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Abstract

In the arena of cluster computing, MPI has emerged as
the de facto standard for writing parallel applications. At
the same time, introduction of high speed RDMA-enabled
interconnects like InfiniBand, Myrinet, Quadrics, RDMA-
enabled Ethernet has escalated the trends in cluster com-
puting. Network APIs like uDAPL (user Direct Access
Provider Library) are being proposed to provide a network-
independent interface to different RDMA-enabled inter-
connects. Clusters with combination(s) of these intercon-
nects are being deployed to leverage their unique features,
and network failover in wake of transmission errors. In
this paper, we design a network fault tolerant MPI using
uDAPL interface, making this design portable for existing
and upcoming interconnects. Our design provides failover
to available paths, asynchronous recovery of the previous
failed paths and recovery from network partitions without
application restart. In addition, the design is able to han-
dle network heterogeneity, making it suitable for the current
state of the art clusters. We implement our design and eval-
uate it with micro-benchmarks and applications. Our per-
formance evaluation shows that the proposed design pro-
vides significant performance benefits to both homogeneous
and heterogeneous clusters. Using a heterogeneous com-
binations of IBA and Ammasso-GigE, we are able to im-
prove the performance by 10-15% for different NAS Par-
allel Benchmarks on 8x1 configuration. For simple micro-
benchmarks on a homogeneous configuration, we are able
to achieve an improvement of 15-20% in throughput. In ad-
dition, experiments with simple MPI micro-benchmarks and
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NAS Applications reveal that network fault tolerance mod-
ules incur negligible overhead and provide optimal perfor-
mance in wake of network partitions.

1 Introduction

! In the arena of cluster computing, MPI has emerged as
the de facto standard for writing parallel applications. At
the same time, introduction of high speed RDMA-enabled
interconnects like InfiniBand, Myrinet, Quadrics, RDMA-
enabled Ethernet has escalated the trends in cluster com-
puting. Network APIs like uDAPL (user Direct Access
Provider Library) are being proposed to provide a network-
independent interface to different RDMA-enabled intercon-
nects. Clusters with combination(s) of these interconnects
are being deployed to leverage their unique features, and
to provide network failover in wake of transmission er-
rors. However, wide variety of interconnects pose porta-
bility issues. This limits their different combinations to be
used in network failures, in addition to providing optimal
performance. In this paper, we take on these challenges.
We design a network fault tolerant MPI using uDAPL in-
terface, making this design portable for existing intercon-
nects. Our design provides failover to available paths, asyn-
chronous recovery of the previous failed paths and recov-
ery from network partitions without application restart. In
addition, the design is able to handle network heterogene-
ity, making it suitable for the current state of the art clus-
ters. To achieve these goals, we design a set of low over-
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head modules; completion filter and error-detection, mes-
sage (re)-transmission and path recovery and network par-
tition handling, which perform completion filter and detec-
tion, (re)-transmission and recovery from network partitions
respectively. We implement our design and evaluate it with
micro-benchmarks and applications. Our performance eval-
uation shows that the proposed design provides significant
performance benefits to both homogeneous and heteroge-
neous clusters. Experiments reveal that the proposed net-
work fault tolerance modules incur very low overhead and
provide optimal performance in wake of network failures
for simple MPI micro-benchmarks and applications. In ad-
dition, in the absence of such failures, using a heteroge-
neous 8xlconfiguration of InfiniBand Architecture (IBA)
and Ammasso-GigE, we are able to improve the perfor-
mance of NAS Parallel Benchmarks by 10-15% for differ-
ent benchmarks. For simple micro-benchmarks, we are able
to improve the throughput by 15-20% for uni-directional
and bi-directional bandwidth tests. Even though, the eval-
uation in the paper has been done using InfiniBand and
Ammasso-GigE, there are emerging interconnects, which
plan to support uDAPL interface and are not yet available
in market commercially. The proposed design is generic
and capable of supporting any interconnect with uDAPL in-
terface.

The rest of the paper is organized as follows. In sec-
tion 2, we provide background of our work. In section 3,
we present the related work. In section 4.1, we present ba-
sic infrastructure multi-network abstraction layer and com-
munication methodology for multiple interconnects associ-
ated with our work. In section 4.2, we discuss the network
fault tolerance modules: completion filter and error detec-
tion module, message (re)-transmission module, and path
recovery and network partition handling module. In section
5, we present the performance evaluation for homogeneous
and heterogeneous clusters, both in the absence and pres-
ence of faults. In section 6, we conclude and present our
future directions.

2 Background

In this section, we provide the background information
for our work. We begin with a brief introduction of inter-
connects, followed by an overview of the uDAPL interface.
We also discuss major internal communication protocols
used by Message Passing Interface (MPI).

2.1 Overview of Interconnects

InfiniBand has emerged as a major player in the arena of
high performance computing. The InfiniBand Architecture
(IBA) [9] defines a System Area Network with a switched,
channel-based interconnection fabric. IBA 4X can provide

bandwidth up to 10 Gbps. Switches and Adapters with ca-
pabilities of 12X bandwidth have also become available in
the market, providing performance upto 30Gb/s. InfiniBand
defines Verbs for user-level applications to leverage its ca-
pabilities. VAPI (Verbs API) by Mellanox has been widely
used for powering large scale clusters. In addition, an open
source effort, OpenFabrics [14] has also become available.
In this paper, we have used uDAPL libraries designed over
VAPI for performance evaluation.

The Ammasso interconnect is a RDMA-enabled Giga-
bit Ethernet adapter [1]. It is a full duplex 1Gbps Ethernet
Adapter. It also provides the interface for vanilla sockets
based applications. Ammasso defines a CCIL interface, for
applications to leverage its RDMA capabilities. In this pa-
per, we have used Ammasso 1100 and uDAPL libraries de-
signed over CCIL interface for performance evaluation.

2.2 uDAPL

As mentioned in the section 2.1, multiple interconnects
have emerged that provide RDMA capabilities. However,
these interconnects do not provide a common set of Ap-
plication Programming Interfaces (APIs). In addition, up-
coming interconnects face a similar challenge and the turn-
around time for developing MPI on these adapters can be
prohibitive. To alleviate this situation, DAT (Direct Access
Transport) Collaborative [6] has defined a DAPL interface,
providing a common interface for different interconnects.
User Direct Access Programming Library (uDAPL) is a
lightweight, transport-independent, platform-independent
user-level library, potentially capable of providing high pro-
ductivity for upcoming and existing interconnects.

uDAPL allows processes to communicate by defining
End Points (EPs). EPs need to be connected to each other,
before communication can take place. Work Requests or
descriptors can be posted on the end points for sending
or receiving data from other processes. uDAPL supports
memory semantics by leveraging RDMA and channel se-
mantics by providing send/receive mechanism. The com-
pletion status of the previously posted descriptors can be
checked by using completion queue mechanism. Comple-
tion queue returns status of the posted descriptor, in terms
of success/failure and the error code.

2.3 Overview of MPI Protocols

MPI defines four different communication modes: Stan-
dard, Synchronous, Buffered, and Ready. Two internal pro-
tocols, Eager and Rendezvous, are usually used to imple-
ment these four communication modes. These protocols are
handled by a component in the MPI implementation called
progress engine. In Eager protocol, the message is pushed
to the receiver side regardless of its state. In Rendezvous
protocol, a handshake takes place between the sender and



the receiver via control messages before the data is sent to
the receiver side. Usually, Eager protocol is used for small
messages and Rendezvous protocol is used for large mes-
sages.

For the transfer of large data buffers, it is beneficial to
avoid extra data copies. A zero-copy Rendezvous protocol
implementation can be achieved by using RDMA write. In
this implementation, the buffers are pinned down in mem-
ory and the buffer addresses are exchanged via the control
messages. After that, the data can be written directly from
the source buffer to the destination buffer by doing RDMA
write. Similar approaches have been widely used for imple-
menting MPI over different interconnects [13, 10, 3].

For small data transfer in Eager protocol and control
messages, the overhead of data copies is small. Therefore,
we need to push messages eagerly toward the other side to
achieve better latency. This requirement matches well with
the properties of InfiniBand send/receive operations. How-
ever, send/receive operations have their disadvantages such
as lower performance and higher overhead. In [12], we pro-
posed a scheme that uses RDMA operations for small data
and control messages. This scheme improves both latency
and bandwidth of small message transfers in MPI. The solu-

tion is available in an open source manner with MVAPICH.
2

3 Reated Work

A couple of researchers have focused on designing MPI
for multiple interconnects and providing network fault tol-
erance. MPI-2 using uDAPL interface has been proposed
in [5]. However, in this work a combination of interconnects
was not used simultaneously. In our previous work [11, 16],
we have focused on combining multiple IBA HCAs, ports
and combinations. However, the design is applicable only
to IBA. LA-MPI [8] is an MPI implementation developed at
Los Alamos National Labs. LA-MPI was designed with the
ability to stripe message across several network paths. LA-
MPI is able to handle striping across different interconnect
types. OpenMPI [7], also provides striping across multiple
interconnects. It is capable of striping messages across a
combination of interconnects, IBA, Myrinet and Ethernet.
It also supports network failover. Pakin et. al. has also
proposed VMI [15], which provides support for multiple
interconnects and failover. Also, the design uses TCP for
RDMA-enabled Ethernet Adapters, even though uDAPL is
capable of leveraging RDMA for RDMA-enabled Ethernet
Adapters. Buntinas et. al. has also proposed Nemesis [4],
which is capable of supporting multiple interconnects. In

2MVAPICH/MVAPICH?2 [13] are high performance MPI-1 and MPI-2
implementations from The Ohio State University, currently being used by
more than 390 organizations across 30 countries.

addition, none of the above works have focused on provid-
ing network fault tolerance with support for network parti-
tions and asynchronous recovery of failed paths, in addition
to providing portability with the uDAPL interface.

4 Overall Design for uDAPL Based Network
Fault Tolerant M PI

In this section, we present the overall design for our
uDAPL based network fault tolerant MPI. This is further il-
lustrated in Figure 1(a). The figure represents the overall de-
sign and an example node configuration consisting of both
IBA and GigE devices. In section 4.1, we present multi-
network abstraction layer, which provides a uniform inter-
face to our design for clusters with network heterogeneity.
We also discuss the implementation issues associated with
using multiple interconnects.

In section 4.2, we present the main component of our
design, communications and network fault tolerance layer.
Figure 2(a) presents the interaction of different compo-
nents in communications and network fault tolerance layer.
This layer comprises of modules, which work together
for scheduling the communication in an efficient manner
for providing network fault tolerance. The message (re)-
transmission module in this layer is responsible for schedul-
ing the communication on available paths according to the
scheduling policy. The completion filter and error detec-
tion module detects error and provides information to mes-
sage (re)-transmission about the failed work request(s). The
path repository maintains the available paths for every pair
of communication nodes. This layer also consists of path
recovery and network partition handling module, which is
responsible for recovery of failed paths and dealing with
network partitions. To the best of our knowledge, this is the
first implementation of network fault tolerant MPI which
supports dealing with network partitions and asynchronous
recovery of the failed paths, without application restart.

4.1 Basic Infrastructure For Network Fault Tol-
erance Design

In this section, we discuss the basic design, which acts as
an infrastructure for providing network fault tolerance. Our
design is capable of providing network fault tolerance for
clusters using single interconnect, in addition to a combina-
tion of interconnects supporting uDAPL interface. We be-
gin with the introduction of multi-network abstraction layer.

4.1.1 Multi-Network Abstraction Layer

As shown in Figures 1(a), 1(b) and 1(c), our design is ca-
pable of combining clusters with a combination of intercon-
nects, supporting uDAPL interface to the user applications.
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Homogeneous clusters are a special case of this configura-
tion. Each interconnect specifies its own uDAPL library,
built over the interconnect’s access layer. Hence, presence
of an equivalent abstraction is imperative to hiding network
heterogeneity. This layer provides an equivalent interface of
multiple uDAPL interfaces to the communications and fault
tolerance layer. To provide such an abstraction, this layer
maintains unified data structures for end point(s), public ser-
vice point(s), completion queue(s) and available paths be-
tween processes. Our design is currently limited by the fact
that it requires atleast one common network interface be-
tween all communicating nodes. In the performance evalu-
ation section, we have used Ammasso-GigE as the common
interface. However, the design is generic and any intercon-
nect providing uDAPL interface can be used. In future, we
plan to extend our design to handle more complicated cases
of network heterogeneity.

4.1.2 Implementing Abstraction Layer over uDAPL

In our previous work with uDAPL [5], we have presented
asynchronous and polling based connection management
schemes to connect EPs associated with different processes.
In the design, the EP(s) information is exchanged, fol-
lowed by mandatory ep_connect function call to connect
them as specified by the uDAPL specification. However,
the design assumed the presence of only one network in-
terface. To support network heterogeneity, each node ex-

changes its node configuration at the MPI initialization
phase. Node configuration comprises of UDAPL provider
information, and associated parameters with different inter-
connects. This information is communicated to peers at the
time of EP exchange phase, to avoid multiple messages be-
ing sent for node configuration exchange. Thread-based EP
connection scheme is used for connecting various EPs. At
the end of this step, each node updates its path repository
for communication to every other node in the cluster.

4.1.3 Communication Methodology for Multiple Inter-
connects

As mentioned in section 2, uDAPL allows an user to use
RDMA for data transfer. One of the key requirements is that
the user buffer be registered with the corresponding inter-
connect. Since our design supports multiple interconnects,
for simplicity, we register the complete buffer with all in-
terconnects. In addition, for the rendezvous protocol, com-
pletion notifications need to sent on all interconnects partic-
ipating in data transfer to the communicating process. Pres-
ence of multiple paths also leads to out-of-order messages.
MPI requires messages to be processed in order. Hence,
we maintain out-of-order queues, and periodically poll on
them.

As discussed in [11, 16], scheduling policies have a
great impact on performance, when a combination of paths
are available. Simple policies like even striping, round



robin, process binding and weighted striping provide com-
parable performance for a combination of interconnects
with similar peak bandwidth. However, these policies pro-
vide sub-optimal performance when different paths have
different bandwidths. In [11], we have also shown that
adaptive striping stands out the best candidate in such sce-
narios. Hence, we use this policy, so that our design lever-
ages multiple networks in an optimal fashion, in addition
to using them for failover. A striping threshold value is
used, below which the primary network for communica-
tion is used. In the performance evaluation section, we have
used adaptive striping policy by default, unless mentioned
otherwise. We have used InfiniBand as the primary path of
communication, wherever possible, for messages below the
striping threshold.

4.2 Design of Communications and Network
Fault Tolerance Layer

In this section, we discuss the design of communications
and network fault tolerance layer. We discuss various mod-
ules associated with this layer and their interactions. This is
shown in more detail in the Figure 2(a). We begin with the
error detection module.

4.2.1 Completion Filter and Error Detection Module

As mentioned in section 2, uDAPL library allows a user
application to make work requests by posting send work
requests or descriptors. The status of these requests can
be determined by using the completion queue mechanism.
As shown in Figure 2(a), completion notifications gener-
ated from the network are stored in the completion queue.
uDAPL also provides completion notification interrupt to be
generated for solicited work requests, however this mecha-
nism leads to increased latency, particularly for small mes-
sages. In our design, we use polling on the completion
queue to determine the status of the work request. It is to
be noted, that a completion queue entry (CQE) is gener-
ated, independent of success/failure in completing the work
request. Upon receipt of a successful CQE, this module up-
dates the weight(s) of different path(s) of communication to
the communicating process, as shown in Figure 2(a). How-
ever, on receiving a failed CQE, associated error code in
the CQE is used to determine the cause of the failure. We
leverage this uDAPL capability to check the failure in com-
pletion of a send or a receive work request. The remote ac-
cess error failure opcode shows the un-reachability of the
remote destination. This failure implies that even after mul-
tiple re-tries by the Network Interface Card (NIC), the path
could not be reached. Such a failure can also occur, when
the rkey value for RDMA operation is wrong. However, in
both cases, occurrence of even a single failure on an end

point breaks the connection and all posted work requests
(send or receive) result into error. The recovery mechanism
of the broken EP is handled in the Path Recovery and Net-
work Partitioning Module. Once the error is detected, the
control is transferred to message re-transmission module.

4.2.2 Message (Re)Transmission Module

This module is activated upon receiving an input from the
completion filter and error detection module or receiving
an input from the ADI layer for message transmission. If
the request is received from the ADI layer, the appropriate
scheduling policy is used for message transmission. The in-
teraction is further illustrated in Figure 2(a). Upon receipt
of a failed CQE from completion filer and error detection
module, the first step is to update the path repository, mark-
ing the associated communication path to the destination
process unavailable. Upon receipt of a failed CQE with re-
ceive opcode, the corresponding buffer is simply released,
however another receive descriptor is not posted, since the
connection is already broken. As mentioned before, posting
another work request on a broken connection results in er-
ror. When a CQE with failed send opcode is received, path
repository is queried for the available paths to the destina-
tion rank. The return from the path repository can be suc-
cess with a list of the available path(s) or a failure in case of
network partition (it is not be noted that the sender may still
have communication paths to other processes). The failed
send descriptor consists of information about the length of
the work request. To post this descriptor to available paths,
the length of each work request is adjusted in conjunction
with scheduling policy and associated Ikey for interconnect
is used. In addition, if an RDMA operation is requested, the
associated rkey is updated for data transfer.

4.2.3 Path Recovery and Network Partition Handling
Module

The design mentioned upto now provides failover, when
network paths fail and message re-transmission in such
cases. However, network errors can be transient and this
should not limit the application from re-using the corre-
sponding paths upon recovery. In addition, an application
should not abort in the presence of network failures, since
the process state is intact. Long running applications should
also be able to use the recovered paths, and be able to ex-
tract the best performance out of the System Area Network.
This layer meets the above requirements by using an asyn-
chronous thread based recovery mechanism.

In order to facilitate this capability, the broken end point
associated with the failed network path needs to be brought
back to the connected state. This is further illustrated in Fig-
ure 3(a). The DAT specification mentions that an end point
in an error state should not be moved to disconnected state
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at the discovery of first failure, else would result in loss of
the previously posted work requests. Hence, in our design,
we post a send work request called marker. Since Work
requests always finish in order on the sender side, after re-
ceiving a CQE associated with the marker, the end point can
be moved to the disconnected, followed by the unconnected
state as shown in Figure 3(a).

The communication protocol for recovery from network
partition is further illustrated in Figure 2(b). When a pro-
cess receives the first communication failure, it initiates an
asynchronous thread which initiates request(s) for bringing
back the end points to the connected state. As mentioned in
our previous work [5], each process acts as a server for pro-
cesse(s) with higher MPI rank and sends connect requests
only to processe(s) with lower rank. Since connection re-
quests can possibly arrive at any point of time, the asyn-
chronous server thread remains in sleep state during the
program execution and wakes up only during connection
request(s) from the client(s). Similarly, the client thread ini-
tiates request(s), goes to sleep and only activates, when the
connection event(s) are generated. Once a client and server
have received the connection events, each of their end points
are in connected state. At this point, each of the processes
post receive descriptors, and exchange the credit informa-
tion by sending a connect message. Once the processes re-
ceive the message, they are ready for communication. Since
these threads are in sleep state for most of the time during
program execution, they incur little contention to the main
thread.

5 Performance Evaluation

In this section, we evaluate the performance of our de-
sign. We call our design MN-UDAPL and compare its per-
formance with MVAPICH-0.9.7 for OSU Tests [13] and
NAS Parallel Benchmarks [2]. Our Performance Evalua-
tion is further divided into multiple cases:

e No network fault(s) occur during the application exe-
cution in the SAN. This evaluation helps us understand
the performance improvement which can be achieved
when there are multiple interconnects in the SAN, in
homogeneous and heterogeneous environments.

e One or more network fault(s) occur during the applica-
tion execution in the SAN. We evaluate the cases when
a previously failed path recovers during the application
execution, to the cases of network partitioning. This
helps us understand the overhead incurred by network
fault tolerance modules, when such faults occur.

We begin with a brief description of our experimental
testbed.

5.1 Experimental Testbed

Figure 3(b) is a block diagram for our experimental
testbed. This cluster consists of eight SuperMicro SUPER
X5DL8-GG nodes with ServerWorks GC LE chipsets. Each
node has dual Intel Xeon 3.0 GHz processors, 512 KB L2
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cache, and PCI-X 64-bit 133 MHz bus. We have used In-
finiHost MT23108 Dual-Port 4x HCAs from Mellanox. The
ServerWorks GC LE chipsets have two separate I/O bridges
and three PCI-X 64-bit 133 MHz bus slots. The kernel ver-
sion we used is Linux 2.6.9smp. The IBGD version is 1.8.2
and HCA firmware version is 3.3.2. The Front Side Bus
(FSB) of each node runs at 533MHz. The physical memory
is 2 GB of PC2100 DDR-SDRAM.

Four nodes in the cluster comprise of one Infini-
Band(InfiniHost MT23108 Dual-Port 4x HCAs from Mel-
lanox) and eight nodes comprise of Ammasso (Am-
masso 1100 RDMA-enabled Gigabit-Ethernet Adapter)
each. uDAPL libraries provided by Mellanox and Ammasso
are used for performance evaluation.

5.2 Performance Evaluation on Configuration A

As shown in Figure 3(b), this configuration comprises of
two nodes which have both IBA and GigE network interface
cards.

Figure 4(a) shows the latency of small messages for dif-
ferent devices of MVAPICH, 0.9.7. Since the messages
are small, only IBA device is used for communication.
Messages above the striping threshold (256K) use adaptive
striping for communication. In comparison to MVAPICH-
0.9.7, uDAPL device, our MPI incurs negligible overhead.
The overhead in latency, when compared to VAPI device is
due to the absence of inline functionality in uDAPL library.
This functionality allows data to be posted alongwith the
descriptor, hence reducing the number of I/O bus transac-
tions.

Figure 4(b) shows the performance of latency for large
messages. Messages above the striping threshold are able

to be benefited by using the adaptive striping policy. For
512Kbyte message, the latency improves by almost 10%.

Figure 5(a) and 5(b) show the performance for OSU
uni-directional and bi-directional bandwidth test. As ex-
plained above, MN-uDAPL uses only InfiniBand device for
messages of size lesser than the striping threshold. Adap-
tive striping provides a peak uni-directional bandwidth of
963 MB/s compared to 880 MB/s for MVAPICH-0.9.7,
uDAPL device(IBA) only. The GigE device can only pro-
vide around 100 MB/s. Similarly, a performance improve-
ment of 18% is seen for peak bandwidth in the bi-directional
bandwidth test, which improves from 931 MB/s to 1095
MB/s.

5.3 Performance Evaluation on Configuration B

In this section, we evaluate the unified performance of
the cluster, also the configuration B as shown in the Fig-
ure 3(b). We use MVAPICH 0.9.7, uDAPL device for evalu-
ation and compare its performance with MN-uDAPL. Since
MVAPICH-0.9.7 is capable of utilizing only one interface
at a time, we evaluate it under two configurations for our
cluster. In one configuration, it is able to utilize nodes
with IBA cards only, and the other configuration can utilize
nodes with GigE cards only. Figures 6(a) and 6(b) compare
the performance of these configurations with MN-uDAPL,
which is capable of handling this network heterogeneity in
a unified manner. In Figure 6(a), we use CLASS A, IS and
CG benchmarks. For IS, IBA only with 4 nodes takes 2.09
seconds, only GigE takes 1.90 seconds. MN-uDAPL is able
to reduce the time taken to 1.75 seconds, which is an im-
provement of 8% from GigE only and 17% from IBA case
only. Respective improvements of 20% and 9% are seen for
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the CG application kernel. Figure 6(b) shows the perfor-
mance comparisons for FT and MG benchmarks. We no-
tice that the application time does not improve much with
respect to the network. However, a slight improvement in
performance is shown by using MN-uDAPL than GigE de-
vice only.

5.4 Performance Evaluation with Network Faults

Figure 7(a), 7(b), 8(a) and 8(b) show the results for the
cases when network fault occurs in the system. The com-
parisons are being shown for the message re-transmission
scheme with the ideal case, when the same test is ran with
no network faults. In order to show these results, we let the
OSU Latency test report bandwidth at each iteration for a
large number of iterations for a message size of 1 MB. The
point of failure is reported as the middle point on the x-axis.

Figure 7(a) and 7(b) show the results for uni-directional
and bi-directional bandwidth, when IBA path fails during
the communication. The message-retransmission scheme
achieves the peak bandwidth as shown in the previous sec-
tions. However, at the point of failure, the re-transmission
scheme almost achieves no-bandwidth due to multiple re-
transmissions which occur at this point, before the DMA
engine concludes the un-reachability of the destination pro-
cess, and puts a failed CQE into the corresponding inter-
connect’s completion queue. At this point, only GigE path
is available. As can be noted from the graphs, our scheme
incurs no overhead in providing the peak bandwidth. Fig-
ure 8(a) and 8(b) show a similar trend, the difference being
the failure of the GigE path.

Figure 9(a) and 9(b) present the results, when network

paths fail at the beginning of the application itself. We no-
tice from the figures that the performance degradation is
negligible in comparison to the case 8x1 case, where only
GigE is used for communication. This shows that the over-
head of the message re-transmission module, generating an
asynchronous thread for communication etc. incurs very
low overhead on the communication performance.

Figure 10(a) and 10(b) present the results for uni-
directional bandwidth when running experiments in the
configuration A. At the point 8 in the graph, both GigE and
the IBA path fail and hence a network partition occurs in the
system. At this point, the application hangs and waits for
one of the connection paths to come up. The path recovery
and network partition handling module generates an asyn-
chronous thread and waits for the connection events from
other process. After re-connection, the processes are able to
achieve the peak uni-directional bandwidth which is achiev-
able with GigE. At a later point, when the IBA path is avail-
able, we are able to achieve the peak bandwidth achievable
in the presence of no-faults. Figure 10(b) shows a similar
trend, however in this case the IBA path comes back earlier
than the GigE path. However, in this case also we are able
to achieve the peak uni-directional bandwidth achievable,
similar to the ideal case.

6 Conclusionsand Future Work

In this paper, we have designed a network fault tolerant
MPI using uDAPL interface, making this design portable
for existing and upcoming interconnects. Our design has
provided failover to available paths, asynchronous recov-
ery of the previous failed paths and recovery from network
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partitions without application restart. In addition, the de-
sign is able to handle network heterogeneity, making it suit-
able for the current state of the art clusters. To achieve
these goals, we have designed a set of low overhead mod-
ules completion filter and error-detection, message (re)-
transmission and path recovery and network partition han-
dling which perform completion filter and detection, (re)-
transmission and recovery from network partitions respec-
tively. We have implemented our design and evaluated it
with micro-benchmarks and applications. Our performance
evaluation have shown that the proposed design provides
significant performance benefits to both homogeneous and
heterogeneous clusters. Experiments also reveal that net-
work fault tolerance modules incur very low overhead and
provide optimal performance in the wake of network fail-
ures for simple MPI micro-benchmarks and applications.
In addition, in the absence of such failures, using a hetero-
geneous 8x1configuration of IBA and Ammasso-GigE, we
have been able to improve the performance of NAS Parallel
Benchmarks by 10-15% for different benchmarks. For sim-
ple micro-benchmarks, we have been able to improve the
throughput by 15-20% for uni-directional and bi-directional
bandwidth tests. Even though, the evaluation in the paper
has been done using InfiniBand and Ammasso-GigE, there
are emerging interconnects, which plan to support ubDAPL
interface and are not yet available in market commercially.
The proposed design is generic and capable of supporting
any interconnect with uDAPL interface.

In future, we plan to study hardware level mechanisms
provided by RDMA-enabled interconnects for fault toler-
ance. In addition, we plan to handle more difficult cases of
network heterogeneity, in which the presence of a common
network interface card for all nodes is not mandatory. We
also plan to study the impact of these designs on large scale
clusters at application level.
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