
On the Suitability of MPI as a PGAS Runtime
Jeff Daily Abhinav Vishnu Bruce Palmer Hubertus van Dam Darren Kerbyson

Pacific Northwest National Laboratory,
902 Battelle Blvd, Richland, WA 99352, USA

Email: {Jeff.Daily, Abhinav.Vishnu, Bruce.Palmer, HubertusJJ.vanDam, Darren.Kerbyson}@pnnl.gov

Abstract—Partitioned Global Address Space (PGAS) models
are emerging as a popular alternative to MPI models for
designing scalable applications. At the same time, MPI remains a
ubiquitous communication subsystem due to its standardization,
high performance, and availability on leading platforms. In this
paper, we explore the suitability of using MPI as a scalable PGAS
communication subsystem. We focus on the Remote Memory
Access (RMA) communication in PGAS models which typically
includes get, put, and atomic memory operations. We perform an
in-depth exploration of design alternatives based on MPI. These
alternatives include using a semantically-matching interface such
as MPI-RMA, as well as not-so-intuitive interfaces such as MPI
two-sided with a combination of multi-threading and dynamic
process management. With an in-depth exploration of these
alternatives and their shortcomings, we propose a novel design
which is facilitated by the data-centric view in PGAS models.
This design leverages a combination of highly tuned MPI two-
sided semantics and an automatic, user-transparent split of MPI
communicators to provide asynchronous progress. We implement
the asynchronous progress ranks approach and other approaches
within the Communication Runtime for Exascale which is a
communication subsystem for Global Arrays. Our performance
evaluation spans pure communication benchmarks, graph com-
munity detection and sparse matrix-vector multiplication kernels,
and a computational chemistry application. The utility of our
proposed PR-based approach is demonstrated by a 2.17x speed-
up on 1008 processors over the other MPI-based designs.

I. INTRODUCTION

Partitioned Global Address Space (PGAS) models such as
Global Arrays [1], Unified Parallel C (UPC) [2], X10 [3]
and Chapel [4] provide productive abstractions and high
performance implementations of distributed data structures on
modern high-end systems. As a result, PGAS models are
becoming popular alternatives to traditional Communicating
Sequential Processes execution models like the Message Pass-
ing Interface (MPI) [5], [6]. However, MPI is ubiquitous due to
its high performance, standardization, and portability. The MPI
standard has evolved to incorporate Remote Memory Access
(RMA) operations, multi-threading support, non-blocking and
sparse collective communication primitives, dynamic process
management, and derived data types. The MPI specification
matches well with the requirements of higher level solver
libraries, scalable and productive PGAS programming models,
and designing scalable applications directly.

The communication subsystems of PGAS models such
as the Communication Runtime for Exascale (ComEx) [7],
[8] and GASNet [2] primarily rely on network primitives
to achieve the best possible performance. These communi-
cation subsystems have native design and implementations

on many modern networks such as Cray Gemini [8], IBM
Blue Gene/Q [7] and commodity clusters based on Infini-
Band/Ethernet [9]. However, a native implementation of these
communication subsystems is not always feasible. For exam-
ple, the device layer below MPI may not be available for direct
use by other libraries. This is the case for the communications
interfaces of the K-Computer [10] and Tianhe-1A [11] super-
computers. In addition, early access (or even any access at all)
to many of these systems is difficult and only available near
the system acceptance period. This exacerbates the situation
for many scientific applications which rely on these PGAS
models [12], [13] and need a high performance implementation
as soon as the system is production ready.

Most system acceptance specifications require MPI to be
well tested and tuned for performance on many scientific
applications. MPI send/receive (two-sided) semantics and col-
lective communication primitives are heavily optimized with
special hardware acceleration and low latency communication
paths. Hence, it is natural to consider MPI two-sided primitives
to be the optimal choice for designing PGAS communica-
tion subsystems. However, two-sided models require implicit
synchronization which is a semantic mismatch with PGAS
models. At the same time, there are other alternatives such
as MPI-RMA which match semantically very well with the
PGAS models, but suffer from severe performance degradation
due to suboptimal implementations on high-end systems [14].
This leads to our problem statement. What is the best way to
design a PGAS communication subsystem given that MPI is
our only choice?

Specifically, this paper makes the following contributions:
• An in-depth analysis of design alternatives for a PGAS

communication subsystem using MPI. We present four
design alternatives: MPI-RMA (RMA), MPI Two-Sided
(TS), TS with Multi-threading (MT), and TS with Dy-
namic Process Management (DPM).

• A novel approach using a combination of two-sided
semantics and an automatic, user-transparent split of
MPI communicators to act as asynchronous progress
ranks (PR) for designing scalable and fast communication
protocols.

• Implementation of TS, MT, and PR approaches and
their integration with ComEx, the communication runtime
for Global Arrays. We perform an in-depth evaluation
on a spectrum of software including communication
benchmarks, application kernels, and a full application,
NWChem [12].

Our performance evaluation reveals that the proposed PR
approach outperforms each of the other MPI approaches.
We achieve a speedup of 2.17x on NWChem, 1.31x on
graph community detection, and 1.14x on sparse matrix-vector
multiply using up to 2K processes on two high-end systems.

This work has demonstrated that highly-tuned two-sided
semantics are sufficient for implementing one-sided seman-
tics in the absence of a native implementation. This result
should continue to affirm system procurement requirements
of optimized two-sided communication while suggesting that
one-sided communication can be readily improved in the
future using the existing MPI interface based on our proposed
approach.

The rest of the paper is organized as follows: In section II,
we present some background for our work. In section III,
we present various alternatives when using MPI for designing
ComEx. In section IV, we present our proposed design and
present a performance evaluation in section V. We present
related work in section VI and conclude in section VII.

II. BACKGROUND

In this section, we introduce the various features of MPI
and ComEx which influence our design decisions.

A. Message Passing Interface

MPI [5], [6] is a programming model which provides a
Communicating Sequential Processes execution model with
send/receive semantics and a Bulk Synchronous Parallel model
with MPI-RMA. In addition, MPI provides a rich set of
collective communication primitives, derived data types and
multi-threading. In this section, we briefly present relevant
parts of the MPI specification.

1) MPI Two-Sided Semantics: Send/receive and collective
communication are the most commonly used primitives in
designing parallel applications and higher level libraries. The
two-sided semantics require an implicit synchronization be-
tween sender and receiver where the messages are matched
using a combination of tag (message identifier) and commu-
nicator (group of processes). MPI allows a receiver to specify
a wildcard tag (allowing it to receive a message with any tag)
and a wildcard source (allowing it to receive a message from
any source).

The send/receive primitives typically use eager and ren-
dezvous protocols for transferring small and large messages,
respectively. For high performance interconnects such as In-
finiBand [9], Cray Gemini [8] and Blue Gene/Q [7], the eager
protocol involves a copy by both the sender and the receiver,
while large messages use a zero-copy mechanism such as
Remote Direct Memory Access (RDMA).

2) MPI-RMA: MPI-RMA provides interfaces for get, put,
and atomic memory operations. MPI-RMA 3.0 allows for
explicit request handles, for request window memory to be
allocated by the underlying runtime, and for windows that
allocate shared memory. MPI-RMA provides multiple syn-
chronization modes: active target, where the RMA source and
target window owners participate in the synchronization and

Scalable'Protocols'Layer'

Global'Arrays'

Communica6on'Run6me'For'Exascale'(ComEx)'

IB' Blue'
Gene'Cray' MPI'

Fig. 1. Software Ecosystem of Global Arrays and ComEx. Native implemen-
tations are available for Cray, IBM, and IB systems, but not for Kcomputer
and Tianhe-1A.

passive target, where only the initiator of an RMA operation is
involved in synchronization. The availability of generic RMA
operations and synchronization mechanisms makes MPI-RMA
useful for designing PGAS communication subsystems. How-
ever, there are no known implementations of MPI-RMA 3.0
on high end systems (a reference implementation of MPI-
RMA 3.0 within MPICH is available). The implementations
of previous MPI specifications (such as MPI 2.0) are avail-
able. However, they perform poorly in comparison to native
implementations as shown by Dinan et al. [14].

3) Multi-Threading: One of the most important features
of MPI is supporting multi-threaded communication. MPI
supports multiple thread levels (single, funneled, serialized,
and multiple). The multiple mode is least restrictive and it
allows an arbitrary number of threads to make MPI calls
simultaneously. In general, multiple is the most commonly
used threaded model in MPI. In the design section, we explore
the possibility of using thread multiple mode as an option for
PGAS communication.

B. Communication Runtime for Exascale (ComEx)

ComEx is a successor of the Aggregate Remote Memory
Copy Interface (ARMCI) [15]. ComEx uses native inter-
faces for facilitating one-sided communication primitives in
Global Arrays. As an example, ComEx has been designed to
use Openfabrics Verbs (OFA) for InfiniBand [9] and RoCE
Interconnects, Distributed Memory Applications (DMAPP)
for Cray Gemini Interconnect [8], [16], and PAMI for x86,
PERCS, and Blue Gene/Q Interconnects [7]. The specification
is being extended to support multi-threading, group aware
communication, non-cache-coherent architectures and generic
active messages. ComEx provides abstractions for RMA op-
erations such as get, put and atomic memory operations
and provides location consistency [17]. Figure 1 shows the
software ecosystem of Global Arrays and ComEx.

III. EXPLORATION SPACE

In this section, we present a thorough exploration of design
alternatives for using MPI as a communication runtime for
PGAS models. We first suggest the semantically matching

choice of using MPI-RMA before considering the use of two-
sided protocols. While considering two-sided protocols, the
limitations of each approach are discussed which motivate
more complex approaches. For the rest of the paper, the MPI
two-sided and send/receive semantics are used interchange-
ably.

A. First Design: MPI-RMA

MPI-RMA 2.0 supports the one-sided operations get, put
and atomic memory operations in addition to supporting active
and passive synchronization modes. MPI-RMA 3.0 has several
features which facilitate the design and implementation of
scalable communication runtime systems for PGAS models.
It allows non-blocking RMA requests, request-based transfers,
window-based memory allocation, data type communication,
and multiple synchronization modes. MPI-RMA 3.0 is seman-
tically complete and suitable for designing scalable PGAS
communication subsystems.

MPI-RMA has completely different semantics than the
popularly used send/receive and collective communication
interface. An important implication is that an optimal design
of MPI-RMA needs a completely different approach than two-
sided semantics. Since MPI-RMA has achieved low accep-
tance in comparison to two-sided semantics [14], most vendors
choose to only provide a compatibility port due to resource
limitations. At the same time, PGAS communication runtimes
such as ComEx and GASNet [2] are tailored to serve the needs
of their respective PGAS models. As an example, UPC [2]
and Co-Array Fortran [18] need active messages for linked
data structures which are not well supported by MPI-RMA.
Similarly, Global Futures [19] - an extension of Global Arrays
to perform locality driven execution - needs active messages
for scaling and minimizing data movement.

MPI-RMA can be implemented either using native com-
munication interfaces which leverage RDMA offloading, or
by utilizing an accelerating asynchronous RMA thread in
conjunction with send/receive semantics. Either of these cases
require significant effort for scalable design and implemen-
tation. Dinan et al. have presented an in-depth performance
evaluation of Global Arrays using MPI-RMA [14]. Specifi-
cally, Dinan reports that MPI-RMA implementations perform
40-50% worse than comparable native ports on Blue Gene/P,
Cray XT5 and InfiniBand with NWChem. This observation
implies that vendors are not providing optimal implementa-
tions on high-end systems. Unfortunately, although MPI-RMA
is semantically complete as a backend for PGAS models, sub-
optimal implementations require us to consider alternative MPI
features for designing PGAS communication subsystems.

B. Second Design: MPI Send/Receive

MPI two-sided semantics are widely used in most parallel
applications. These include point-to-point and collective com-
munication. Their nearly ubiquitous use implies that these se-
mantics are heavily optimized for a variety of scientific codes
and co-designed with hardware for best performance. Hence,

Communica)on*

Pi* Pj*
Get*

IProbe*
Recv*
Send*

Send*

Recv*

Pi* Pj*
Put*

IProbe*
Recv*

Send*

Pi* Pj*
Acc*

IProbe*
Recv*
Local*Acc*

Send*

Computa)on* Message*Key:*

Fig. 2. One-Sided Communication Protocols using Two-Sided Communica-
tion Protocols in MPI. Protocols for Get, Put and Accumulate are on the left,
middle, and right, respectively.

it is natural to consider two-sided semantics for designing
scalable PGAS communication subsystems.

A possible design of ComEx using MPI send/receive se-
mantics can be done by carefully optimizing RMA operations
using MPI two-sided semantics. In this design, every process
must service requests for data while at the same time per-
forming computation and initiating communication requests on
behalf of the calling process. As a result, this design is never
allowed to make synchronous requests; all operations must be
non-blocking. Otherwise, deadlock is inevitable. Furthermore,
synchronization barriers and collective operations must also be
non-blocking to facilitate progress while servicing requests.
ComEx does not provide an explicit progress function, so
progress can only be made when any other ComEx function
is called. We consider design issues such as the above while
mapping one-sided semantics onto two-sided semantics in the
following sections.

1) Put/Accumulate Operations: In PGAS models like
Global Arrays, blocking and non-blocking Put operations
can be designed using MPI Send and MPI Isend primitives,
respectively, issued from the source process. Due to the
implicitly synchronous semantics of send/receive, the desti-
nation process must at some point initiate a receive in order
to complete the operation. In the case of accumulate, the
destination process must also perform a local accumulate after
receiving the data. Figure 2 illustrates this design.

2) Get Operations: An MPI get operation can be designed
as a request to get + receive operation at the initiator. The
source of the get (the remote process which owns the memory
from where the data is to be read) participates in the get
operation implicitly by servicing the get request. A possible
implementation would use a combination of MPI probe, re-
ceive and send in that order. Figure 2 illustrates this design.

3) Other Atomic Memory Operations: Atomic Memory Op-
erations (AMOs) such as fetch-and-add are critical operations
in scaling applications such as NWChem [12]. The AMOs are
used, for example, for load balancing in these applications.
AMOs can be implemented by a simple extension of the Get
operation: In addition to servicing a get request, the remote
process also performs an atomic operation on behalf of the

initiator. An additional MPI Send needs to be initiated by
the host of the target to provide the original value before the
increment. The accumulate operations do not need to return
the original value to the initiator.

4) Synchronization: ComEx supports location consistency
with an active mode of synchronization [17]. A ComEx barrier
is both a communication barrier (fence) as well as a control
barrier e.g. MPI Barrier. This can be achieved by using pair-
wise send/receive semantics. Each process can exit a syn-
chronization phase as soon as it has received the termination
messages from every other process. While synchronizing, all
other external requests are also serviced. It is important to
note that each process needs to receive a termination message
from every other process. A collective operation such as
barrier/allreduce cannot be used for memory synchronization,
since it does not provide pair-wise causality.

5) Collective Operations: ComEx does not attempt to reim-
plement the already highly-optimized MPI collective opera-
tions such as all reduce. However, since this design requires
all operations to be non-blocking, entering into a synchronous
collective operation would certainly cause deadlock. The two-
sided design must then perform a collective communication
fence in addition to a control barrier prior to entering an MPI
collective.

6) Location Consistency: The location consistency seman-
tics required in ComEx can be achieved by using the buffer
reuse semantics of MPI - invoking a wait on a request handle
can provide similar re-use semantics to ComEx as MPI.
In addition, messages are ordered between all process rank
pairings by using the same MPI tag for all communications,
implicitly guaranteeing that a series of operations on the same
area of remote memory are executed in the same order as
initiated by a given process. Location consistency can be
guaranteed in conjunction with the exclusively non-blocking
requirement of this design by queuing requests and only testing
the head of the queue for completion before servicing the next
item in the queue.

7) Primary Issue: Communication Progress: The primary
problem with MPI two-sided is the general need for com-
munication progress for all operations, but especially for Get
and FetchAndAdd primitives. PGAS models are frequently
combined with non-SPMD execution models for load bal-
ancing and work stealing. In NWChem and certain graph
algorithms, it is too prohibitive to predict the computation time
of each task. Hence, it is important to provide a mechanism
for asynchronous progress in addition to using MPI two-sided
semantics.

For large put and accumulate messages requiring a ren-
dezvous protocol, the sending process will not complete the
transfer until the target process has initiated a receive. Unfor-
tunately, the target process cannot make progress on requests
unless it also has called into the ComEx library having made
a request of its own. The performance of a compute-intensive
large-message application would certainly degrade using this
design, unless asynchronous progress could be made.

There are two main choices to facilitate communication

Pj,0%Pj,0%

Communica.on%

Pi%
Acc%

IProbe%
Recv%
Local%Acc%

Send%

Computa.on% Message%Key:%

Pi% Pj,1%
Put%

IProbe%
Recv%

Send%

Pi% Pj,1%
Get%

IProbe%
Recv%
Send%

Send%
Recv%

Pj,0% Pj,1%

Fig. 3. One-Sided Communication Protocols using Two-Sided Communi-
cation Protocols in MPI with Multi-threading (MT). Protocols for Get, Put
and Accumulate are on the left, middle, and right, respectively. Process Pi

initiates a request to process Pj which is handled asynchronously by thread
Pj,1.

progress: multi-threading and dynamic process management.
In the next section, we discuss each of these alternatives in
detail.

C. Third Design: MPI Send/Recv with Multi-threading

Multi-threading support is a feature which allows multiple
threads to make MPI calls with different threading modes.
It is an important feature in the multi-core era to facili-
tate hierarchical decomposition of data and computation on
deep memory hierarchies. Shared address space programming
models such as OpenMP provide efficient support for multi-
core/many-core architectures. MPI thread multiple mode al-
lows invocation of MPI routines from any thread.

The computation model can be broadly classified in terms
of symmetric and asymmetric work being performed by the
threads. The symmetric model may require different thread
support levels, depending upon algorithm design. As an ex-
ample, a stencil computation can be performed using a thread
multiple model (each thread reads/updates its individual edge)
or thread serialized model (one thread coalesces reads/updates
and sends them out as a sparse collective or individual point-
to-point communication).

As an improvement over the previous send/receive design,
progress is made using an asynchronous thread as shown in
Figure 3. In our proposed design of ComEx on MPI multi-
threading (MT), the asynchronous thread calls MPI Iprobe
after it has finished serving the send requests. We use a sepa-
rate communicator each for communication between process-
thread and thread-process. This reduces the locking overhead
in the MPI runtime. However, even with this optimization, it
is not possible to completely remove locking from the critical
path.

Designing a communication runtime using MPI multi-
threading is a non-trivial task. The primary reason is that
the lock(s) used by the progress engine are abstracted (for
performance portability), which results in non-deterministic
performance observed with the MT design. Since the asyn-
chronous thread is frequently invoking MPI Iprobe (even on
a separate communicator than the process thread), it has to

frequently relinquish the lock by using sched_yield. At
the same time, if sched_yield is not used, the resulting
performance is non-deterministic.

To eliminate the non-determinism as a result of locking in
the critical sections, a possibility is to use dynamic process
management which we explore in the next section.

D. Fourth Design: Dynamic Process Management

DPM is an MPI feature which allows an MPI process
to spawn new processes dynamically. Using DPM, a new
inter-communicator can be created which can be used for
communication. An advantage of such an approach is that it
alleviates a need to use multi-threading, and yet it provides
asynchronous progress by spawning new processes.

A possible approach is to spawn a few (x) number of
processes per node and to use them for asynchronous progress.
The original and spawned processes would then attach to the
same shared memory region in order for the spawned processes
to make progress on behalf of the processes within its shared
memory domain. This approach is very similar to the approach
proposed by Krishnan et al. [20]

Unfortunately, dynamic process management is not avail-
able on most high-end systems. As an example, the Cray
Gemini system used in our evaluation does not support
dynamic process management even though the system has
been in production use for two years. DPM requires support
from the process manager. However, many implementations
do not support dynamic process management since it is not
commonly used in MPI applications. Due to a lack of available
implementations of DPM, we do not evaluate this approach,
although a design proposed by Krishnan et al. [20] would have
been a useful comparison point.

IV. APPROACH: PROGRESS RANKS

In this section, we present our proposed approach which
addresses the limitations discussed in Section III. Specifically,
the proposed approach uses the two-sided semantics (for
performance reasons) and asynchronous progress by auto-
matically and transparently splitting the world communicator.
This allows a subset of processes to accelerate communication
progress.

A. Basic Design

The PGAS models provide a notion of distributed data
structures and load/store (get/put) on these structures by using
array slice indices. A process does not address another process
explicitly for communication since the meta-data management
is handled automatically. This property of PGAS models has
substantial impact on our proposed approach since it can be
leveraged to automatically split the user level processes among
ones which execute the algorithm and ones which provide the
asynchronous progress. The data-centric view of the PGAS
models facilitates this splitting without requiring any change
in the application.

The proposed split of user-level processes facilitates the
use of MPI two-sided semantics and the protocol processing

N1# N1#

N2#
N3#

Np# N4#

…"

Fig. 4. Translation of communication operations in the PR approach. Left:
A typical node with with two PR ranks (blue and yellow circles). Blue PR is
responsible for performing RMA operations on the memory hosted by green
user-level processes, Right: A user-level process communicates with PR ranks
on other nodes for RMA requests. On-node requests are performed using
shared memory.

by the progress ranks (PR). The PR approach alleviates a
need for guarding the critical sections by locks as is the
case in the multi-threading approach. It also eliminates a
dependency on MPI-RMA which requires an entirely separate
design for best performance. Figure 4 shows the split of the
processes in compute ranks and progress ranks. As shown
in the figure, a simple configuration change would allow a
user-defined number of progress ranks on a node - without
any source code change in the application. The upcoming
section provides details of our proposed approach, which is
subsequently referred to as the Progress Rank (PR) based
approach for rest of the paper.

B. Primary Details

Figure 4 shows the separation of data-serving processes in
PR and user-level processes. The PR approach allows one to
create a user-defined number of PR ranks to allow mapping
with NUMA architectures and heterogeneous architectures
(such as using an Intel Sandybridge and Intel KNF architecture
together). A user-defined number of PR ranks also allows an
application to allocate data structures with memory affinity.
The figure shows a case where a specific instance of the PR
approach uses two PR ranks (depicted by blue and yellow
circles in this case).

The PR approach uses shared memory between the progress
rank and the user-level processes within its shared memory
domain, as shown in Figure 5. The same shared memory is
also used for on-node communication to reduce the number
of memory copies and eliminate superfluous communication
with the progress rank. To minimize the space complex-
ity, shared memory segments are created and destroyed on-
demand. The cost of creation/deletion of shared memory
segments is amortized since the distributed data structures
(such as arrays) remain persistent for most applications. Inter-
node communication is handled by redirecting the request to
the progress rank corresponding to the target process on its
node. In the following sections, we present communication
protocols for facilitating RMA operations and also discuss
space and time complexity analysis of the PR approach.

Communica)on*

Acc*

IProbe*
Recv*
Local*Acc*

Send*

Computa)on* Message*Key:*

Put*

IProbe*
Recv*

Send*

Shared*M
em

ory*

Pj*Pi* Pk*
Get*

IProbe*
Recv*
Send*

Send*
Recv*

Shared*M
em

ory*

Pi* Pk*Pj*

Shared*M
em

ory*

Pj*Pi* Pk*

Fig. 5. One-Sided Communication Protocols using Two-sided Communi-
cation Protocols in MPI with Progress Ranks. Protocols for Get, Put, and
Accumulate are on the left, middle, and right, respectively. Process Pi initiates
a request to the progress rank Pk for the RMA targeting Pj . Pj and Pk reside
within the same shared memory domain.

C. Complexity Analysis of Communication Protocols

The effectiveness of our approach is in its simplicity and
its potential for near-optimal performance in comparison to
other MPI ports. However, it is important to present the
protocols for important communication primitives and present
their space/time complexity.

Algorithm 1 shows the pseudocode executed by compute
processes. It shows the protocols for each of the Get, Put,
Accumulate and FetchAndAdd communication primitives. The
progress function is invoked as necessary to make progress
on outstanding send and recv requests. Algorithm 2 shows
the progress function executed by the progress ranks. The
protocol processing is abstracted to hide the details such as a
LocalAccumulate function, which can use high performance
libraries/intrinsics directly.

For small messages, the Put primitive is expected to use
the eager MPI protocol which involves a copy by each of the
sender and receiver. However, for large messages, a zero copy
based approach is used in MPI with a rendezvous protocol.
Hence, Tput ≈ m · G where m is the message size and G
is the inverse of the bandwidth, which is equivalent to the
performance of the native ports. Using a similar analysis, Tget
for large messages is expected to be similar to native ports.
Small message Get transfer is impacted by the copies on both
sides. The protocol for Get uses a combination of a send
and receive on each side as shown in Algorithm 1’s GET
procedure and Algorithm 2’s PROGRESS procedure. Hence:
Tget = TRDMAGet+4 ·γ where γ is the memory copy cost on
each side. RDMA-enabled networks such as InfiniBand [9] and
Gemini [16] provide a RDMA Get latency of ≈ 1µs, hence
the impact of γ can be non-trivial on the latency for small
messages.

The FetchAndAdd operation is translated as an irecv and
send on the initiator side with a PR rank needing to perform a
recv of the request, a local compute, and a send of the initial
value back to the initiator. By using two-sided semantics,
our approach cannot take advantage of hardware atomics on
the NIC such as the ones available for Cray Gemini [16]
and InfiniBand [9]. The accumulate operations are bounded

Algorithm 1: ComEx Routines
Input: source address s, target address d,
message size m, target process r

Procedure PUT(s, d,m, r)
r1← TranslateRankstoPR(r)
if m < δ then
buf ← InlineDataWithHeader(m)
Send(buf . . . r1)

else
buf ← PrepareHeader(m)
Send(buf . . . r1)
Send(d . . . s)

end if

Procedure GET(s, d,m, r)
r1← TranslateRankstoPR(r)
handle← Irecv(d . . . r1)
buf ← PrepareHeader(m)
Send(buf . . . r1)
Wait(handle)

Procedure ACC(s, d,m, r)
r1← TranslateRankstoPR(r)
if m < δ then
buf ← InlineDataWithHeader(m)
Send(buf . . . r1)

else
buf ← PrepareHeader(m)
Send(buf . . . r1)
Send(d . . . s)

end if

Procedure FADD(s, d,m, r)
r1← TranslateRankstoPR(r)
buf ← InlineDataWithHeader(m)
Send(buf . . . r1)
Recv(d . . . r1)

by the performance of the put operation and the localacc
function. For large accumulates, we expect the performance
to be similar to a native port implementation since there are
no known network hardware implementations of arbitrary size
accumulates.

D. Discussion: Comparison with GASNet

GASNet [2] is a communication subsystem for supporting
UPC [2] and other languages and primarily relies on Active
Messages [21]. GASNet supports a conduit based on Active
Message MPI (AMMPI) which acts as the default port should
a native conduit be unavailable on the system. While there is
no published literature on AMMPI and GASNet over AMMPI,
a look at the open source code provides several details of the
implementation. There are two possible modes of execution
in AMMPI: with and without the support of asynchronous
threads. We argue that each of these modes reduce to one of
the approaches proposed in this paper. The AMMPI approach
without asynchronous threads relies on the communicating
processes to make progress on the active messages which

Algorithm 2: ComEx PR Progress Routine
Input: source address s, target address d,
message size m, target process r

Procedure PROGRESS()
while running do
flag ← Iprobe()
if flag then
header ← Recv()
if header.messageType ==PUT then

if IsDataInline(header) then
CopyInlineData(header)

else
Recv(header.d . . . header.r)

end if
else if header.messageType ==GET then

Send(header.s . . . header.r)
else if header.messageType ==ACC then

LocalAcc(header.d)
else if header.messageType ==FADD then
counter ← LocalFAdd(header.d)
Send(counter . . . header.r)

end if
end if

end while

is similar to our proposed MPI-TS approach. The AMMPI
approach based on asynchronous threads requires one or
more threads to make progress on MPI, requiring multi-
threaded MPI implementation. As a result, the approach based
on asynchronous threads reduces to the proposed MPI-MT
implementation. However, GASNet does not provide a port
similar to the proposed PR approach which we contend is the
best possible approach among all MPI approaches.

We observe that an approach similar to the proposed PR
approach is insufficient for supporting active messages because
an active message must be executed in the address space of the
target. Hence, an active message must be executed either by
the target process directly or a thread which shares the same
address space. However, this limitation is not problematic to
our approaches since the RMA communication model - the
primary requirement of PGAS models - can be effectively
supported without active messages. Specifically, in the PR
approach, the RMA requests from processes on other nodes
are able to be served by a “progress rank” because the PGAS
data structures use shared memory for processes on the same
node.

V. PERFORMANCE EVALUATION

We present a performance evaluation of the approaches
discussed in the previous section using a set of communi-
cation benchmarks, a graph kernel, a SpMV kernel, and full
application with NWChem. Table I shows the various design
alternatives considered in this paper and indicates whether they
were considered for evaluation.

The TS implementation is not considered for evaluation
because it is many orders of magnitude slower than rest of

TABLE I
DIFFERENT APPROACHES CONSIDERED IN THIS PAPER.

Approach Symbol Implemented Evaluated
1 Native NAT Yes Yes
2 MPI-RMA RMA Yes [14] Yes
3 MPI Two-sided TS Yes No
4 MPI Two-sided + MT MT Yes Yes
5 MPI Two-Sided + DPM DPM Yes [20] No
6 MPI Progress Rank PR Yes Yes

the implementations considered in this paper. As an example,
even on a moderately sized system with NWChem, we no-
ticed 10-15x performance degradation in comparison to the
native approach. The TS approach requires explicit process
intervention for RMA progress which makes it very slow in
comparison to the other approaches. The DPM approach is
not evaluated because dynamic process management is not
supported on the high-end systems considered for evaluation
in this paper. For the rest of the implementations, we have
used process/thread pinning with no over-subscription.

We used two systems for our performance evaluation:
NERSC Hopper is a Cray XE6 system with 6,384 compute
nodes made up of two twelve-core AMD MagnyCours proces-
sors. The compute nodes are connected in a 3D torus topology
with the Cray Gemini Interconnect. We used the default Cray
MPI library on this system. This system is referred to as
Hopper for rest of the performance evaluation.
PNNL Institutional Computing Cluster (PIC) is a 604 node
cluster with each node consisting of two sixteen-core AMD
Interlagos processors where the compute nodes are connected
using a QLogic InfiniBand QDR network. We have used
MVAPICH2 for the MPI library on this system. This system
is referred to as IB for the rest of the performance evaluation.

A. Simple Communication Benchmarks

The purpose of the simple communication benchmarks is to
understand the raw performance of communication primitives
when the processes are well synchronized. Figures 6 and 7
show the Get communication bandwidth performance. As
expected, NAT provides the best performance for Gemini and
IB. The PR implementation on Hopper is based on MPI/uGNI,
while the native implementation is based on DMAPP [8],
so the difference in peak bandwidth for PR and NAT can
be attributed to the use of different communication libraries.
The RMA implementation provides sub-optimal performance
on all message sizes in comparison to the NAT and PR
implementations. On IB, the PR and RMA implementations
perform similarly. The MT implementation uses MPI thread
multiple mode and consistently performs sub-optimally in
comparison to other approaches primarily due to lock con-
tention. Similar trends are observed for Put communication
primitives in Figure 8 with a drop at 8Kbytes for RMA, PR
and MT implementations due to the change from eager to
rendezvous protocol at that message size.

It is expected that the NAT implementation provides the
best possible performance. For the rest of the sections, we
only compare the performance of the MT, PR and RMA

 0

 1000

 2000

 3000

 4000

 5000

 6000

16 64 256 1K 4K 16K 64K 256K

B
a
n
d
w

id
th

 (
M

B
/s

)

Message Size(Bytes)

MT
RMA

PR
NAT

Fig. 6. Gemini, Get Performance

 0

 500

 1000

 1500

 2000

 2500

 3000

16 64 256 1K 4K 16K 64K 256K

B
a
n
d
w

id
th

 (
M

B
/s

)

Message Size(Bytes)

MT
RMA

PR
NAT

Fig. 7. IB, Get Performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

16 64 256 1K 4K 16K 64K 256K

B
a
n
d
w

id
th

 (
M

B
/s

)

Message Size(Bytes)

MT
RMA

PR
NAT

Fig. 8. Gemini, Put Performance

implementations since they provide fair comparison against
each other.

B. Sparse Matrix Vector Multiply

SpMV (A · y = b) is an important kernel which is used in
scientific applications and graph algorithms such as PageRank.
Here, we have considered a block CSR format of A matrix
and a one-dimensional RHS vector (y), which are allocated

R
M

A

M
T

P
R

R
M

A

M
T

P
R

R
M

A

M
T

P
R

R
M

A

T
im

e
(m

s)

512 1,024 2,048 4,096

Multiply
Get

 0

 5

 10

 15

 20

 25

 30

 35

M
T

P
R

Fig. 9. SpMV, Hopper

 35

 40

 45

M
T

P
R

R
M

A

M
T

P
R

R
M

A

M
T

P
R

R
M

A

T
im

e
(m

s)

512 1,024 2,048

Multiply
Get

 0

 5

 10

 15

 20

 25

 30

Fig. 10. SpMV, IB

and distributed using Global Arrays. The data distribution is
owner-computes, resulting in local accumulates to b. The y is
distributed evenly among processes. A request for non-local
patches of y uses the get communication primitive. The sparse
matrix used in this calculation corresponds to a Laplacian
operator using a 7-point stencil and 3D orthogonal grid.

Figures 9 and 10 show the performance on Hopper and PIC
systems, respectively. A weak scaling calculation mode is used
with sizes varying from (400·400·400) to (800·800·800). The
overall calculation is dominated by the get time. The MT port
provides the best performance, with RMA being the worst
among the three implementations. The MT port is executed
using an asynchronous thread for every process, while the PR
port uses a single rank per node for accelerating the RMA
requests. A large majority of get requests are served from
remote nodes, where a progress rank in the PR implementation
needs to serve the requests of multiple y patches. The MT
implementation has an asynchronous thread for every process,
which reduces the get time in SpMV. However, for the IB
system, the PR implementation performs the best among the
three implementations. This is attributed to the sub-optimal
implementation of the progress engine in MPI.

C. Graph Kernel: Triangle Counting

Triangle Counting (TC), among other graph algorithms,
exhibits irregular communication patterns and can be imple-
mented using PGAS models. In graphs with R-MAT structure

P
R

R
M

A

M
T

P
R

R
M

A

M
T

P
R

R
M

A

R
el

at
iv

e
S

p
ee

d
u

p

512 1,024 2,048

TC
Get

 0

 0

 1

 2

 2

 2

M
T

Fig. 11. Triangle Counting, IB

such as Twitter and Facebook, it is frequently important to de-
tect communities. An important method to detect communities
is by finding cliques in the graphs. Since CLIQUE is an NP-
complete problem, a popular heuristic is to calculate cliques
with a size of three which is equivalent to finding triangles in a
graph. We show an example of community detection in natural
(power-law) graphs, where the algorithm needs to calculate
the number of triangles in a given graph. The edges are easily
distributed using a compressed sparse row (CSR) format. The
number of vertices are divided equally among the processes.

For TC, we allocate a CSR edge array using one-
dimensional Global Arrays. The computation is distributed
equally among processes where each process gets v/p number
of vertices for computation. Figure 11 shows the speedup of
get and trianglecount on the IB system. The PR implemen-
tation provides a speedup of 1.31x, 1.21x and 1.17x on 512,
1024 and 2048 processes respectively. The speedup can be
attributed to the asynchronous progress made in the PR port
by the progress ranks. The implementation of the TC algorithm
reuses the buffers for getting the neighbor list. This facilitates
zero-copy transfer of the edge list, since most MPI libraries
perform lazy deregistration of buffers for reuse.

The MT implementation performs poorly in comparison to
the RMA and PR implementations. The MT implementation
also suffers a slowdown in get communication, since it has to
frequently use the sched yield operation. However, the overall
slowdown is worse, if the sched yield operation is not used.

D. NWChem

We have evaluated the NWChem CCSD(T) and SCF mod-
ules respectively on the Hopper and PIC systems, in each
case using naphthynes molecules. For 1020 processes on PIC,
and 1008 processes on Hopper, we have used the cc-pvdz
basis set which has 170 basis functions. For 2040 processes
on Hopper, we have used the cc-pvtz basis set which has
380 basis functions. The MT implementation did not finish
execution in its allocated time of 1800 seconds for any of
the process counts. The MT implementation could not be
run to completion due to a limited time allocation on these
supercomputers. Hence, we compare the speedup of the PR
approach relative to the RMA approach proposed previously

PIC−2,040 Hopper−1,008

R
el

at
iv

e
S

p
ee

d
u

p
 t

o
 R

M
A

Total
Acc
Get
AddPatch
SCF
CCSD(T)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

PIC−1,020

Fig. 12. NWChem CCSD(T) results for PR relative to RMA. MT did not
finish execution in 1800s for 240, 1020 procs and 3600s for 2040 procs.

by Dinan et al. [14]. Figure 12 shows the performance of
NWChem on 1020 and 2040 processes with the CCSD(T)
module on PIC and 1008 processes with CCSD(T) on Hopper.
Relative speedups are calculated for the overall time, the SCF
and CCSD(T) modules, and time-consuming functions such as
Get, Accumulate and AddPatch.

The PR implementation provides a relative speedup to RMA
of 1.72x on 1020 processes (PIC), 1.4x on 2040 processes
(PIC) and 2.17x on 1008 processes (Hopper). The primary
consumer of time in these calculations is CCSD(T), which
provides a relative speedup of 2.41x, 2.47x and 2.83x. For each
of the calculations CCSD(T) takes ≈ 80% of the computation
time. The get communication primitive provides a relative
speedup of 2x and 2.5x in comparison to the RMA imple-
mentation on PIC. The SCF module provides a 3.2x speedup
on Hopper, however, it is slightly slower than the RMA
implementation on 2040 processes (PIC). Since CCSD(T)
is the dominant module, the overall speedup is 1.4x. The
overall speedup is slightly abated for each of the runs because
NWChem performs intermediate I/O which performs similarly
on all implementations.

E. Evaluation Summary

Our performance evaluation reveals that the proposed PR
approach outperforms each of the other MPI approaches on a
spectrum of evaluation criteria: communication benchmarks,
community detection kernel in graphs, sparse matrix-vector
multiply and a full application, NWChem. In a select few
cases MPI-RMA did perform as good or slightly better, as
was the case for get performance on the IB system and a
few functions profiled within NWChem. The MT approach
showed promise in the communication benchmarks, however
its performance was stagnant for a real application even though
other applications using multi-threaded MPI’s thread multiple
mode have been shown to scale well [22].

VI. RELATED WORK

There have been a few efforts in using MPI as a communica-
tion target for PGAS models. We discuss them in this section.
Bonachea et al. have presented the problems in using MPI as

a compilation target for PGAS languages with UPC as a case
study [23]. However, the critique is only partially justified as
Bonachea’s argument does not take into account non cache-
coherent architectures, which is the primary reason for the
restrictions on conflicting memory accesses in MPI 2.0 RMA.
Dinan et al. have presented an implementation of ARMCI
using MPI-RMA [14]. They concluded that restrictions in the
MPI-RMA 2.0 standard and their implementations lead to
significant performance degradation in comparison to native
ARMCI implementations on most platforms including Infini-
Band, Blue Gene/P, and Cray Gemini Interconnect. Dinan’s
conclusion from the paper is a strong indication that while
MPI-RMA provides a matching interface to ComEx, the search
for an ideal PGAS runtime may not be provided by MPI-
RMA. Hence, this paper is an important step to address the
limitations. Gropp et al. have presented issues in designing
a multi-threaded MPI implementation, however, they restrict
the design to context-id allocation for communicators [24].
Balaji et al. have also presented approaches for fine-grained
multi-threading in MPI [25]. Hoefler et al. have discussed the
issues with multiple threads calling MPI Probe and MPI Recv
together, which is not safe [26]. However, this issue is not
applicable to our proposed design since only the asynchronous
thread is involved in calling MPI Probe and MPI Recv.

VII. CONCLUSIONS

As the popularity of PGAS models continue to rise, it
becomes more important that highly tuned communication
subsystems are available to enable these models across a wide
range of systems. This work has demonstrated that highly-
tuned two-sided semantics are sufficient for implementing one-
sided semantics in the absence of a native implementation.
This result should continue to affirm system procurement
requirements of optimized two-sided communication while
suggesting that one-sided communication can be readily im-
proved in the future using the existing MPI interface based on
our proposed approach. This work narrows the performance
gap between native and MPI-based runtimes for PGAS models
and succeeds in making MPI-based runtimes for PGAS models
an acceptable alternative when native implementations are not
feasible to implement or readily available.

ACKNOWLEDGMENTS

This material is based upon work performed under the Per-
formance Health Monitoring for Large-Scale Systems project,
supported by the U.S. Department of Energy (DoE) Office
of Science (OS), Office of Advanced Scientific Computing
Research. Additional support was provided by the eXtreme
Scale Computing Initiative (http://xsci.pnnl.gov) of Pacific
Northwest National Laboratory operated by Battelle for DoE
under Contract DE-AC05-76RL01830. This research used re-
sources of the National Energy Research Scientific Computing
Center, which is supported by OS under Contract No. DE-
AC02-05CH11231.

REFERENCES

[1] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global Ar-
rays: A Nonuniform Memory Access Programming Model for High-
Performance Computers,” Journal of Supercomputing, vol. 10, no. 2,
pp. 169–189, 1996.

[2] P. Husbands, C. Iancu, and K. A. Yelick, “A Performance Analysis of
the Berkeley UPC Compiler,” in ICS, 2003, pp. 63–73.

[3] P. Charles et al., “X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing,” in OOPSLA. ACM, 2005, pp. 519–538.

[4] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability
and the Chapel Language,” JHPCA, vol. 21, no. 3, pp. 291–312, 2007.

[5] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance,
Portable Implementation of the MPI Message Passing Interface Stan-
dard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, 1996.

[6] A. Geist et al., “MPI-2: Extending the message-passing interface,” in
Euro-Par, Vol. I, 1996, pp. 128–135.

[7] A. Vishnu, D. J. Kerbyson, K. Barker, and H. J. J. V. Dam, “Designing
scalable pgas communication subsystems on blue gene/q.” Boston: 3rd
Workshop on Communication Architecture for Scalable Systems, 2013.

[8] A. Vishnu, J. Daily, and B. Palmer, “Scalable PGAS Communication
Subsystem on Cray Gemini Interconnect.” Pune, India: HiPC, 2012.

[9] A. Vishnu and M. Krishnan, “Efficient On-demand Connection Man-
agement Protocols with PGAS Models over InfiniBand,” in CCGrid,
2010.

[10] Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, and T. Shimizu, “The tofu
interconnect,” in HOTI, 2011, pp. 87–94.

[11] M. Xie, Y. Lu, L. Liu, H. Cao, and X. Yang, “Implementation and
evaluation of network interface and message passing services for tianhe-
1a supercomputer,” in HOTI, 2011, pp. 78–86.

[12] M. Valiev et al., “Nwchem: A comprehensive and scalable open-
source solution for large scale molecular simulations,” Computer Physics
Communications, vol. 181, no. 9, pp. 1477 – 1489, 2010.

[13] Subsurface Transport over Multiple Phases, “STOMP,”
http://stomp.pnl.gov/.

[14] J. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy, and V. Tip-
paraju, “Supporting the global arrays pgas model using mpi one-sided
communication,” in IPDPS, 2012, pp. 739–750.

[15] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory
Copy Library for Distributed Array Libraries and Compiler Run-Time
Systems,” in Lecture Notes in Computer Science. Springer-Verlag, 1999,
pp. 533–546.

[16] A. Vishnu, M. ten Bruggencate, and R. Olson, “Evaluating the potential
of cray gemini interconnect for pgas communication runtime systems,”
in HOTI, 2011, pp. 70–77.

[17] G. R. Gao and V. Sarkar, “Location consistency-a new memory model
and cache consistency protocol,” IEEE Trans. Comput., vol. 49, pp. 798–
813, 2000.

[18] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”
SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1–31, Aug. 1998.

[19] D. Chavarria-Miranda, S. Krishnamoorthy, and A. Vishnu, “Global
futures: A multithreaded execution model for global arrays-based appli-
cations,” in CCGrid. Washington, DC, USA: IEEE Computer Society,
2012, pp. 393–401.

[20] M. Krishnan and V. Tipparaju, “Extending the MPI2 One-sided Model,”
in HPC Asia, 2009.

[21] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,
“Active Messages: A Mechanism for Integrated Communication and
Computation,” in International Symposium on Computer Architecture,
1992, pp. 256–266.

[22] J. Daily, S. Krishnamoorthy, and A. Kalyanaraman, “Towards scalable
optimal sequence homology detection,” in ParGraph, 2012.

[23] D. Bonachea and J. Duell, “Problems with using MPI 1.1 and 2.0 as
Compilation Targets for Parallel Language Implementations,” JHPCA,
vol. 1, no. 1-3, pp. 91–99, 2004.

[24] W. D. Gropp and R. Thakur, “Issues in developing a thread-safe mpi
implementation,” in PVM/MPI, 2006, pp. 12–21.

[25] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur, “Fine-
grained multithreading support for hybrid threaded mpi programming,”
JHPCA, vol. 24, no. 1, pp. 49–57, 2010.

[26] T. Hoefler, G. Bronevetsky, B. Barrett, B. R. de Supinski, and A. Lums-
daine, “Efficient mpi support for advanced hybrid programming models,”
in EuroMPI, 2010, pp. 50–61.

