantly. However, the overhead in-
creases significantly with increasing number of processes [2].

Cappello et al. have shown that pessimistic message based
logging may be used for recovery on volatile nodes using
MPICH-V [31], [17]. However, this approach is not applicable
to PGAS models like Global Arrays [10], as it assumes a two-
sided execution model. Message Logging reduces the check-
pointing overhead, but still results in the cost of recovery to
be proportional to the system size. Another benefit of the SFT
framework proposed in this paper is its continued execution.

Many researchers have also presented fault tolerance meth-
ods using virtual machines. Recent work includes Xen over
high speed networks [3], in addition to the classical work based
on Virtual Machines using TCP/IP. However, these approaches
either require check-pointing for post failure execution [35] or
require pro-active fault tolerance [3]. With pro-active fault tol-
erance, the success depends on the accuracy of fault prediction.
The proposed approach in this paper provides continued fault
tolerant execution, without any dependency on the accuracy
of fault prediction.

Computational chemistry codes typically checkpoint inter-
mediate results to stable storage for restart on node failure(s).
This approach is suitable for iterative calculations including
self consistent field, and Coupled Cluster (CCSD) methods.
However, computationally expensive parts of calculation -
Triples energy correction of Coupled Cluster with perturbative
triples (CCSD(T)) are non-iterative in nature. As a result, there
are no natural points of check-pointing, while the probability
of failure during the execution of this method is high, due to
its high computational complexity.

III. BACKGROUND

This section presents background of our work. A brief
description of over-decomposition in the context of this paper,
followed by a description of the Partitioned Global Address
Space (PGAS) models.

A. Over-decomposition and Task Based Execution Paradigm

Over-decomposition is a strategy to further decompose the
data (and potentially computation on the data) available to
a process in multiple smaller chunks. This methodology is
beneficial for better cache utilization, and load balancing. It
is important for the chunk to be large enough, so that the
cost of load-balancing (potentially off-node data movement)
is offset by the work balancing. In this context, task-based
execution models have gained momentum, which use data

and computation over-decomposition for load balancing and
resilience.

A task is a unit of computation with an input (potentially
from multiple processes), output (potentially to multiple pro-
cesses) and dependencies. Each task can be described using
meta-data information for input, output and dependencies. A
task may be scheduled on any process, as soon as its de-
pendencies are satisfied. Independent tasks are a special case,
where a task may be scheduled as soon as a process/thread can
execute it. MapReduce paradigm is an example of independent
tasks, with “NULL” output to global address space data. The
proposed SFT framework focuses on tasks, which have output
to large number of processes scheduled on multiple distributed
memory nodes. Figure 1 shows examples of independent tasks,
tasks with dependencies and tasks which may produce more
tasks. The proposed SFT approach is applicable to each of
these task models.

B. Partitioned Global Address Space Models

Partitioned Global Address Space programming models
provide an abstraction of globally distributed memory space.
In addition, the PGAS models provide interfaces for accessing
local data directly for minimizing data movement.

Many language and library implementations are being de-
signed and implemented under this model such as X10 [11],
Chapel [12], High Performance Fortran, Unified Parallel C
(UPC) [1], ZPL, and Titanium. These languages provide
load/store mechanisms for global address space data. They
also provide efficient runtime implementations to coalesce
multiple such data accesses by resolving write dependencies.
PGAS models provide data centric abstractions, and decouple
the static scheduling of computation from data. This property
of PGAS models is used to provide fault resiliency in the
proposed SFT approach. Library based implementations such
as Global Arrays [10] and SHMEM [36] have also been
designed and implemented to serve the purpose of remote
memory accesses.

Figure 2 shows an example of virtual and physical distribu-
tion of a global array. The figure is used to show the virtual
representation of 16x16 array on 4 processes.

IV. FAULT TOLERANCE SOLUTION SPACE

This section presents elements of the solution space for the
proposed SFT approach. The section begins with a description
of the preliminaries, time-space complexity analysis, discus-
sion on handling multiple node failures and concludes with a
putting it all together with NWChem [14] section.

A. Preliminaries

Any fault tolerance solution typically has many catastrophic
scenarios. Hence, it is important to underline the assumptions
as precisely possible. In this paper, it is assumed that the
node/process failure is permanent. The point of fault discovery
may be far apart for the processes in a job, but once a process
is discovered as dead, it is considered dead for rest of the
program execution.
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Fig. 2. Examples of physical and virtual distribution of a global arrays in
PGAS models

It is also assumed that a process failure does not abort
the job. A job abort on failure is not a problem for check-
point/restart methods, as they rely on restarting the computa-
tion from a previously saved checkpoint. The SFT approach
performs “continued execution” in the presence of node faults
- the application continues execution without a need to re-
spawn new processes. This property is a critical element of
the proposed design, since this allows the cost of recovery to
be low.

High-end systems such as IBM Blue Gene based systems
shut down the midplane on process/node failures. Similarly,
Cray XT/XE/XK systems abort the job as soon as the ALPS
scheduler discovers a process/node failure. With these lim-
itations, the proposed approach is designed and evaluated
on commodity systems based on InfiniBand [37]. However,
the proposed approach can be readily executed on high-end
systems, as soon as the restrictions on from the process
manager are lifted.

B. Critical Data for Replication

Critical Data is the data structure set, which must be
saved/replicated, so that it may be used during fault(s). The
critical data structure is a property of the programming model
and the fault tolerance algorithm.

In application-transparent methods of checkpoint/restart,
complete process space must be saved, as there is no awareness
on the criticality of any data structure. This methodology
ceases to scale beyond a few hundred nodes, due to the
pressure on I/O subsystem. The advent of disruptive tech-
nologies such as non-volatile RAM/SSDs may alleviate the
cost of application-transparent check-pointing. However, the
all the processes need to be restarted from a previously saved
checkpoint.

An alternative and popular approach is application-aware
methods for checkpoint/restart. This approach relies on critical
data identification by (potentially) involvement of a domain ex-
pert. The critical data is saved at intermediate points (typically
at control synchronization), and the restart algorithm requires
re-spawning of processes to read from the saved critical data.
With this approach, the overall volume of the critical data is

typically reduced by orders of magnitude in comparison to
the approach presented above. However, the cost of recovery
is still proportional to the system size, as new processes need
to re-spawned.

The overall volume of critical data in application-aware
checkpoint methods is a property of the algorithm. Using
dgemm (C = A · B) as an example, there are multiple
choices of replication of read-only matrices A and B matrices.
Many proposed algorithms in literature use reed-soloman
encoding for read-only matrices. These approaches reduce the
overall volume of critical read-only data ∈ Θ(N), while full
replication requires Θ(N2), where N is the dimension of the
matrix. However, full replication is needed for C matrix, as it
is updated asynchronously by different processes.

Since many algorithms operate on dense/sparse matrices,
it is worthwhile to unify their distribution across processes
by using Partitioned Global Address Space (PGAS) models.
These models abstract the data distribution such that a process
may operate on distributed data using get/put/accumulate, and
the local data using load/store semantics.

In the proposed SFT approach, an application only needs
to specify whether a particular PGAS data structure is critical
and its attributes (read-only/read-write). The PGAS runtime
automatically uses no-replication (if the structure is not crit-
ical), reed-soloman encoding (if the structure is critical and
read-only), and full replication (if the structure is critical and
write-only).

Another advantage of using PGAS models is automatic
distribution of checksums based on reed-soloman encoding,
and automatic re-distribution of these checksums, when faults
occur. The PGAS models are also capable of abstracting deep
levels of memory hierarchy (such as byte addressable SSDs),
and intelligently storing replicas for reuse during failures.

C. Over-decomposition and Task Models

The replication strategy presented above is useful in the
dgemm example, where each of the matrices may be appro-
priately marked as critical, read-only/read-write. Since C is
completely replicated, it is essential to guarantee that at least
one of its replicas are in consistent state at the point of recov-
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Fig. 4. Checksums using reed-soloman encoding and their distribution across
processes

ery. Hence, it is importance to use the transactional memory
update semantics for read-write critical data structures.

With transactional semantics, each of the replicas must be
updated sequentially. Most PGAS models support location
consistency, which is insufficient for transactional update se-
mantics [38]. In the proposed approach, each update is fenced
to the remote process - each update guarantees that the data
is written to the remote memory.

Another important element of the proposed approach is the
need for a fault tolerant meta-data for critical data structures.
The meta-data is important to mark the state of a data critical
structure - whether it is dirty or consistent. The state of a
critical data structure may be dirty, if another process could
not complete update to this data structure before failing. The
associated meta-data structure may be used to update the state,
to see whether the critical data structure is dirty or consistent.
This meta-data structure is a critical read-write structure in
itself. It uses the PGAS infrastructure presented above for
complete replication.

A simplified and yet powerful use case is independent tasks,
where tasks may be executed as soon as they are generated.
Task based execution models have been used in Linear Algebra
(DaGue) [8], and full applications such as NWChem [14],
which rely on get-compute-put task model for load balancing
reasons. An advantage of using over-decomposition for fault
tolerance is a potential for finer grained recovery.

Underlying runtime(s) of task based execution models are
geared primarily for performance. Using the classical get-
compute-put model with task models, it is important that each
of the states in get-compute-put model are fault tolerant. Fig-
ure 3 shows an example of combining automatic replication of
PGAS structures with additional task states for fault tolerance.
The figure uses dgemm as an example.

A task starts with the get state, reading patches from A
and B. No additional states are needed for get state, because

the underlying PGAS infrastructure automatically provides the
patch. Updates to the task meta-data structure are not required
during the get phase, because the state of any critical data
structure is not updated. Similarly, the compute phase does
not require an update of the task meta-data structure. Each
update to a replica requires that the task meta-data is updated
to guarantee the consistency of the replica. Once the updates
to each replica are completed, the task meta-data structure is
updated to finish state.

The proposed approach requires additional state manage-
ment and replication and transactional updates to read-write
data structures. Hence, it is important to understand the time-
space complexity of the proposed approach. This is presented
in the upcoming section.

D. Time-Space Complexity Analysis

Table I shows the attributes, which are used to model the
space and time complexity of the proposed approach.

Property Symbol
1 Message Size for Data Transfer m
2 Total Number of Processes p
3 Number of Processes/Node c
4 Number of replicas k
5 Number of critical read-only data structures α
6 Number of critical read-write data structures β
7 Number of total tasks δ

TABLE I
TIME AND SPACE ATTRIBUTES FOR FAULT TOLERANCE APPROACH

Since most of the computation is performed on matrices,
the space complexity is modeled using the matrix dimension
(N ). The total number of elements in a matrix is Nd for a
d dimension matrix, assuming a dense data representation,
although the analysis is readily extensible to sparse matrix
representations.



Let Mro represent the space complexity of the critical
read-only data structures. Using reed-soloman encoding for
read-only structures (row and column encoding), the space
complexity for read-only structures is:

Mro = k · α · (d− 1) ·N/p (1)

The above equation is a model, when the checksum gen-
erated using a reed-soloman encoding is distributed equally
among processes. The space complexity is proportional to
the number of dimensions, the number of critical read-only
structures and the size of the dimension itself. For a d
dimension matrix, the size of the checksum is proportional
to (d−1). With reed-soloman encoding, Mro scales very well
in comparison to the original space complexity (α ·Nd/p).

Let Mrw represent the space complexity of critical read-
write data structures. These data structures need to be repli-
cated completely, as they would be updated asynchronously.

Mrw = k · β ·Nd−1/p (2)

From the above equation, it is clear that the proposed
approach is feasible when the size of the critical read-write
data structures is smaller than the total memory available to
a process. There are scenarios, where this is possible, such as
strong scaling of an application where the time to solution is a
primary evaluation criteria. Weak memory scaling experiments
may not be able to utilize the SFT approach proposed in this
paper.

Another important aspect is the value of k. The number of
replicas can be decided by the amount of memory available
per process, and the volume of data that has to be updated.
A single replica increases the MTBF of the application from
1/p to 1/

√
p, which could be sufficient increment for an

application to complete its execution.
Let Mt represent the space complexity of meta-data struc-

ture which holds the state of the tasks. Mt is given by:

Mt = k · δ/p (3)

δ is defined by the granularity of the task decomposition
of the application. However, even for moderate sizes of d,
Mt � Mrw. Hence, the space complexity of the proposed
approach is dominated by Mrw. Next, the time complexity of
the proposed approach is presented.

Let Tro represent the time complexity of reading the read-
only data structures. In the proposed approach, the read-only
data structure needs to be read from exactly one replica. As
a result, the Tro is similar in comparison to the original time
complexity.

Let Trw represent the time complexity of updating the read-
write data structures. There are two read-write structures -
the application data and the task meta-data. The task meta-
data is small - updating the task meta-data is latency bound.
The time to update the application data is dependent on
the volume of the data, and the size of each update (to
determine whether it is latency/bandwidth bound). The worst
case scenario occurs when each update is latency bound. For

purpose of simplification, the time to update the meta-data is
ignored, since the overall volume of read-write structure to be
updated for each task is much larger.

Using dgemm as an example, it is possible to determine
the time-complexity of the proposed approach. Each task reads
from two critical read-only data structures (A and B) , and
updates one critical data structure (C). For δ number of tasks,
the average work performed by each task is N3/δ. Each task
needs to update k · N2/δ volume of data to all the replicas.
For an entirely latency bound transfer with l average latency,
the time taken for the above step is k · l ·N2/δ. For simplicity,
with one replica, the cost reduces to l ·N2/δ. While l is in µs,
in the best case scenario each computation can be performed
in a single clock cycle.

Let ocr represent the check-pointing overhead to replicas.
ocr = (l.N2/δ)/(N3 ∗ cpufreq/δ) = l/(N ∗ cpufreq). Using
conservative values of l as 10µs and cpufreq as 2 GHz,
ocr = 10.103/(N ∗ 2) ≈ 105/N . For overhead to be less than
0.1, N should be at least 106 elements, which is a relatively
small problem size for dgemm at scale. Since the overhead
is inversely proportional to N , the increasing problem size
reduces the check-pointing overhead.

Let ore represent the recovery overhead per node failure.
Under the proposed approach, only those tasks need to be
re-executed, which were currently being executed by the
processes before the node failure. Hence, ore = c ·N3/δ. ore
is inversely proportional to the number of tasks - finer grained
tasking would be conducive for the proposed approach.

The time-space complexity analysis gives a good under-
standing of the applicability of the proposed approach. Similar
analysis may be used by applications to select values of dif-
ferent parameters. The next section is dedicated to addressing
a limitation of the proposed approach.

E. Handling Multiple Node Failures

Theorem 1. For n nodes and k replicas, the probability of
catastrophic failure due to unavailability of all replicas is ∈
O(1/(n− k)k) and Ω(1/nk).

Proof: The probability of a node failure is 1/n. The
conditional probability of a replica failure is 1/n · 1/(n− 1).
Extending the conditional probability to k replicas, the prob-
ability of failure of each of the replicas is:1/n · 1/(n −
1) · · · 1/(n − k) which is ∈ Ω(1/nk) and O(1/(n − k)k).

It is easy to see that the probability of a catastrophic failure
with k replicas is very low. Even a single replica increases
the application MTBF from 1/n to 1/

√
n - for k replicas, the

application MTBF increases to 1/n1/k.
Using this analysis, the benefits of designing algorithms to

handle multiple node failures may not be beneficial due to
reduced probability. Additionally, the proposed approach can
still handle many node failures, as long as all the replicas have
not been destroyed.



F. Detailed Design Issues

The proposed framework for fault tolerance is a clear diver-
gence from classical methods - re-spawning of new processes
is not required. Due to semantic mis-match between the re-
quirements of the framework and MPI [29], [30] specification,
a new fault tolerance management infrastructure (FTMI) is
proposed in the previous work by Vishnu et al. [15]. The
major elements of FTMI are scalable and hardware assisted
fault detection, and fault tolerant collective communication
for control synchronization. PGAS applications use load/store
semantics for reading/writing data to various data structures,
and only control synchronization is needed, in addition to fault
tolerant data fence.

Hereby, an additional element of the proposed SFT infras-
tructure is faster fault information propagation. With increas-
ing scale, it is important to accelerate fault detection, so that
each process does not need to wait for a timeout to detect a
process/node failure. A conservative value of timeout has to be
used with increasing scale to prevent false positive - making
the problem even harder with scale.

To facilitate this, a data structure to represent the alive/dead
status of other nodes is used and shared among processes on
a node. The base address of this data structure is exchanged
at the startup, so that any process may write to this area of
memory directly on fault detection. This is equivalent of a
broadcast, which has a time complexity of log(p) using the
k-nomial algorithms [29], [30].

G. Putting It All Together: A Case Study with Chemistry

This section uses the proposed approach above to de-
sign a fault tolerant triples correction module within a high
performance and scalable computational chemistry code -
NWChem [14]. NWChem uses PGAS data structures based on
Global Arrays [10] and task based models for load balancing
among processes. The proposed approach presented in the
previous sections is implemented with Global Arrays, as much
of the original algorithm uses Global Arrays and task based
models.

my_next_task = 
SharedCounter() 
  do i=1,max_i 
    if(i.eq.my_next_task) 
then 
      call ga_get() 
        (do work) 
      call ga_acc() 
      my_next_task = 
SharedCounter() 
    endif 
  enddo 
barrier() 

D µ
ν 

Fig. 5. Chemistry Calculation Schematic Diagram

Figure 5 is an abstraction of many computational chemistry
algorithms such as self-consistent field, singles, double and

triples energy calculation. These algorithms are ordered in
terms of accuracy and computational complexity. The key
elements of the computation are a shared counter, which is a
load balance counter representing a task id of my next task.
The task id is a variable in the indices of global arrays to
determine the patch of a global array to be read/updated. Since
each task id determines which indices to read, get/put model
is useful for these calculations. The figure shows a case, when
the output of do work has to be accumulated in a global array.
The do work involves multiple calculations including dgemm
and input/output to multiple processes.

At this point, it is worthwhile noting that the problem is a
superset of MapReduce paradigm, where each mapper never
updates any global memory directly. As shown in this diagram,
it is the asynchrony of the calculation in get/accumulate, which
makes the problem harder and the MapReduce paradigm is
insufficient to solve this problem.

The demonstration case in this paper is triples energy calcu-
lation. The triples calculation is challenging for two reasons -
it is the most computationally phase of the application, using
as much as 90% of the compute time, and it is inherently
difficult to make this fault tolerant, because it is non-iterative
in nature [39]. No known fault tolerant algorithm, even
based on checkpoint/restart exists for triples.

There are several elements of the algorithm. The Shared-
Counter is a load balance counter, which may be hierar-
chically distributed, and it needs replication. However, for
legacy reasons, the counter is resident on the first node.
This limitation can be addressed by requiring a process to
compute a task id equivalent to its MPI rank in the beginning,
and then requesting the shared counter at a later point. The
other elements are fault tolerant get and accumulate. Each of
these operations are un-changed, since the replication of these
critical data structures is abstracted from the application.

Another important element is termination detection - who
should re-execute incomplete tasks. Since the task meta data is
fully replicated, at least one copy exists which correctly shows
the state of each task. For k replicas, a simple protocol is used,
in which responsible processes are given an execution priority.
The process, which has the highest priority re-executes the
incomplete tasks. This approach is used to design the fault
tolerant triples algorithm (FT-Triples). The other elements for
fault tolerant execution, such as FTMI are integrated with the
Global Arrays runtime.

V. PERFORMANCE EVALUATION

This section presents a performance evaluation of the FT-
Triples algorithm using an InfiniBand cluster. Multiple input
decks consisting of smaller calculations and larger calculations
of two water molecules and uracil molecule are used to
evaluate the performance of the algorithm. For each of these
input systems, the performance of the Original implementation
- the official 5.0 release of Global Arrays [10] is compared
with FT-Triples implementation for no-faults and multiple
node faults during the execution.
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Fig. 6. Uracil, 1 Molecule
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Fig. 7. Water, 1 Molecule
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Fig. 8. Water, 2 Molecules
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Fig. 9. Uracil, 1024 Processes
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Fig. 10. Uracil, 2048 Processes
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Fig. 11. Uracil, 4096 Processes

A. Experimental Testbed
The FT-Triples algorithm is evaluated on Chinook - a

supercomputer at Pacific Northwest National Laboratory. Chi-
nook [40] is a 160 TFlops system that consists of 2310
HP DL185 nodes with dual socket, 64-bit, Quad-core AMD
2.2 GHz Barcelona Processors. Each node has 32 Gbytes of
memory and 365 Gbytes of local disk space. Each node is
interconnected with InfiniBand DDR network using Mellanox
InfiniBand Network Interface cards and Voltaire switches.

B. Evaluation Methodology
An important aspect of our performance evaluation the

characterization of performance with actual process faults.
The fault is injected using a helper thread and executing
system(‘‘kill -9 -1’’) on the node. While the node
is still alive in true sense, the processes are dead, and as a
result the associated computation and memory is destroyed.
On production systems with only user-level accesses, this is as
close as possible to stress test the performance of the proposed
approach for actual node failures. The number of failures is
varied from 1-4 to capture multi-node failure scenarios.

C. Empirical Space Complexity
The space complexity utilization of critical data structures in

NWChem can be defined using number of basis functions (b),
number of orbitals (o), number of molecules (m) and number
of un-occupied orbitals (u). Typically, u = b − o. Let Mnd

define the space complexity of NWChem on a particular input
deck. Mnd = m4 · u2 · o2 doubles [39].

The performance evaluation uses Uracil molecule, which
has 340 basis functions, and 29 occupied orbitals. The overall
space complexity is 620 MB. This input deck can be used
for strong scaling up to 4096 processes. Using a conservative
estimate of 1 GB/process, the size of the critical data structure
is < 1% of the overall available memory. The rest of the
memory is for calculating local integral transformations. These
calculations do not affect any non-idempotent data structures
and can be re-calculated as a part of the compute phase of a
task.

The performance evaluation also uses multiple Water
molecules for performance evaluation, which has 51 basis
functions, 5 occupied orbitals. The space complexity is ≈
m4 · 2 Mbytes. The 24 water molecule used at full Jaguar
scale [39] uses ≈ 50 Gbytes of total memory - < 1% of the
total available memory. Here, we use two water molecules are
used for evaluation, because of the much smaller size of the
evaluation testbed.

D. Empirical Time Complexity

The empirical performance evaluation is performed with
Uracil and two water molecules, as discussed above. The
performance evaluation is done using one replica.

Each empirical time evaluation is further divided in multiple
elements:

• t fd: Time for fault detection
• t compute: Time for computation, excluding recovery



• t recovery: Time spent during recovery phase, including
re-computation of tasks

1) Overhead Without Faults: Figures 6, 7 and 8 show the
performance comparison of the original implementation with
the SFT implementation using Uracil, Water (1 Molecule) and
Water (2 Molecules), respectively. The overhead present in the
no-faults case is a reflection of the extra communication which
has to be done to the read-write replica.

The execution time for Uracil with Original implementation
decreases linearly, due to the amount of work available to each
process in number of tasks (δ). The overhead in no-faults case
is ≈ 3% in each of the cases - a very acceptable overhead. For
significantly long running applications, the incurred overhead
in absence of faults is acceptable. These results are 6x better
than the results reported by Moody et al., where only 85% of
the system efficiency is available for long running applications
due to check-pointing overhead [6]. The Water (2 Molecules)
case

The Water (1 Molecule) and Water (2 Molecule) cases are
short running input decks. The Water (1 Molecule) takes 18s
on 128 processes, and adds about 15-20% overhead with the
proposed SFT approach. For very short execution time cases, it
is not worthwhile to use the SFT approach. It is expected that
the system MTBF would be in order of tens of minutes for any
realistic calculation to succeed on larger scale systems. Hence,
this significant check-pointing overhead does not undermine
the capability of the proposed SFT approach. The Water (2
Molecules) case gives an overhead of less than 5% on 1024
and 2048 processes, respectively.

2) Performance Evaluation with NWChem and Uracil: This
section presents a performance evaluation of Uracil molecule
with actual process faults. The 1-fault case is equivalent of
one-node fault, which involves eight process failures. The
evaluation uses up to 4-faults (equivalent of 32 process failure
on 4-nodes). Figure 9, 10, and 11 show the result of the
evaluation on 1024, 2048 and 4096 processes, respectively.
tfd is relatively small in comparison to the overall execution

time for this input deck. This is primarily due to a combi-
nation of accelerated fault detection using hardware assisted
mechanisms and fault information propagation design. tfd is
expected to be O(p), with high constant due to the large value
of timeout. However, this is a very loose bound in practice,
because fault information propagation using collectives can
perform the broadcast in log(p) [29], [30].

Table II shows the overhead in comparison to the original
implementation. The 1024 process takes ≈ 3500s to execute
with the Original implementation as shown in Figure 9. A
failure of eight processes adds about 3% overhead in execution
time, which is highly scalable in terms of execution time.
As the number of failures increase, the overall overhead
increases due to the total increment in fault discovery and
re-execution. With 4-faults, the overhead is 6%, which is still
very reasonable given the total execution time and the number
of processes.

The 2048 process execution as shown in Figure 10 and
table II shows the performance evaluation and overhead,

respectively. The Original implementation takes ≈ 1850s to
completion. The total overhead with No-Faults increases due
to strong scaling, in comparison to 1024 processes. With 1-
Fault, the overhead is 7%, which is 4% higher than 1024
processes. The increment in overhead is due to higher time
spent in fault discovery and increased overhead of task re-
execution. The total time to re-execute the tasks does not
decrease proportionally, since there are only eight tasks to
be re-executed (1-Fault is same as eight process failures
resulting in up to eight task re-executions) with increasing
number of processes, the overall execution time has decreased
proportionally.

Similar increments in overhead are observed with 4096
processes using the table and the Figure 11. However, 4096
process case takes ≈ 900s. The overhead in presence of one
fault is 11%. This is still 4% better than the state of the art SCR
system, which provides up to 85% efficiency for applications
with check-pointing [6]. The proposed SFT approach is still
very scalable, as it needs to execute very few tasks, and the
overhead of fault discovery is largely mitigated by accelerated
fault information propagation.

Procs No-Fault 1-Fault 2-Faults 4-Faults
1024 1 3 5 6
2048 2 7 9 11
4096 3 11 15 22

TABLE II
PERCENTAGE OVERHEAD COMPARED TO ORIGINAL IMPLEMENTATION

WITH URACIL MOLECULE

3) Performance Evaluation with NWChem and Water
Molecules: This section presents a performance evaluation
of NWChem with Water molecules. Figures 12 and 13 show
the performance of two Water molecules on 512 and 1024
processes, respectively. As the figures show, the overall exe-
cution time of the base case is ≈ 1 minute on 512 processes.
The purpose of this test is to understand the feasibility of the
proposed approach, when the overall execution time of the job
is small.

Both charts show that the cost of fault detection is non-
negligible for such small executions. The cost of fault detec-
tion is about 20% higher for 1024 processes in comparison to
the 512 processes. For 512 processes, 1-Fault case increases
the execution time by about 27%. As the number of faults
increase, the overhead increases significantly, as the amount
of computation is relatively small. Clearly, for such small
executions, the SFT approach is not feasible. However, it is
difficult to design any scalable methods for fault tolerance
for such small executions. It is expected that the MTBF
of the systems on horizon would be much larger than the
execution time here. The strong scaling execution of two
water molecules shows greater relative overhead as shown in
Figure 13. However, the execution time of the base case is
45s, which is much smaller than the expected MTBF.
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Fig. 12. Water, 2 Molecules, 512 Processes
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Fig. 13. Water, 2 Molecules, 1024 Processes

E. Possible Improvements and Other Considerations

There is scope for improving the cost of recovery by altering
the check-pointing methods and adapting the algorithm. As an
example, the percentage of critical memory is a small fraction
of the overall memory available to a process. Hence, it is
possible to completely replicate the read-only data structures
and further reduce the cost of recovery. This would only
nominally increase the space complexity of the SFT approach.

The primary limitation of the proposed approach is that
the read-write data structures must be completely replicated.
For some application domains such as ones which perform
stencil computation, the complete memory space is a read-
write data structure. In these circumstances, legacy methods of
checkpoint/restart and message logging based approaches may
be useful, since they have regular communication patterns.
However, the proposed SFT approach is still applicable to a
strong scaling evaluation of these application kernels.

Another possibility to reduce the recovery overhead is to
reduce the granularity of each task. The NWChem application
primarily uses the SharedCounter to determine the patch of
global arrays to read/update. Depending on the task id, the
overall time for executing a task may vary from a 10ms to 30s.
The variance may be further reduced by algorithmic changes,
and keeping a ratio of communication to computation time
low, while allowing better load balancing and further recovery.

VI. CONCLUSIONS AND FUTURE WORK

This paper is a convergence of fault tolerance approaches,
where the cost of recovery in presence of failures is truly
proportional to the degree of failure, rather than the system
size. To this end, the proposed approach has used Partitioned
Global Address Space (PGAS) models for automatic repli-
cation of data based on its properties (read-only, read-write)
and abstracted much of the accesses to this fault tolerant data
store. Such an abstraction is useful in designing selective
replication algorithms (such as reed-solomon encoding for
read-only structures) based on a combination of data properties
and architecture (such as presence of SSDs/NVRAM).

The proposed approach has used over-decomposition of data
and computation in tasks - units of computation, which may
be scheduled on any process as long as the data dependencies
are met. Task based execution models are finding increased
adoption in linear algebra libraries, as they are conducive
for dynamic load balancing. The inherent properties of tasks
(get-compute-put) leverage the fault tolerant data store for
accessing read-only/write-only structures. At the point of
failure, only the tasks which were currently being executed by
processes on the faulty node need to be re-executed - making
the cost of recovery truly proportional to the degree of
failure. A combination of PGAS and task models facilitates
divergence from the fixed process set model - no additional
processes need to be re-spawned at failure. These properties
has made the proposed approach a very attractive solution for
addressing hard faults at scale.

The proposed fault tolerance infrastructure is plugged in the
most computationally challenging module of NWChem [14]
- a highly scalable and popular computational chemistry
package. An implementation of the proposed infrastructure
and its evaluation with NWChem using actual process failures
shows that < 15% overhead is incurred in terms of execution
time. This time includes the cost for writing to replicas, fault
detection of processes and continued execution with partial
re-execution of tasks in presence of failures.

The on-going work is to study the sensitivity of NWChem
and other applications to bit-flips in critical data structures.
This study is an important step in defining fault tolerant
algorithms, which can detect and correct slient errors using
the automatic replication infrastructure presented here.
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