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Abstract
Communication subsystem plays a pivotal role in achieving scal-
able performance in clusters. The communication semantics em-
ployed are dictated by the programming model used by the appli-
cation such as MPI, UPC, etc. Out of the gamut of communication
primitives, collective and one-sided operations are especially sig-
nificant and have to be designed harnessing the capabilities and
features exposed by the underlying networks. In some cases, there
is a direct match between the semantics of the operations and the
underlying network primitives. InfiniBand provides two transport
modes: (i) Connection-oriented Reliable connection (RC) support-
ing Memory and Channel semantics and (ii) Connection-less Un-
reliable Datagram (UD) supporting Channel semantics. Achieving
good performance and scalability needs careful analysis and design
of communication primitives based on these options.

In this paper, we evaluate the scalability and performance trade-
offs between RC and UD transport modes. We study the seman-
tic advantages of mapping collective and one-sided operations on
to memory and channel semantics of InfiniBand(IBA). We take
AlltoAll as a case study to demonstrate the benefits of RDMA
over Send/Recv and to show the performance/memory trade-offs
over InfiniBand transports. Our experimental results show that UD-
based AlltoAll performs 38% better than Bruck’s algorithm for
short messages and up to two times better than the direct AlltoAll
over RC. Since IBA does not provide RDMA over UD in hardware,
we emulate the same in our study. Our results show a performance
dip of up to a factor of three for emulated RDMA Read latency as
compared to RC, highlighting the need for hardware based RDMA
operations over UD.
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1. Introduction
Clusters built from commodity PCs are being predominantly used
as main stream tools for high-end computing owing to their cost-
effectiveness and easy availability. In fact, the top 500 list of super-
computers feature large scale clusters delivering TFlops of compu-
tational power. One of the primary challenges faced by such mas-
sive cluster installations is that of scalability, encompassing both
the performance and resource requirements of the system architec-
ture. Among the different components of the cluster architecture,
the communication subsystem is particularly important as it plays
a pivotal role in achieving overall scalability of the system and en-
abling higher parallel speed-ups of large scale scientific and engi-
neering applications.

On the other hand, InfiniBand Architecture (IBA) [9] is a new
industry proposed open standard and is making headway in the high
performance networking domain. In addition to delivering low la-
tencies and high bandwidth, its rich set of network primitives can be
leveraged by the upper layer communication primitives for achiev-
ing high performance and scalability. InfiniBand allows for four
conduits of message transport: Reliable Connection (RC), Unre-
liable Connection, Reliable Datagram (RD) and Unreliable Data-
gram (UD). Further, IBA specifies memory semantics for commu-
nication through Remote Direct Memory Operations (RDMA) and
channel semantics through Send/Recv. In current IBA specification
[9], RC and RD support both RDMA and Send/Recv while UD
supports only Send/Recv.

While raw performance is provided by IBA, leveraging the
same and scaling the performance to large clusters requires critical
analysis of available options and issues involved. In particular,
programming models need the support of highly efficient collective
and one-sided operations [2, 3]. In this paper, we choose AlltoAll
as a case study for collective operations to evaluate the impact
of choosing different communication semantics and trade-offs in
their implementations over the IBA transport models (UD and
RC), as described above. Additionally, we study these trade-offs in
the context of one-sided operations. In our evaluation, we clearly
observe the advantages of utilizing memory (RDMA) semantics
and UD based transport protocols. Since, currently IBA does not
support RDMA over UD, we emulate RDMA over UD transport
in our study to understand its benefits. Please note that though
IBA provides RDMA over RD, it is not implemented by any of
the known IBA vendors because of its well known performance



limitation of supporting only one message in flight between two
end points.

By our study, we underscore the importance of using both
the memory semantics and connection-less transports of IBA to
achieve good scalability in terms of both performance and re-
source usage for collective and one-sided communication primi-
tives. Specifically, we aim to achieve the following objectives:

• Analyze the impact of using memory semantics vis-a-vis chan-
nel semantics for collectives like AlltoAll in modern high band-
width networks.

• Demonstrate why currently InfiniBand with the lack of UD
based RDMA, does not scale well wrt memory for one-sided
operations used by different programming layers.

• Analyse the effectiveness or lack thereof of emulated RDMA
over UD in scaling the performance of communication primi-
tives.

• Show the trade-offs between the performance and memory re-
quirements in the context of collective operations, in particular
for AlltoAll operations.

• Show that increased number of connections for the connection-
oriented transports can lead to cache and resource constraints
on the NIC leading to decreased performance.

We have implemented our designs and integrated them into
MVAPICH[4] which is a popular MPI implementation for Infini-
Band. Our experimental results show that the UD-based AlltoAll
performs 38% better than Bruck’s algorithm for short messages and
up to two times better than the direct AlltoAll over RC. Further, our
results show performance degradation up to a factor of three for
emulated RDMA Read latency of one MTU compared to RC. This
demonstrates the need to have hardware based RDMA operation
over UD for good performance and scalability in next generation
clusters.

The rest of the paper is organized in the following way. In
Section 2, we provide an overview of the InfiniBand Architecture.
In Section 3, we explain the motivation for our work. In Section
4, we discuss detailed design issues. We evaluate our designs in
Section 5 and talk about the related work in Section 6. Conclusions
and Future work are presented in Section 7.

2. Background
In this section, we present a brief overview on the InfiniBand
Architecture and collective communication.

InfiniBand Architecture Overview:
InfiniBand Architecture (IBA) [9] is an industry standard that

defines a System Area Network (SAN) to design clusters offering
low latency and high bandwidth. A typical IBA cluster consists of
switched serial links for interconnecting both the processing nodes
and the I/O nodes. The IBA specification defines a communication
and management infrastructure for inter-processor communication.
InfiniBand supports different classes of transport services. In cur-
rent products, Reliable Connection (RC) service, Unreliable Data-
gram (UD) service and Unreliable Connection (UC) are supported.

Memory Semantics “vs” Channel Semantics:
IBA supports two types of communication semantics: Channel

Semantics (Send-Receive communication model) and Memory Se-
mantics (RDMA communication model).

In channel semantics, each send request has a corresponding
receive request at the remote end. Thus, there is a one-to-one
correspondence between every send and receive operation. Receive
operations require buffers posted on each of the communicating
QP, which amount to a large number. In order to allow sharing
of communication buffers, IBA allows the use of Shared Receive

Queues (SRQ). In which multiple QPs have a common Receive
Queue.

In memory semantics, Remote Direct Memory Access (RDMA)
operations are used. These operations do not require a receive de-
scriptor at the remote end and are transparent to it. For RDMA, the
send request itself contains the virtual addresses for both the lo-
cal transmit buffer and the receive buffer on the remote end. The
RDMA operations are available with the RC and RD Transport.
IBA also defines an additional operation: RDMA write with imme-
diate data. In this operation, a sender can send a limited amount of
immediate data alone with a regular RDMA operation.

Figure 1 shows the basic working of both the RDMA and
the Send/Recv models. The main steps involved are labeled with
sequence numbers. The main difference between the two is the
requirement of posting a receive descriptor for the send/recv model.

Connection-Oriented Reliable Connection (RC):
IBA specifies the RC transport layer as a reliable communica-

tion layer. In this transport layer, both channel and memory se-
mantics are supported. The communication packets are completely
managed by the RC transport layer. Further, the RC transport layer
guarantees reliability and in-order delivery of data.

Connection-Less Unreliable Datagram (UD):
The UD Transport specified by IBA supports only the channel-

based communication semantics. The basic communication is
achieved by the UD layer by exchanging network MTU sized data-
grams. These datagrams can be sent to a UD QP by any other UD
QP in the network. An explicit connection between the two QP’s
is not needed. The reliability and order of delivery of these data-
grams is not guaranteed by IBA and needs to be managed by the
application.
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Figure 2. Zero Copy over Channel Semantics

Zero-Copy over Channel Semantics:
A zero-copy protocol using channel semantics is outlined in

Figure 2. The basic idea is to use a handshake to make sure that
the remote side has preposted the descriptor pointing to destination
buffer. This mechanism applies well when a single pair of process
is communicating. However, if more than one process is sending
messages to the same destination node, serialization of the mes-
sages occurs if a single receive queue is used for the incoming data
messages. This is the case with the Shared Receive Queue of RC.
This is indicated in Figure 2. Though the RTS messages have been
concurrently issued by both the processes in the first step, the RTR
message arrives only in the fourth step after the data delivery of the
previous message is completed.

Caching connection information at NIC:
For the connection-oriented transport, the NIC maintains a sep-

arate cache called as ICM to store the queue pair context and com-
pletion queue information. It also stores the latest address transla-
tion information of the buffers used. In the case of connection-less
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Figure 1. InfiniBand Transport Models: (a) Send/Recv Model and (b) RDMA Model

transport, the demand on the cache resources is much less as one
queue pair is enough to communicate with any process in the net-
work unlike the connection-oriented case which needs a QP for
each pair of nodes.

Collective Algorithms:
In this section we present the different algorithms used for MPI

collectives. For very small messages, MPI Alltoall such as used
in MPICH[11] uses the Bruck’s Algorithm [10] which is a store
and forward algorithm taking log(n) steps. For small to medium
messages, Alltoall uses a non-blocking algorithm [2] where each
node sends messages to all other nodes. Messages are scattered
so that not all messages are directed towards a node to avoid
congestion and hot-spot effects. A simple rule could be a process
sending the ith message to process whose rank is (my rank +
i)%n. This algorithm works well for medium messages where the
cost of store and forward is absent. For large messages, a pair-wise
exchange algorithm is used which consists of (n− 1) steps. In step
i, the process with rank r sends and receives data from process
with rank r⊕i [2]. Barrier is implemented using a dissemination
based algorithm which consists of log(n) steps [1]. For Allgather
small messages, a recursive doubling algorithm again consisting of
log(n) steps is employed.

3. Motivation
As clusters increase in size, the performance and scalability of
the communication subsystem becomes the key requirement for
achieving overall scalability of the system. In this context, the ef-
ficiency of collective and one-sided operations is especially impor-
tant as they are the widely used communication operations in dif-
ferent programming models like MPI-1/MPI-2, UPC etc. The un-
derlying cluster interconnect plays a crucial role in determining the
performance achievable for a given communication operation. In-
finiBand, which is a leading high performance interconnect, offers
several features and capabilities. Out of these, the prominent ones
are the support for memory semantics in the form of RDMA op-
erations together with the standard Send/Recv channel semantics.
Also, it allows for two communication modes of transport: Reli-
able Connection (RC) which is connection-oriented and Unreliable
Datagram (UD) which is connection-less. RDMA operations are
supported over RC transport but lack in UD. Thus, one way to sup-
port RDMA over UD is to emulate them over Send/Recv, as illus-
trated in Figure 3.

As shown in Figure 3, there exist different design choices for
implementing collective and one-sided operations. Mainly, these
can be classified into choosing RDMA vs Send/Recv. The primary
motivation of choosing one or the other is dependent on to what
extent these semantics match with the upper application layer com-

munication requirements. In addition, with each of the semantics,
once again there are two options of choosing the underlying trans-
port implementing the semantics. Thus, it becomes necessary to
evaluate the trade-offs in choosing either of the two transports.
However, it is to be noted that currently IBA does not support mem-
ory semantics over UD. We consider the above mentioned issues
one after another in the subsequent sections.
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Figure 3. Broad Overview

3.1 RDMA “vs” Send/Recv

In this section, we explain why RDMA is better than Send/Recv for
certain collectives and one-sided operations.

High-Concurrency Collective operations: For maximizing
overall concurrency in modern high bandwidth networks, collec-
tive operations like AlltoAll use the direct algorithm for short and
medium sized messages. As explained in Section 2, in this algo-
rithm, each process issues non-blocking sends to all other processes
in the group. The current practice of implementing this algorithm
is using copy-based approaches.

Though this algorithm is used for small to medium messages,
copy costs become dominant as the system size increases. This
is because in AlltoAll, the total size of the messages copied in-
creases linearly with the number of processes involved. Using
RDMA presents a potential design alternative for implementing
High-Concurrency AlltoAll with zero-copy. Also, the semantics of
the direct algorithm match well with that of RDMA with each pro-
cess writing data into other processes’ buffer. It is to be emphasized
that zero-copy with concurrency is possible with RDMA as the or-
dering and placement of messages is automatically taken care of
by the underlying layer. Achieving zero-copy for concurrent net-



work operations over Send/Recv can be inefficient and needs to be
investigated.

One-sided Operations: One-sided operations benefit directly
from the native RDMA support of the underlying network fabric.
The main benefits of offloading RDMA to the network processor
are zero-copy capabilities on pinning based networks and no cache
pollution. The latter is a significant factor to be considered for
true overlap of computation and communication. RDMA also is
a good fit for the languages like UPC, etc. which are known to be
suited to unstructured computations and irregular communication
patterns [7].

3.2 Comparison of IBA Transports, RC and UD

Performance “vs” Resource Scalability: Connection-oriented
protocols offer better latency and bandwidth capabilities as the
fragmentation and assembly of messages is taken care of by hard-
ware. Connection-less protocols on the other hand do not have
these advantages as they transfer one MTU of data at a time. Due
to lack of network level packet ordering in connection-less proto-
cols, they have the drawback of requiring packet buffering at the
receiver to handle out-of-order packets and hence restrict zero-copy
data movement over UD.

RC also poses its own suite of problems. The number of connec-
tions needed for RC transport grows quadratically with the num-
ber of communicating processes limiting the scalability as the re-
source usage grows linearly with increasing number of point-to-
point channels. This problem can be alleviated to certain extent
with the use of a single reception point for the incoming messages
(SRQ).

In light of the above mentioned discussions, it is necessary
to understand the implications of these in detail both in terms of
performance and resource usage.

NIC level cache and resource management: As mentioned in
the earlier section, each QP has certain resource requirement on
the IB HCA. Based on its own constraints, the HCA caches the
information related to a certain number of QPs in its cache for
faster processing. This method of operation of an IB HCA uniquely
impacts the performance of a connection-oriented design, leading
to a basic performance trade-off.

While the connection-less designs need very few QPs (typically
one QP) for its communication needs, the connection-oriented de-
signs need a large number of these (order (n), where n is the sys-
tem size). Though the individual RC QPs can provide better per-
formance than UD based communications, having more than a few
RC QPs can lead to resource constraints at the IB HCA and the
performance achieved by the RC QPs’ can significantly drop. This
trade-off imposes a significant limitation on the system size that a
RC QP based design can efficiently connect. This trade-off needs
to be evaluated and analyzed quantitatively.

3.3 Emulating RDMA over UD

As seen from the earlier section 3.1, one-sided operations benefit
greatly utilizing the RDMA semantics exposed by the underlying
layer. Also, as mentioned in section 3.2, the scalability and per-
formance of these RDMA operations is directly dependent on the
underlying transport mode used. RC provides memory semantics
in the form of RDMA. But, as shown in section 3.2, it has several
scalability limitations. UD on the other hand is scalable, but it lacks
memory semantics. RDMA over UD is desired in order to support
scalable one-sided operations.

Efficient support for scalable one-sided operations is required
in many scenarios. Studies from Yelick et al have demonstrated
the scaling of UPC to a large number of nodes [7]. In one of their
papers, they “break-down” the exchange phase of the AlltoAll to
achieve overlap of computation and communication where possi-

ble. In their approach, a given node communicates directly with
every node in the system using one-sided operations. Since current
connection-less UD transport does not provide RDMA operations,
in light of the above mentioned performance benefits of RDMA
and scalability benefits of UD based transports, the possibility of
emulating RDMA like operations over UD presents an important
scenario. The performance implications of the emulation need to
be carefully studied to understand the utility of RDMA-like opera-
tions over UD.

As can be seen there exist multiple design decisions which need
careful evaluation for an in-depth understanding of the trade-offs.
In this paper, we aim to accomplish the following:

(i) Understand the benefits of RDMA vs Send/Recv for High
Concurrency AlltoAll operation, (ii) Understand the Performance
and Resource Scalability trade-offs of RC vs UD at the Benchmark
Level, and (iii) Explore RDMA over UD emulation and understand
its implications.

4. Design and Implementation
In this section, we present the design choices and our designs of
RDMA AlltoAll, RDMA over UD and UD-based AlltoAll.

4.1 High Concurrency RDMA-based AlltoAll

AlltoAll Collective operation, as described in Section 2, uses a
direct algorithm where each process issues simultaneous non-
blocking send operations to all the other processes. The current
implementations use copy based approaches over Send/Recv for
implementing these. These copy costs become significant as the
system size increases. Thus, we need zero-copy approaches to re-
move this overhead. There are two alternatives of achieving zero-
copy: (i) using Send/Recv and (ii) using RDMA.

Using Send/Recv semantics for high-concurrency zero-copy op-
erations has a fundamental drawback. As illustrated in Section
2, achieving zero-copy over Send/Recv leads to serialization of
network transactions and our results indicate that copy-based ap-
proaches perform better. Please note that we are assuming that a
SRQ is used for incoming messages.

RDMA on the other hand provides benefits of zero-copy. Uti-
lizing RDMA allows the direct transfer of data from the source
buffer to the destination buffer with the ordering taken care of au-
tomatically by the network. Most importantly, this also holds true
irrespective of the global order in which the messages are injected
into the network. We now present important issues for doing direct
AlltoAll over RDMA.

(SEND) (RECV)

(SEND) (RECV)

(SEND)(RECV)

PROCESS: 0

PROCESS: 1 PROCESS: 2

Figure 4. High-concurrency AlltoAll

Zero Copy: The main idea in our approach is to expose the
registered receiver buffer to all the processes participating in the
collective operation. Doing so enables direct transfer of data from
a given process’s send buffer to the target buffer as shown in
Figure 4. This would also require pinning of the send buffers of the
AlltoAll. Once the framework for zero-copy is ready, the processes
issue non-blocking RDMA write operations according to the direct
algorithm as discussed in Section 2. All these operations place



data directly into the receive buffers thus ensuring zero-copy. The
unpinning of the memory buffers can be done in a lazy manner as
done in MVAPICH[4]. This cuts down the overhead of pinning and
un-pinning when the application re-uses the same buffers.

However, one salient observation to be made in this approach
is the need for explicit synchronization before the AlltoAll begins.
This is because a given process can access a remote process’s
receive buffer only after the remote process called the AlltoAll.
Issuing a write operation before that causes incorrect behavior due
to two reasons. Firstly, the framework for zero-copy might not be
ready for the write to succeed. Secondly, even if the framework is
ready, the application might still be using the receive buffer. In this
case, writing into this buffer is clearly not admissible.

Address Exchange and Completion Semantics: Address ex-
change is a primary requirement for zero-copy RDMA-based pro-
tocol. In our approach, we exchange addresses along with the syn-
chronization phase. This would be similar to the allgather operation
of MPI. However, if the application uses the same receive buffer,
then this address can be cached so that the address exchange can
be eliminated. The decision to use the cached copy or not can be
taken during the synchronization phase. If the process needs to use
a different buffer, it explicitly notifies this to the other processes
during synchronization. We have used a log(n) algorithm similar
to the one used in Barrier and Allgather, as mentioned in Section 2.

For tracking completions, we use RDMA with Immediate data
feature of IBA so that a completion entry is generated whenever a
RDMA write finishes. All the processes poll for (n − 1) comple-
tions where n is total number of participating processes. The work
requests for using the Immediate mode of RDMA can be preposted
on the SRQ.

4.2 Emulating RDMA over UD

As discussed in Section 3, RDMA over UD emulation is required
to support scalable one-sided operations. In this section we explore
the possibility of emulating RDMA over UD. We outline the basic
issues that need to be resolved for doing the emulation.

There are two broad design choices of emulating RDMA over
UD, using zero-copy or copy-based. However, using zero-copy
over UD becomes difficult to accomplish as UD does not guarantee
in-order delivery of packets. Also, as shown in the earlier section,
zero-copy over channel semantics serializes network transactions.
Due to these two reasons, we follow a copy-based approach for our
emulation. However, a major drawback of this approach is cache
pollution which is absent in zero-copy protocols.
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DATA

POST DATA

EVENT
(READ)

RDMA WRITE REQ
      &  DATA

COMPLETION
POLL

COPY DATA

(WRITE)

COMPLETION
POLL

COPY DATA

Figure 5. Emulating RDMA over UD

We now describe the protocols used for copy-based RDMA over
UD emulation.

RDMA Read emulation over UD: As Figure 5 indicates, de-
signing RDMA Read requires three steps. In the first step, the issuer
sends the RDMA Read Request together with the address of the re-
mote buffer. Once the remote side receives the request, it posts the
data corresponding to the address back to the process issuing the
request. The issuing process receives the data and copies it into the
correct destination buffer.

There are two important issues with this basic protocol. The
first one pertains to the asynchronous progress of the operation. A

RDMA Read request arriving at the remote end necessitates the
early service of this request to achieve lowest latency possible. In
the case of the native RDMA support over RC, this is taken care
of by a dedicated processor on the NIC. To achieve this over UD,
we need a separate host-level service thread which manages these
tasks. The service thread can either poll for the incoming requests
or block until a request arrives. The polling mode is not suitable be-
cause the service thread would contend with the application threads
for CPU. To make the communication progress least obtrusive to
the application’s computation, we need to use the blocking mode.

Another issue is that the service thread can execute in the user
address space or as a part of the kernel in the form of kernel-level
thread. However, in either cases, blocking mode needs to be used
to avoid contention of CPU resources. Our implementation is based
on the user-level implementation. The application is responsible for
spawning its own service thread.

IBA allows for the blocking mode or the event notification
mechanism. In this mechanism, the RDMA request message has
a special bit set. This bit called as the solicitation flag triggers
a completion notification event once the message arrives at the
other end. After the notification is generated, the service thread
is woken which follows-up on the remaining procedure. In our
case, this would be posting the data corresponding to the address
specified in the request packet. If the address region is not-pinned, a
registration operation is required on the appropriate buffers before
the descriptor is posted. Also, note that a UD operation supports
transfer of only one MTU of data per descriptor. Thus, a chain of
descriptors is required in case the data exceeds one MTU size. As
explained in the next section, the event notification overhead can be
avoided for RDMA Write operations.

RDMA Write emulation over UD: We now consider the op-
eration of a RDMA Write over UD. As shown in Figure 5, in the
first step, the issuing process posts the RDMA write request to the
remote process. The request in this case carries both the remote
address and also the data payload. Once the request reaches the
remote end, the remote process copies the data into the address
specified by the issuer.

Please note that another important issue which needs to be
addressed in detail is that of security. The integrity of the process
memory has to be carefully safeguarded so that only authorized
processes can access the memory window. Since our focus is on the
performance aspects of the emulation, we assume security as not an
issue in our study. As opposed to a Read operation, Write operation
can be optimized not to have an event generated. This is because the
host process can do a lazy copy of the data into its memory window
whenever it checks for the completion of the operation. In our case,
an operation is complete if the associated IBA completion entries
have been successfully polled from the completion queue.

4.3 UD-based AlltoAll

As explained in Section 2, RC and UD transports exhibit differ-
ent performance and scalability trends. To completely evaluate the
trade-offs between these two modes of transport, we choose All-
toAll as the benchmark to reflect the benefits of choosing RC vs
UD. AlltoAll over RC is already integrated into MVAPICH [4]. We
now present two new designs of AlltoAll over UD. The first one is
the direct algorithm as explained in Section 2. This algorithm ex-
clusively uses UD for communication. The second one explained
below uses both forms of transport RC and UD for data transfer.

Hybrid algorithm: This algorithm is the variant of the pair-
wise exchange algorithm which is used for large messages. As dis-
cussed in Section 2, this algorithm consists of (n − 1) steps where
in each step a given process exchanges messages with a different
peer process. This algorithm can be modified such that from a given
number of steps, k steps can use RC transport for messaging and



the remaining (n − 1 − k) steps use UD. In our implementation,
the parameter k is the same across all the processes to ensure ho-
mogeneity.

We now outline the implementation issues common to both the
algorithms.

Communication over UD: As explained in earlier sections,
UD allows for MTU-size packet transfer between any two pro-
cesses. All the information the processes need to know are the
QP specific information such as QP numbers, Qkeys and Address-
vectors for routing. The first step required in the communication
of a message is the fragmentation into MTU-sized chunks. These
chunks are then posted to the UD-QP after filling in the descrip-
tors with the address information of the destination process. To re-
ceive the message the reverse process is required, assembling of
the chunks of the data into the receive buffer. Also, note that since
UD does not guarantee order of delivery of the data, each packet
is marked with a sequence number so that the data is placed in the
correct manner.

Reliability mechanism: Since UD is unreliable, we need host-
level reliability to ensure retransmission if any packet loss is en-
countered. We use a Nack based approach to tackle the issue. A
Nack based approach is used because the probability of packet drop
in a cluster is relatively very low. Infact, we observed no packet
drop in our experiments. However, we need to buffer the packets in
case the packet loss is experienced. Owing to the property of All-
toAll that at any given time only two operations can be outstanding,
reliability protocol is simplified. Thus, at any point a maximum of
two messages are buffered.

5. Performance Evaluation
In this section, we explain the tests conducted and the analysis of
the results. We first briefly describe our experimental testbed.

Each node of our testbed has two 3.6 GHz Intel processors and
2 GBytes main memory. The CPUs support the EM64T technology
and run in 64 bit mode. The nodes are equipped with MT25208
HCAs with PCI Express interfaces. A Flextronics 144-port DDR
switch is used to connect all the nodes. The operating system used
was RedHat Linux AS4.

5.1 Performance Trade-Offs

In this section, we present the benchmark-level evaluation and
analysis of the various designs and performance trade-offs studied
in this paper.

5.1.1 Impact of RDMA over Send/Recv

In this section, we first demonstrate that zero-copy techniques for
high-concurrent network transactions over Send/Recv with SRQ is
not a good idea. We then demonstrate the performance benefits of
RDMA compared to the copy-based approach.

Concurrent vs Serial: In this test, several nodes send messages
to the root node. The benchmark is implemented in two different
ways, with and without copy. The zero copy test follows the proto-
col explained in Section 2 and imposes serialization. With copy, the
root copies the messages from pinned buffers to the receive buffer
but there is concurrency in network operations. As can be seen from
Figure 6(c), using copy-based or concurrent transactions performs
considerably better than zero-copy or “serial” as in the figure.

AlltoAll over RDMA vs Send/Recv: The performance com-
parison of the zero copy RDMA-based AlltoAll vs Copy-based ap-
proach is shown in Figure 7(a). As can be seen from the figure,
the zero-copy AlltoAll performs about 38% better for the 32 nodes.
Also, for more number of nodes, the performance gains are over
33% for small to medium messages. This demonstrates the impact
of using memory semantics vs channel semantics for doing zero-

copy high-concurrency collective operations. The copy-based All-
toAll is based on SRQ channel semantics incorporated into MVA-
PICH.

5.1.2 RC vs. UD

We now demonstrate the trade-offs between using connection-
oriented RC vis-a-vis connection-less UD. We first do a a micro-
benchmark evaluation and then choose AlltoAll as the Benchmark
to compare RC and UD.
Micro-Benchmark Level Evaluation:

Basic Evaluation of IBA Transports: Figures 8 (a) and (b) illus-
trate the performance of RC and UD in latency and bandwidth. As
indicated in the figures, RC performs better than UD, both in la-
tency and bandwidth. However, for MTU messages, both perform
almost equally well for send/recv case. But, for large messages, UD
performance drops compared to RC. This can be seen in the laten-
cies of messages over MTU and in the bandwidth numbers. This
can be attributed to the per-MTU overhead and lack of efficient
pipelining.

Memory Scaling of RC: Figure 6(a) explains the principal draw-
back of using RC, i.e., growing memory requirements with increase
in the number of connections (QPs). As can be seen from the figure,
there is an upward linear trend of memory usage with the number
of connections. We assign one QP per connection.

NIC caching effects: To explain the caching effects, we con-
structed a simple ping-pong latency benchmark with multiple con-
nections present between the two nodes. Messages are exchanged
in a round-robin manner and their latencies measured. As indicated
in Figure 6(b), the latency of messages start increasing from num-
ber of connections (QPs) equal to 32. This is because the NIC has
to DMA the QP context information every time this is flushed from
the cache.

Benchmark Level Evaluation (AlltoAll): In this section, we
first evaluate the performance of the AlltoAll latency for three
different algorithms : AlltoAll over UD as discussed in this paper,
AlltoAll over SRQ in MVAPICH, AlltoAll using Bruck’s Algorithm
in MVAPICH. The legends in the graph corresponding to these
three schemes are: direct-UD, direct-SRQ and Bruck. We then
show the trade-offs in performance vs resource utilization using
the hybrid algorithm proposed in this paper.

Comparison of RC and UD: As shown in Figure 9, for short
messages UD performs better than RC. This is in tune with the
micro-benchmark evaluation above. However, as the message size
increases, the performance of RC is better than UD. This is because
of the better bandwidth capabilities of RC. Also, UD performs
37% better than Bruck’s which is the currently used algorithm for
AlltoAll short messages.

Also, as seen from the figures, the latency of small messages
of direct-UD is almost double than that of direct-SRQ for both 32
and 61 processes. This can be mainly attributed to the NIC caching
overhead. As Figure 6(b) indicates, the caching overhead comes
into play after 16 connections have been established. Since every
message incurs this overhead, the total overhead increases linearly
with the size of the process group. Thus, if 1 us overhead is incurred
per message, for 61 processes it would be 61 us. For UD, this
overhead is not present because only one QP is used which can
be easily cached. Further, our direct approach performs better by
around 36% compared to Bruck for small messages.

Hybrid Algorithm - Choosing Performance ’vs’ Memory: We
now present the results from hybrid algorithm proposed in this pa-
per which allows choosing varying number of connections for the
AlltoAll operation. The important point to note is that using this
algorithm the upper layer can configure the maximum number of
connections to use depending on the resource availability on the
system. Figure 7(b) shows the performance of AlltoAll with UD
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and varying number of RC connections used. The “rc-limit” cor-
responds to the number of RC connections used in this algorithm.
As shown in Figure 7(b), increasing the “ rc-limit” delivers better
performance but increases resources as already seen from Figure
6(a).

5.1.3 RDMA Emulation over UD

We now present the results of the emulated Read and Write op-
erations over UD. Figure 10 explains the results of the Read la-
tency tests. We explore three cases: when the destination buffer is
in the cache, out of the cache and when polling is used instead of
events. Our motivation of taking into caching is because the objec-
tive of one-sided operations is to overlap computation and commu-
nication. In such scenarios it is very likely that the communication
buffer might not be cached while the application is computing on a
different chunk of data. As the results indicate caching determines
the performance of both the latency and also bandwidth. Also, as
the figure indicates there is around 8-9 us of event overhead com-
pared to polling. Write operations, as indicated in Figure 11, are
relatively less costly as there is no event overhead. But like Read
operations, caching plays an important role here too.

Further, compared to RC performance (Figure 8), RDMA em-
ulation performs poorly. This is especially true for one MTU mes-
sage where RDMA Read has a factor of more than three perfor-
mance degradation. In the light of above observations, we conclude
that emulating RDMA over UD poses performance limitations and
the native support of RDMA over UD is desired.

6. Related Work
Collective Algorithms have been studied well in the past. Thakur et
al have optimized various collective algorithms over MPICH over
Myrinet and IBM SP [1, 12]. However, the focus of our work is on

efficient collective and one-sided support over InfiniBand. RDMA
collectives like MPI Alltoall have also been studied over MVA-
PICH [2, 3, 16, 4]. Our approach is different from these as we focus
on high concurrency collective patterns. One-sided operations have
also been studied in depth. Various designs for one-sided operations
have been proposed in [13, 15, 14, 5]. However, these operations
have been designed over RC support of IBA which poses scalability
problem for large cluster sizes. Yelick et al have studied one-sided
operations in the context of UPC and Titanium [6, 17, 18, 19]. In
[7], the authors propose techniques to achieve overlap of computa-
tion and communication using one-sided operations. However, our
focus is on addressing the scalability issues of one-sided network
primitives for clusters comprising of large number of nodes. The
benefits of RDMA over UD have been explored in [8]. The au-
thors explore the potential of using RDMA over UD for increased
performance, reduction in hot-spot effects and caching problems.
Our focus is on studying the benefits of emulating RDMA over UD
for one-sided operations.

7. Conclusions and Future Work
As clusters increase in size, the performance and scalability of
the communication subsystem becomes the key requirement for
achieving overall scalability of the system. In this context, the ef-
ficiency of collective and one-sided operations is especially impor-
tant as they are the widely used communication operations in differ-
ent programming models like UPC, MPI-2, etc. Thus, they have to
be designed harnessing the capabilities and features exposed by the
underlying networks. In some cases, there is a direct match between
the semantics of the operations and the underlying network prim-
itives. InfiniBand provides two transport modes: (i) Connection-
oriented Reliable connection (RC) supporting Memory and Chan-
nel semantics and (ii) Connection-less Unreliable Datagram (UD)
supporting Channel semantics. Achieving good performance and



scalability needs careful analysis and designing of communication
operations based on these options.

In this paper, we evaluated the scalability and performance
trade-offs between RC and UD transport modes. We investigated
the semantic advantages of mapping collective and one-sided oper-
ations on to memory and channel semantics of IBA. We have taken
AlltoAll as a case study to demonstrate the benefits of RDMA over
Send/Recv and shown the performance/memory trade-offs over IB
transports. Our experimental results show that the UD-based All-
toAll performs 38% better than Bruck’s algorithm for short mes-
sages and up to two times better than the direct AlltoAll over RC.
Since IBA does not provide RDMA over UD in hardware, we emu-
lated the same in our study. Our results show a performance dip of
up to a factor of three for emulated RDMA Read latency as com-
pared to RC, highlighting the need for hardware based RDMA op-
erations over UD. We thus emphasize the need for extending the
IBA specification to allow for support of RDMA over UD. As fu-
ture work, we plan to systematically study these trade-offs on large
scale cluster and undertake application-level evaluation.
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