
Transparent System-level Migration of PGAS
Applications using Xen on InfiniBand

Daniele Paolo Scarpazza#, Patrick Mullaney∗, Oreste Villa#§, Fabrizio Petrini#, Vinod Tipparaju# and Jarek Nieplocha#

#Applied Computer Science Group, Pacific Northwest National Laboratory
MS K7-90, 902 Battelle Boulevard, Richland WA 99352, USA

{daniele.scarpazza,fabrizio.petrini,vinod,jarek.nieplocha}@pnl.gov
∗Novell Corp.,

404 Wyman Street, Waltham, MA 02451, USA
pmullaney@novell.com

§Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Via Ponzio 34/5, 20133 Milano, Italy

ovilla@elet.polimi.it

Abstract— Checkpoint-Restart is considered one of the most
natural approaches to achieve fault-tolerance in a high-
performance cluster. While early research experiences have
focused their attention on user-level solutions, the advent of
efficient system-level virtualization software, such as Xen and
VMWare, has opened the door to the possibility of efficient and
scalable cluster-level virtualization.

In this paper we present an innovative approach to cluster
fault-tolerance by integrating the Xen virtualization with the lat-
est generation of the InfiniBand network. A major contribution of
this paper is the automatic identification of global recovery lines
to freeze the status of the machine. Our focus is on the partitioned
global address space (PGAS) programming model. PGAS models
has been receiving an increasing amount of attention in the recent
years. We have developed global coordination mechanisms and
deployed it in the ARMCI one-sided communication library that
has been used as a run-time system for several PGAS models.
The experimental results show that it is possible to virtualize the
communication and the computation with minimal overhead and
to provide seamless migration capabilities.

I. INTRODUCTION

The ever-increasing demand for processing power has led
to the widespread diffusion of computing clusters and super-
computers. Parallelism permeates these computing platforms,
ranging from multiple processing cores within a single pro-
cessor [1] to complex systems with tens of thousands of
processors such as BlueGene/L [2].

Together with technological constraints, such as power con-
sumption and integration technology, and software challenges
to achieve the maximum level of performance, usability has
become a major issue. A large-scale supercomputer (and now
even a medium-scale cluster) is composed of many process-
ing and communicating components that can have thousands
threads of concurrent activities with a proportional number of
outstanding messages at any given time.

The large total component count of these parallel systems
makes any assumption of complete reliability entirely unreal-
istic: though the mean time between failure (MTBF) for the in-

dividual components (e.g., processors, disks, memories, power
supplies, and networks) and the physical connections between
them may be very high, the large number of components in
the system will inevitably lead to frequent individual failures.

Unfortunately the current state of practice for fault tolerance
is such that the failure of a single component usually causes
a significant fraction of the system, and any application using
that part of the system, to fail. In fact, the components of
the system are strongly coupled, for example, the failure of a
fan is likely to lead to other failures due to overheating. And
application state is not stored redundantly, so loss of any state
is catastrophic.

Over the years, users and system administrators have devel-
oped practical heuristics to achieve fault-tolerance. The most
common solution is to perform application-specific, user-level
checkpoints at regular intervals. This error-prone approach
puts the burden on the programmer, that needs to identify
the live data structures, the specific points in the applications
where it is possible to take a checkpoint, and the data format
and the frequency of the checkpoint. The likelihood of a failure
is reduced if a large-scale machine is logically divided into
independent segments or when the user is forced to launch jobs
that use a small subset of available the resources: while this is
a straightforward solution, it seriously limits the computational
capability, the very reason of existence of parallel computers.

A. Software Approaches to Fault Tolerance

Due to the prohibitive cost of using hardware redun-
dancy [3] –which can multiply by an integer factor the cost
a machine, several research projects have considered software
solutions to this problem. The initial work of Plank and others
[4], [5], [6], [7] has been reevaluated in the last few years in
the context of cluster computing.

Software solutions can be classified based on the level of
abstraction at which the checkpoint is taken. At the highest
level of abstraction, we can take advantage of the algorithmic

properties of some scientific applications which converge to
the correct result even in the presence of system failures [8].
The practicality of this method is obviously limited, since only
some applications meet its requirements. Another approach
is based on modifying the application’s source code to per-
form checkpoint/recovery [9]. The programmer directly inserts
checkpoint/recovery points into the program’s source code
with the support of a library that implements checkpointing
primitives. A refinement of this approach is to use the compiler
to automatically insert the checkpoint code in a way that is
nearly transparent to the programmer [10].

The emphasis of several recent research efforts is on
achieving user-transparent, automatic and efficient checkpoint
and restart [11] [12] [13] . This requires the solution of
several problems, such as the virtualization of computation and
communication, the identification a global recovery line to take
a coordinated snapshot of the system, and the implementation
of migration algorithms. In order to gain wide acceptance in
the user community these solutions need to have very low
overhead, both in fault-free mode and during a recovery, and
must be highly scalable.

DejaVu [14], a joint academic and industrial effort, is a
transparent user-level framework. DejaVu is able to virtualize
the OS interface, making it transparent to both applications
and any communication middleware, by intercepting all the
system calls made by either the application or any middleware
libraries it is linked against. Consistency on the recovery
line is achieved through a transparent online logging protocol
which relaxes the requirements of a distributed snapshot and
implements a reliable communication, with explicit acknowl-
edgments sent at the library level.

User-level processor virtualization is also the basic concept
behind Charm++ and Adaptive MPI [15], which supports mul-
tiple checkpoint-based fault-tolerance protocols and a message
logging-protocol.

This checkpoint mechanism can also be implemented inside
the operating system kernel [16]. There are many details
of a process’s state which are only known to the kernel
or are otherwise difficult to re-create, such as the status of
open files and signal handling. The main advantage of this
approach is that it is totally user-transparent and requires no
changes to any application code. The downside is the increased
complexity of working at kernel level, with rapidly changing
and often undocumented kernel versions, and the demanding
constraint of porting the checkpoint/restart mechanisms to
multiple processor and network architectures.

The early experience of TICK [17] proves that kernel-
level checkpointing can be remarkably fast, with minimal
overhead and very high responsiveness, important features
when multiple nodes in a cluster need to take a coordinated
checkpoint.

An integrated solution to checkpoint/restart is presented
in [18]. The proposed software infrastructure is based on
LAM/MPI and BLCR (Berkeley Labs Checkpoint Restart).
The emphasis of this work is in the development of a resource
management software layer and the coordination between the

job scheduler and various local daemons to achieve transparent
migration.

Virtual machines, such as VMware and Xen [19], have
recently gained popularity in the academic and industrial
communities. A key component of a virtual machine (VM)
is the virtual machine monitor (VMM), also called hypervisor
or host, which is implemented directly on top of the available
hardware and provides virtualized hardware interfaces to the
guest VMs. A virtual machine is an ideal building block
to implement checkpoint/restart algorithms, and to virtualize
the resources in a cluster. For example, VM can simplify
cluster management, by allowing the installation of customized
versions of the operating system with different levels of
security, instrumentation, services, etc.

B. Contribution of This Paper

The experience of the last few years has clearly shown that
achieving fault-tolerance in a large-scale supercomputer is an
elusive goal. Software-level solutions need to be completely
user-transparent, minimally intrusive and must be economi-
cally feasible from a software engineering point of view.

This paper is a data point that provides a proof of concept on
how some of these demanding design goals can be achieved.
More specifically, these are the main contributions of this
paper.

1) Integration of Xen and InfiniBand. As already discussed,
the resources of a computational node can be virtualized
at different levels, through libraries such as DejaVu or
kernel modules such as TICK or BLCR. The utilization
of a virtual machine, such as Xen is a very attractive
solution, because it leverages the efforts of a large
community of developers. We have enhanced Xen’s
kernel modules to fully support the user-level InfiniBand
protocols and IP over IB with minimal overhead. We
also provide a seamless mechanism to migrate a Xen
image from one node to another node, extending the
work presented in [20], [21] and [22].

2) Support for Partitioned Global Address (PGA) space
programming models. Programming models that provide
the visibility of a single global address space across
distributed-memory are gaining popularity in the aca-
demic, scientific and industrial communities. While most
of the existing work in checkpoint restart has been
focused on the MPI communication library, in this paper
we support the ARMCI library-based PGA programming
model.

3) Automatic Detection of a Global Recovery Line and Co-
ordinated Migration. PGA programming models greatly
simplify the run-time software of a communication
library –for example they do not require explicit tag
matching to send or receive a message. In the paper
we present a novel algorithm to issue a coordinated
checkpoint, distribute the checkpoint request across the
processing nodes and the VM hypervisors, induce a
global recovery line and perform a live migration with-
out any change to the user application.

2

4) Experimental Evaluation. Finally, the experimental eval-
uation shows that cluster virtualization and image migra-
tion can be achieved with minimal overhead.

We believe the the results presented in this paper can
also be used in a wide class of applications that go beyond
cluster fault-tolerance. Virtualization is a very powerful means
to simplify cluster management, for example, to easily roll
back different types of software installations. Another possible
application is to use migration in combination to a resource
manager to increase cluster utilization with a more flexible
scheduling algorithm. Finally, migration can be an effective
tool to implement pro-active fault-tolerance, as shown in [23].

II. GLOBAL SOFTWARE DESIGN

This Section provides an overview of our software archi-
tecture, with emphasis on the Xen hypervisor, the InfiniBand
device driver and the communication libraries that we use in
the experimental evaluation. We integrate several components,
including new and enhanced InfiniBand kernel drivers and
a global coordination mechanism, to take fully transparent
checkpoints across a computing cluster. We consider homo-
geneous high-performance clusters, i.e. each machine has
the same number and type of CPUs, the same amount of
physical memory, and the same network adapters. The various
components of the software stack are outlined in Figure 1.

A. Xen Hypervisor

Xen [19] allows the system administrator to create, on
each physical machine, one or more non-privileged VMs (also
called “domU” domains), plus one privileged virtual machine
(called the “dom0” domain) which is intended to configure and
invoke the hypervisor [24]. Xen provides the ability to pause,
un-pause, checkpoint and resume domU VMs. Additionally,
Xen can migrate domU domains across physical machines:
proactive fault tolerance strategies [25] exploit these features
to move tasks from physical machines showing distress signals
to spare machines, thus providing computation continuity with
an acceptable overhead. Moreover, the cost of migration can
be significantly reduced by employing the live migration
capability, which performs most of the VM memory image
transfer while the VM is still active and fully operational, thus
achieving down times as short as 60 ms [26].

By employing Xen it is possible to achieve process mobility
by running the application tasks, together with all their re-
quired libraries and user-mode operating system components
in a single domU virtual machine. When the tasks need to
be migrated, the entire VM state is migrated with them. This
approach exhibits a number of advantages with respect to more
traditional approaches based on process-level migration [18]:
for example, applications need not to have explicit knowledge
of synchronization points.

Within this paper, each physical machine hosts exactly
one dom0 and one domU domain. We use the privileged
domain only for management purposes, while all the payload
computation is carried out in the unprivileged paravirtualized

domain. Each virtual machine is configured with the same
number of CPUs.

Other choices are possible, e.g. a separate domU VM
per CPU. This solution provides a finer migration control,
allowing each process to be checkpointed, restored and moved
separately. But the finer control allowed by this solution is not
useful in our scenario, where physical nodes are homogeneous.
Rather, performance is hindered, because tasks running on
the same physical machines will appear now in distinct VMs,
therefore being unable to use fast inter-process communication
via shared memory.

Xen is gaining increasing popularity [27], [21] because it
makes these features available with an acceptable performance
overhead [28], [29]. Unlike full virtualization, Xen employs
an approach called para-virtualization, where non-privileged
domains run a modified operating system featuring guest
device drivers. Guest drivers do not access the hardware
directly, rather their requests are forwarded to the native device
drivers running in the privileged dom0 domain, according to
a split driver model.

B. InfiniBand Device Driver

Many high-performance interconnects capable of memory
semantics (RDMA), like InfiniBand, Quadrics and Myrinet,
offer an OS-bypass feature, which avoids many OS-induced
latencies and multiple copies without sacrificing the isolation
provided by the split driver model. Our design relies on
the InfiniBand interconnect, which is increasingly gaining
popularity in the High Performance Computing arena [30],
[31]. In a traditional InfiniBand setup (without virtualization),
the hardware adapter is capable of accessing directly the
user-level communication buffers, without any OS-induced
overhead (OS-bypass). When virtualization comes into play,
all the software components can be arranged to bypass not
only the guest OS but also the dom0 OS and the virtual
machine manager itself: this technique, called VMM-bypass
[20] allows VMs to achieve nearly the same raw performance
as the original InfiniBand drivers running in a non-virtualized
system. In an HPC context like the one we present in this
work, where each physical machine hosts exactly one virtual
machine, the advantages of physical isolation of VMs is not
very important, whereas the performance benefits of VMM
bypass are crucial.

Our VMM bypass driver extends the original concept of
OS-bypass [20] to allow individual VMs and applications
on those VMs to bypass the OS layers as well as the hy-
pervisor itself. The driver is implemented in two sections, a
paravirtualized section for slow path control operations (q-
pair creation for example) and a direct access section for
fast path data operations (transmit/receive). Together, these
sections provide the implementation of the verbs interface for
guest VM access. This approach achieves optimal execution
in a virtualized environment by allowing direct access to the
HCA for performance critical data path operations.

Our work based on a proof-of-concept implementation that
was produced at IBM and Ohio State University. The original

3

Infiniband network

Physical Machine 0

dom0 domU – Virtual Machine 0

mthca native driver

user level
kernel level

libmthca

ARMCI
X

en
IB

 b
ac

k
en

d

mthca guest driver

XenIB frontend

user level
kernel level

libibverbs

MPI

 D

M
A

Xenbus

Infiniband HCA (physical adapter hardware)

CM SA

MAD

IPoIB

verbs

xm

CM SA

MAD

IPoIB

verbs

us
er

pr

oc
es

s 0

us
er

pr

oc
es

s 1

us
er

pr

oc
es

s 2

us
er

pr

oc
es

s 3

Physical Machine 1

dom0 domU – Virtual Machine 1

mthca native driver

user level
kernel level

libmthca

ARMCI

X
en

IB
 b

ac
k

en
d

mthca guest driver

XenIB frontend

user level
kernel level

libibverbs

MPI

 D

M
A

Xenbus

Infiniband HCA (physical adapter hardware)

CM SA

MAD

IPoIB

verbs

xm

CM SA

MAD

IPoIB

verbs

us
er

pr

oc
es

s 4

us
er

pr

oc
es

s 5

us
er

pr

oc
es

s 6

us
er

pr

oc
es

s 7

Physical Machine 2

dom0

mthca native driver

user level
kernel level

Infiniband HCA (physical adapter hardware)

CM SA

MAD verbs

xm

Fig. 1. The software stack adopted in our reference experimental setup.

driver was extended and modularized so that it could support
additional CPU architectures as well as additional InfiniBand
adapters. In addition, a proxy layer was added for the purpose
of allowing InfiniBand Subnet Management and Connection
Management protocols to operate from guest VMs . InfiniBand
HCA ports can become members of IB multicast groups. Since
membership is at the port level and the port is shared between
VMs in a virtualized environment, a multicast group reference
counting mechanism was added such that each VM could join
and leave a multicast group but only the first join and the
last delete would remove the physical port from the multicast
group. The proxy and multicast reference counting functions
are implemented as additions to the OFED stack for guest
VMs.

VM migration is also supported by the VMM bypass
driver. Because VMM bypass driver provides direct guest
access to hardware resources, migration involves the tear-down
and re-establishment of those resources. This is in contrast
to traditional device emulation or fully paravirtualized ap-
proaches where more software state can be preserved. Another
limitation was that current virtualization environments only
provide for notification of VM suspension and resume to be
sent to kernel modules. Since the VMM bypass driver extends
HCA access to the application level, suspend and resume
messages must be propagated to applications. Applications
must register for these messages and must indicate when they
have completed their associated processing of these message
so that migration may complete. Guest access to the HCA

I/O space and HCA DMA operations open guest to guest
security concerns. One concern is the registration of guest
memory regions with the HCA, this is addressed by a memory
management ownership check in the back-end portion of the
VMM bypass driver. Another concern encountered was direct
guest access to user access regions. These regions of HCA
I/O space are allocated to applications and are used to signal
and complete HCA data path operations. The system must
ensure that access is only possible to the allocating guest VM.
This is being addressed with the memory management policy
extension that allows the back-end driver to allocate and grant
exclusive access on a per guest VM basis.

C. Communication Libraries

We consider applications that rely on both MPI and ARMCI
[32], [33]. In particular ARMCI has been used as a commu-
nication runtime layer in the implementation of several global
address space programming models such as Global Arrays
[34], Co-Array Fortran [35], SHMEM [36], and recently X10
[37]. By implementing coordination and a global recovery line
at ARMCI level combined with the Xen virtualization, our
goal is to provide a fundamental fault tolerant solution for
the programming models that rely on ARMCI. As an MPI
library, in our setup, we employ mvapich version 0.9.7, with
Mellanox extensions version 2.2.0.

The implementations of partitioned global address space
programming models require efficient one-sided access to
remote data. The Aggregate Remote Memory Copy Interface

4

Physical Machine 2

 (3)

Cluster Manager Physical Machine 1

(3)

Physical Machine 0

domU – Virtual Machine 0

master
process
(proc. 0)

user
process

1

VMM

user
process

2

user
process

3

GC

GC

(1)

(2)

(2)

(2)

(5)
(6)

(6)
(6)

(3)

VMM

(4)

(4)

domU – Virtual Machine 0

master
process
(proc. 4)

user
process

5

user
process

6

user
process

7
GC

(1)

(2)

(2)

(2)

(5)
(6)

(6)
(6)

VMM

domU – Virtual Machine 0

GC

(1)

(5)

(4)

Fig. 2. Timing of a checkpoint/restart.

(ARMCI) library was developed to provide these functionali-
ties. ARMCI offers an API which is simple to use, and at the
same time it avoids performance degradation when applica-
tions which exhibit multiple non-contiguous data transfers run
on systems with high latency networks. Frequent multiple non-
contiguous data transfers are often found in sections of code
operating on dense multidimensional arrays or using scatter/-
gather operations. With ARMCI, the communication startup
costs are incurred only once, whereas simpler APIs often
handle each contiguous portion of data as a separate message
and incur in setup costs each time. ARMCI has been optimized
to use high-speed networks deployed in modern high speed
interconnects [38]. For example, it has been optimized to use
InfiniBand Verbs on the InfiniBand networks [39].

One of the fundamental contributions of this paper is an en-
hanced version of ARMCI which enables global coordination.
Its internal design is described in detail in the next section. We
have extended ARMCI to make it able to accept requests to
perform global recovery lines at arbitrary times. In our design,
we employ it to completely drain communication traffic and
reach a globally consistent state before checkpointing or
migration are performed.

III. GLOBAL RECOVERY LINES

This section describes in detail how we perform a Global
Recovery Line (GRL) in the software design we propose. The
objective of our GRL is to bring the entire HPC cluster to a
quiescent, globally consistent state, which allows safe check-
pointing or migration. The operations involved in the GRL
must be implemented in a scalable way. For clarity and brevity,
we reason on a simplified model, where the components of
secondary relevance are not explicitly mentioned.

GRLs are crucial to implement scalable fault tolerance
strategies, either based on checkpointing or proactive migra-
tion. In the first case, a GRL is required immediately before
each checkpoint; checkpoints are invoked at regular intervals
of time. In the second case, a global recovery line is required

before a migration is performed, which is usually requested
when a distress signal is raised by one of the physical
nodes because of an indicator of hardware failure, or risk of
future hardware failure. In both cases, the GRL ensures that
the all the system (application, libraries, kernel components,
virtualized and physical hardware) is in a state which allows
a VM to be suspended and later resumed, possibly after a
migration to another physical node. At this point, the reason
which triggered the GRL is not relevant and has no effect on
how the GRL is performed.

A GRL is needed with an InfiniBand network because of
two reasons:

• InfiniBand does not allow location-independent layer 2
and layer 3 addresses;

• InfiniBand hardware maintains stateful connections which
are not accessible by software.

In the traditional case of IP over Ethernet, migration of VMs
with their MAC and IP addresses unchanged is possible,
because Ethernet devices allow new MAC and IP addresses
to be associated to them dynamically. On the other hand,
addresses in an InfiniBand network (LIDs, or local identifiers)
are managed by a dedicated service, the Subnet Manager (SM).
The subnet manager binds LIDs to physical hardware ports.
As a consequence, migrating a VM which is using a given LID
to another location effectively disrupts its communications.
Additionally, in TCP/IP connections are maintained at an
operating system level. On the other hand, InfiniBand con-
nections are maintained and managed in hardware. They are
not location independent and they are not directly accessible
to the software.

A GRL is composed by a drain phase, which completes any
ongoing communication, the global silence where it is possible
to move node images and perform node migration or take a
full checkpoint, and the resume phase in which the processing
nodes acquire knowledge of the new network topology and
continue their execution.

5

The players involved in the GRL are the following: a Global
Coordinator (GC), the Master Processes (MP), the non-master
processes and the Virtual Machine Managers (VMM):

• the Global Coordinator (GC) is the application provided
to the administrator to invoke a checkpoint or a proac-
tive migration. It includes a stand-alone MPI application
which performs a drain operation inside each virtual
machine, followed by an invocation to the VMM to
checkpoint or migrate domains as necessary, and by a
resume operation. Our GC is realized as a stand-alone tool
for simplicity, but we envision future-generation clusters
with their GC functions integrated in resource managers;

• in high-performance applications on SMP systems, it is
common to have as many user processes as the number
of available CPUs. Internally in ARMCI, one of these
processes is elected a Master Process (MP) to carry out
on behalf all tasks on that SMP node some activities
like allocation of global memory etc. In the context of
the Master Process, ARMCI creates a Server Thread to
execute some one-sided operations that the underlying
network protocols might not support, e.g., global mutexes
and locks [40]. In our implementation, the GC sends
drain/resume signals to MPs, which in turn propagate
them to their non-master siblings running on the same
SMP nodes;

• by Virtual Machine Manager (VMM) we here intend
all the Xen components (the hypervisor, the user-mode
command interface which allows to control it, etc...)
which allow to pause, unpause, save, restore and migrate
a virtual machine.

Figure 2 illustrates how the GC, processes and VMMs coop-
erate to perform a GRL. All the interactions are acknowledged
via an appropriate communication mechanism (a message, a
signal or a barrier), but this acknowledgment interactions are
not represented in the figure for sake of simplicity. The hatched
red area across the machines symbolizes that the GC is a
parallel application, with components running on each virtual
machine and on an arbitrary machine used as a management
console.

Interactions occur in the following order. First, the local
components of the GC in each VM send a drain signal to the
MP associated to that VM (1). MPs forward the same signal to
their non-master siblings (2). The signal handler for the drain
signal sets a drain requested flag to true in each user process.
All processes detect this flag, “drain their communication” and
hit a barrier. Complete details of this draining operation are
given below. When they leave the barrier, global quiescence
is achieved; after hitting the barrier, all of them pause (in the
POSIX sense) waiting for the resume signal. So, the GC can
safely pause all the needed virtual machines (3).

At this time, checkpointing or migration can happen as
desired (not represented in figure). When computation needs
to be resumed, the GC instructs the VMMs to unpause the
respective VMs (4), then sends the MPs the resume signal
(5), which they forward to their non-master siblings (6). The

resume signals wakes up all the user processes, which re-
establish their communications, and hit a second barrier. When
they leave the barrier, normal execution can continue.

A sequence diagram showing the temporal dependencies
and the barriers involved in the GRL mechanism we presented
is given in Figure 3. In the figure, time proceeds vertically
downwards (length of operations is not to scale); slant ar-
rows represent signals, together with their propagation time;
horizontal dashed lines represent synchronization barriers;
hatched gray areas represent time in which a virtual machine
is stopped, and the associated processes are not running.

In detail, the drain and resume signals have actually been
implemented as the POSIX signals SIGUSR1 and SIGUSR2.
The distributed portion of the GC is implemented as an MPI
job, with a process running on each virtual machine plus the
management machine.

The drain operation performed by the ARMCI library
within each process completes outstanding data transmissions
(RDMA or InfiniBand send operations) it initiated gracefully
closes the InfiniBand connections that the process had opened.
To guarantee that RDMA transfers do not violate memory
isolation across processes, InfiniBand requires that all commu-
nication buffers be registered before use. In case of ARMCI,
the entire global partitioned address space of an application
is registered so that zero-copy one-sided communication is
possible directly through the RDMA Read/Write calls. Some
non-contiguous ARMCI calls require assistance from the re-
mote thread running in the Master Process to issue matching
scatter/gather calls. This so called host-assisted protocol is
described in [39].

An InfiniBand connection involves a Queue Pair (QP) at
each side. QPs are a send queue and a receive queue which
hold data-transfer work descriptors. During a drain phase,
completion and acknowledgment are awaited for each of
the outstanding transfers. Finally, QPs are closed. At this
point, in all the software and hardware components of the
cluster system there is no valid connection state data which is
related to the parallel processes. The InfiniBand and IP-over-
InfiniBand connections required to manage the processes and
transfer the domains are untouched.

When all processes are completed with their drain, they
all pause waiting for the resume signal. At this point there
no running processes in the VMs. The GC receives an ac-
knowledgment that the drain was globally successful and it
issues a pause order to all the VMMs residing at each physical
machine.

At this point, no user computation or communication is
happening, and all the virtual machines are stopped. We call
this phase global silence. During this phase, system tasks can
be carried out safely. This is the right time to checkpoint
the cluster by saving to disk the image of the VMs. Or,
virtual machines running on faulty physical machines or
machines which show distress indicators can be migrated to
spare nodes. Other maintenance tasks can be carried out as
well, including tasks which may require replacing hardware
components and/or rebooting the physical machines.

6

Physical Machine 0

Virtual Machine 0 (domU) Virtual Machine 1 (domU)

N
or

m
al

 o
pe

ra
tio

n
Physical Machine 1

pr
oc

es
s 0

pr
oc

es
s 1

pr
oc

es
s 2

pr
oc

es
s 3

pr
oc

es
s 4

pr
oc

es
s 5

pr
oc

es
s 6

pr
oc

es
s 7

VMM VMM

D
ra

in
V

M
 S

av
e

G
lo

ba
l s

ile
nc

e
V

M
 “

Un
pa

us
e”

Re
su

m
e

N
or

m
al

 o
pe

ra
tio

n
G

lo
ba

l
co

or
di

na
to

r

(1)

(2) (2)

(3)

(4)

(5)

(6) (6)

Fig. 3. Sequence diagram illustrating a global recovery line.

When this operation is completed, the entire cluster must
be brought in a fully operational state again. To do this, the
effects of steps undertaken in the drain phase must be undone
in reverse order.

First, the GC sends the wake-up command to the VMMs
which are hosting the VMs (which is not necessarily the same
set of VMMs where the VM were paused, because of the
possibility of migrations). At this point, VMs are active but
all the parallel processes inside them are still waiting for the
resume signal.

The GC issues a resume signal to each master process,

which forwards it to all the non-master ones. All processes
initiate a resume phase, in which they re-register their buffers,
they re-establish QPs and they perform a global exchange of
the handles which allow the initiation of RDMA transfers. At
the end of this resume operation, the communication is ready.

All the processes synchronize with a system barrier. When
they leave the barrier, communication is fully operational. The
portion of code which detected and managed the GRL returns
to its caller, i.e. an invoked ARMCI communication primitive.

IV. RESULTS

In this experimental section we provide insight on the
various components of our checkpoint/restart algorithm. We
emphasize two important results. First the overhead is min-
imal, less than 100 ms in most cases. And second, most
of the components of the latency breakdown are application
independent and only sensitive to the number of Xen images
in the cluster configuration. For this reason, we focus our
attention on the latency breakdown already detailed in the
previous section.

Our experimental testbed consists of a cluster composed of
8 Dell PowerEdge 1950 computation nodes. Each node has
two dual-core Intel Xeon Woodcrest 5160 processors running
at 3.0 GHz, with 4 MByte L2 cache each (shared between
the cores) and a 1.33 GHz front side bus. Each node has 8
GByte of DDR2 fully buffered RAM running at 667 MHz. The
machines are connected by Mellanox Technologies MT25208
InfiniHost III Ex dual port 4X HCA adapters through a
MT47396 Infiniscale III 24-port InfiniBand Switch. The HCA
adapters are connected to a PCI-Express x8 bus.

The computational nodes use SUSE Linux Enterprise Server
10.0. Each physical machine runs a copy of the Xen hypervisor
(version 3.0.2) and hosts exactly one dom0 domain and
one domU domain. We use the privileged domain only for
management purposes, while all the payload computation is
carried out in the unprivileged paravirtualized domain. Since
the physical machines we employ in our experiments are 4-
way SMP (two dual-core processors), we configured the VMs
as 4-way SMP, and subscribe exactly one task per CPU,
i.e. 4 tasks per each virtual machine. Further details on the
software employed in the experiments have already been given
in Section II.

A production cluster would ensure high-performance,
location-independent access to the virtual hard disk inside
each VM through the use of a networked storage server and
an appropriate protocol stack, such as SRP (SCSI Remote
Direct Protocol) or iSCSI and iSER (iSCSI Extensions for
RDMA). In our case, though, the marginal relevance of storage
performance makes such a solution overkill. We rather employ
a simpler and inexpensive (although less efficient) solution,
based on an NFS server, which runs on a Silicon Mechanics
1U server, with 2 Intel Xeon 3.2 GHz processors, 8 GByte of
RAM and a RAID 5 system containing 4 SATA disks, each
400 MByte in size; it runs Red Hat Enterprise Linux 4 as
an operating system. A separate Gigabit Ethernet connects the
computation nodes to the NFS server. The computation nodes

7

employ an on-board Broadcom NetXtreme II BCM5708 Gi-
gabit Ethernet adapter. We use a NetGear GSM7248 Ethernet
switch.

As a benchmark application, we have employed the stan-
dard LU decomposition example which comes shipped with
ARMCI. The benchmark decomposes large sparse matrices.

We now analyze the delays involved in a global checkpoint
(Dcheckpoint) and in a proactive migration (Dproactive) operation
respectively. In both cases we assume that the global coordina-
tor issues a resume order immediately after the checkpoint or
the save is complete. The delays can be expressed as follows:

Dcheckpoint = 2 · Dsignal + Ddrain + Dsave + Dresume

Dproactive = 2 · Dsignal + Ddrain + Dmigrate + Dresume

Where the delay terms have the following meaning:
• Dsignal: time required to forward a signal to each process

in the parallel job and obtain an acknowledgment; this
includes the network latencies due to barriers and oper-
ating system signal service latency. This terms appears
twice because there are two signals (drain and resume)
to deliver;

• Ddrain: time required to drain the outstanding transfers.
This depends on the performance of the network, and
on the average amount and size of outstanding transfers
generated by the application considered;

• Dsave: time required to save the image to disk. This
depends on the VM memory size and on the write
bandwidth provided by the storage subsystem;

• Dmigrate: time required to perform a VM migration with
Xen. This depends on the VM memory size and the
network bandwidth;

• Dresume: time required to re-establish communication.
This depends on the network latency and on the number
of nodes in the cluster.

In case a checkpointing approach is adopted, the restart
delay also is meaningful:

Drestart = Dsignal + Drestore + Dresume

This include the delay required to restore the image snapshot
from storage (which is usually shorter than Dsave).

Figure 4 illustrates how terms composing the Ddrain delay
vary when the number of processes is increased. Draining time
is the only application-dependent term and it accounts for the
time spent waiting for the outstanding transfers to complete.

Figure 5 illustrates how terms composing the Dresume delay
vary when the number of processes is increased. There are no
application-dependent terms in Dresume.

Figure 6 shows the delay measured when a VM with dif-
ferent memory footprints (between 64 Mbytes and 4 Gbytes)
is saved and restored by Xen. Save is performed by writing
the VM image on the local disk, hot restore is performed by
reading the VM from local disk when the entire VM image
is cached in main memory, while cold restore reads the VM
image directly from local disk.

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
e
la

y
 o

f
ta

s
k
 (

m
s
)

Number of processes in the cluster

Transfer completion
QP destruction

Fig. 4. Scalability of the Ddrain delay sub-terms.

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
e
la

y
 o

f
ta

s
k
 (

m
s
)

Number of processes in the cluster

Initialize HCA
QP creation
Region refresh

Fig. 5. Scalability of the Dresume delay sub-terms.

Data show that the save/restore delay is well modeled as a
function of the VM memory size s, an initial setup delay dsave
and the storage subsystem bandwidthBsave:

Dsave = dsave + s/Bsave.

For the experimental data represented in the figure, lin-
ear regression estimates dsave = 1061.1 ms, and Bsave =

192.9 Mbyte/s. For a hot restore, drestore = 330.5 ms, and
Brestore = 603.9 Mbyte/s. For a cold restore, drestore =

1083.1 ms, and Brestore = 85.4 Mbyte/s.
Figure 7 shows the delay due to a VM migration across

cluster nodes. We assume a worst-case scenario in which a
non-live migration is performed, and all the pages of the VM
memory are considered dirty, and transferred. Data show that
the migration delay is a function of the VM memory size s, an
initial setup delay dmigrate and the available network bandwidth
Bmigrate:

Dmigrate = dmigrate + s/Bmigrate.

8

 0

 10

 20

 30

 40

 50

64 128 256 512 1024 2048 4096

S
a
v
e
 /
 r

e
s
to

re
 d

e
la

y
 (

s
)

Virtual machine memory size (Mbyte)

VM Save
VM Hot restore
VM Cold restore

Fig. 6. Save and restore delays measured in our experimental conditions.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1024 2048 4096

M
ig

ra
ti
o
n
 d

e
la

y
 (

s
)

Virtual machine transferred memory size (Mbyte)

InfiniBand (IPoIB)
Ethernet 1 Gbps

Fig. 7. Example experimental migration delays over InfiniBand (IPoIB) and
Ethernet.

The available network bandwidth depends on a number
of factor including not only the signaling rate, but also the
transfer protocol employed. For sake of simplicity, in our
experiments we employed IP over InfiniBand (IPoIB), which
yields quite a low throughput and is significantly suboptimal
(1/4) with respect to the maximum performance InfiniBand
could obtain if the verbs interface were used. Linear regression
finds dmigrate = 47.8 ms and Bmigrate = 223.2 MB/s.

Table I summarizes the relative importance of the delay
terms introduced above, during a checkpointing operation. As
data suggest, delay is dominated by the Xen save operation,
and the entire overhead introduced by our methodology im-
pacts less than 1% on the overall delay.

V. CONCLUSION

In this paper we have presented a novel software infrastruc-
ture that allows completely user transparent checkpoint/restart
of parallel applications. We have implemented a Linux device

Phase Delay

Signal propagation 2.21 ms 0.02%
Draining* 30.79 ms 0.27%
QP destruction 2.02 ms 0.02%

Save VM image 11501.00 ms 99.02%

Signal propagation 2.21 ms 0.02%
Initialize HCA 1.14 ms 0.01%
Exchange of LIDs 0.19 ms 0.00%
QP creation 59.81 ms 0.51%
Region refresh 15.18 ms 0.13%

Total 11614.55 ms 100.00%

TABLE I
TYPICAL DELAYS INVOLVED IN CHECKPOINTING A 32-PROCESS

LU-DECOMPOSITION APPLICATION WHERE EACH VM HAS A MEMORY

SIZE EQUAL TO 2 GBYTE. (*): DRAINING IS THE ONLY

APPLICATION-DEPENDENT DELAY TERM.

driver that enhances the existing kernel drivers to allow Xen
migration over the latest generation of commercially avail-
able InfiniBand network adapters. And we also proposed a
collection of algorithms to enforce a global recovery line, a
common point in time where a coordinated checkpoint can be
taken without affecting the correctness of the application. The
adoption of Partitioned Global Address space programming
models has simplified our design and allowed a seamless
integration with ARMCI, a communication layer used by many
global address space programming models.

Though in its preliminary form, our work shows that it is
indeed possible to virtualize all the resources of a processing
node, including the communication network, with negligible
overhead. The cost of a checkpoint/migration is minimal, and
mostly affected by the speed of the I/O devices (an important
research aspect in itself not covered in this paper due to time
and space limitations).

Our experimental results show that most components of
our automatic global recovery line detection take just a few
milliseconds and are insensitive to the characteristics of the
user applications. Overall a node migration can be achieved
in tens of milliseconds, a negligible delay if checkpoints are
taken every few minutes.

We plan to continue our work with a more extensive
analysis of user applications and how I/O devices impact the
performance of the overall checkpoint/migration strategies.

REFERENCES

[1] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the Cell Multiprocessor. IBM Journal of
Research and Development, pages 589–604, July/September 2005.

[2] N. R. Adiga and et al. An Overview of the BlueGene/L Supercom-
puter. In Proceedings of the Supercomputing, also IBM research report
RC22570 (W0209-033), November 16–22, 2002.

[3] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: Cost-Effective
Architectural Support for Rollback Recovery in Shared-Memory Multi-
processors. In Proceedings of the International Symposium on Computer
Architecture, May 25–29, 2002.

9

[4] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
Checkpointing under Unix. In Proceedings of the Usenix Winter 1995
Technical Conference, January 16–20, 1995.

[5] J. S. Plank, M. Beck, and G. Kingsley. Compiler-Assisted Memory
Exclusion for Fast Checkpointing. IEEE Technical Committee on
Operating Systems and Application Environments, 7(4):10–14, Winter
1995.

[6] J. S. Plank, Y. Kim, and J. J. Dongarra. Diskless Checkpointing.
IEEE Transactions on Parallel and Distributed Systems, 9(10):972–986,
October 1998.

[7] J. S. Plank and K. Li. ickp — A Consistent Checkpointer for
Multicomputers. IEEE Parallel and Distributed Technologies, 2(2):62–
67, Summer 1994.

[8] A. Geist and C. Engelmann. Development of Naturally Fault Tolerant
Algorithms for Computing on 100,000 Processors. Oak Ridge National
Laboratory, 2002.

[9] A. Beguelin, E. Seligman, and P. Stephan. Application Level Fault
Tolerance in Heterogeneus Networks of Workstations. Journal of
Parallel and Distributed Computing, 43(2):147–155, May 25, 1997.

[10] C. J. Li and W. K. Fuch. CATCH - Compiler Assisted Techniques for
Checkpointing. In Proceedings of the International Symposium on Fault
Tolerant Computing, pages 74–81, June 1990.

[11] Fabrizio Petrini, Kei Davis, and José Carlos Sancho. System-Level Fault-
Tolerance in Large-Scale Parallel Machines with Buffered Coscheduling.
In 9th IEEE Workshop on Fault-Tolerant Parallel, Distributed and
Network-Centric Systems (FTPDS04), Santa Fe, NM, April 2004.

[12] Qianfeng Jiang and D. Manivannan. An Optimistic Checkpointing and
Selective Message Logging Approach for Consistent Global Checkpoint-
ing Collection in Distributed Systems. In IEEE/ACM International
Parallel and Distributed Processing Symposium (IPDPS 2007), Long
Beach, CA, March 2007.

[13] José Carlos Sancho, Fabrizio Petrini, Greg Johnson, Juan Fernández, and
Eitan Frachtenberg. On the Feasibility of Incremental Checkpointing
for Scientific Computing. In Proceedings of the International Parallel
and Distributed Processing Symposium 2004 (IPDPS04), Santa Fe, NM,
April 2004.

[14] Joseph Ruscio, Michael Heffner, and Srinidhi Varadarajan. DejaVu:
Transparent User-Level Checkpointing, Migration and Recovery for Dis-
tributed Systems. In IEEE/ACM International Parallel and Distributed
Processing Symposium (IPDPS 2007), Long Beach, CA, March 2007.

[15] Syantan Chakravorty and Laxmikant Kalé. A Fault Tolerance Protocol
for Fast Fault Recovery. In IEEE/ACM International Parallel and
Distributed Processing Symposium (IPDPS 2007), Long Beach, CA,
March 2007.

[16] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault
Tolerance under UNIX. ACM Transactions on Computer Systems
(TOCS), 7(1):1–24, February 1989.

[17] Roberto Gioiosa, José Carlos Sancho, Song Jiang, Fabrizio Petrini, and
Kei Davis. Transparent Incremental Checkpointing at Kernel Level: A
Foundation for Fault Tolerance for Parallel Computers. In IEEE/ACM
Conference on Supercomputing SC’05, Seattle, WA, November 2005.

[18] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen Scott. A
Job Pause Service under LAM/MPI + BLCR for Transparent Fault Tol-
erance. In IEEE/ACM International Parallel and Distributed Processing
Symposium (IPDPS 2007), Long Beach, CA, March 2007.

[19] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the Art of Virtualization. In
Proceedings of the ACM Symposium on Operating Systems Principles,
October 2003.

[20] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar Panda. High
Performance VMM-Bypass I/O in Virtual Machines. In USENIX Annual
Technical Conference, Boston, MA, June 2006.

[21] Wei Huang, Jiuxing Liu, Bulent Abali, and Dhabaleswar Panda. A
Case for High Performance Computing with Virtual Machines. In The
20th ACM International Conference on Supercomputing (ICS’06), Cairns
Queensland, Australia, June 2006.

[22] Wei Huang, Jiuxing Liu, M. Koop, Bulent Abali, and Dhabaleswar K.
Panda. Nomad: Migrating OS-bypass networks in virtual machines.
In Proceedings of the Third International ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments, June 2007.

[23] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Morris Jette,
and Ramendra Sahoo. BlueGene/L Failure Analysis and Prediction
Models. In International Conference on Dependable Systems and
Networks, Philadelphia, PA, June 2006.

[24] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual machine
monitor. In In Proceedings of the OASIS ASPLOS Workshop, 2004,
2004.

[25] A. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott. Proactive fault
tolerance for HPC with Xen virtualization. In Proceedings of the 21th
ACM International Conference on Supercomputing (ICS) 2007, Seattle,
WA, USA, June 16-20, 2007. To appear.

[26] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live
migration of virtual machines. In Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pages 273–286, Boston, MA, May 2005.

[27] Lamia Youseff, Richard Wolski, Brent C. Gorda, and Chandra Krintz.
Paravirtualization for HPC systems. In Geyong Min, Beniamino Di
Martino, Laurence Tianruo Yang, Minyi Guo, and Gudula Rünger,
editors, ISPA Workshops, volume 4331 of Lecture Notes in Computer
Science, pages 474–486. Springer, 2006.

[28] Ludmila Cherkasova and Rob Gardner. Measuring CPU overhead for
i/o processing in the Xen virtual machine monitor. In Proceedings of
the USENIX 2005 Annual Technical Conference, General Track, pages
387–390, 2005.

[29] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janaki-
raman, and Willy Zwaenepoel. Diagnosing performance overheads in
the xen virtual machine environment. In VEE ’05: Proceedings of
the 1st ACM/USENIX international conference on Virtual execution
environments, pages 13–23, New York, NY, USA, 2005. ACM Press.

[30] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Darius Buntinas, Weikuan
Yu, Balasubraman Chandrasekaran, Ranjit M. Noronha, Pete Wyckoff,
and Dhabaleswar K. Panda. MPI over infiniband: Early experiences.
Technical Report OSU-CISRC-10/02-TR25, Ohio Supercomputer Cen-
ter, The Ohio State University, August 2003.

[31] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. High performance
RDMA-based MPI implementation over infiniband. Int. J. Parallel
Program., 32(3):167–198, 2004.

[32] J. Nieplocha and B. Carpenter. Armci: A portable remote memory copy
library for distributed array libraries and compiler run-time systems. In
RTSPP of IPPS/SDP’99, 1999.

[33] Jarek Nieplocha, Vinod Tipparaju, Manojkumar Krishnan, and Dhabale-
war Panda. High Performance Remote Memory Access Comunications:
The ARMCI Approach. International Journal of High Performance
Computing and Applications, 20(2), 2006.

[34] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield.
Global arrays: A nonuniform memory access programming model
for high-performance computers. The Journal of Supercomputing,
10(2):169–189, 1996.

[35] Yuri Dotsenko, Cristian Coarfa, and John Mellor-Crummey. A Mul-
tiplatform Co-Array Fortran Compiler. In Proceedings of the 13th
Intl. Conference of Parallel Architectures and Compilation Techniques,
Antibes Juan-les-Pins, France, September 29 - October 3 2004.

[36] K. Parzyszek, J. Nieplocha, and R. A. Kendall. Generalized Portable
SHMEM Library for High Performance Computing. In M. Guizani
and X. Shen, editors, IASTED Parallel and Distributed Computing and
Systems, pages 401–406, Las Vegas, Nevada, 2000. IASTED.

[37] Ebcioglu, Saraswat, and Sarkar. X10: An experimental language for high
productivity programming of scalable systems. In P-HEC Workshop,
2005.

[38] Jarek Nieplocha, Vinod Tipparaju, Manojkumar Krishnan, and Dhabale-
war Panda. High Performance Remote Memory Access Comunications:
The ARMCI Approach. International Journal of High Performance
Computing and Applications, 20(2), 2006.

[39] V. Tipparaju, G. Santhmaraman, J. Nieplocha, and D. K. Panda. Host-
assised zero-copy remote memory access communication on Infini-
Band. In International Parallel and Distributed Computing Symposium
(IPDPS), Santa Fe, NM, USA, 2004. IEEE.

[40] D. Buntinas, A. Saify, D.K. Panda, and J. Nieplocha. Optimizing
Synchronization Operations for Remote Memory Communication Sys-
tems. In International Parallel and Distributed Processing Symposium
(IPDPS), Nice, Frace, April 2003.

10

