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Geometric Model 
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  Non-manifold Representation 
 Topological representation 

of any combination of 
volumes, surfaces, curves, 
and points 

  Geometric information 
 Solid Modeling Kernels 
 Coordinates on surface 
 Tolerance 

  Topological information 
 Entity adjacency 

  Shape information 
 CAD geometry 
 Mesh models 
 Image data 



Mesh - Representation 
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  Mesh entities: 
  vertex (0D), edge (1D), face (2D), or region (3D) 

  Adjacencies:  
  How the mesh entities connect to each other 
  Complete representation: store sufficient entities and  

adjacencies to get any adjacency in O(1) time 
  Geometric classification:  
  A relation that each mesh entity maintains to a  

geometric model entity 
  Entity set:  
  Mechanism for grouping mesh entities 

  Tag:  
  Mechanism to attach arbitrary user data (tag data) to a  

part, entity set or mesh entity 
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Mesh - Distribution 
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 Mesh partition defines parallel decomposition of applications. 
 Mesh partitioning representation in topology for efficient mesh-

based parallel operation support.   
 Partition model: a conceptual model existing between a 

geometric model and distributed mesh 
 Partition model entity: a topological entity in the partition 

model, Pi
d, representing a group of mesh entities of dimension 

d with the same residence parts. 

Partition classification in arrows Partition model entities 



Mesh - Distribution 
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Part 
 A unit of the mesh distribution 
 Each part Pi assigned to a process 
 Uniquely identified at part level by handle or id 
 Consists of mesh entities assigned to ith part. 
 Treated as a serial mesh with the  

addition of part boundaries  
 Part boundary: groups of mesh  

entities common to multiple  
parts 

 Part boundary entity: duplicated  
entities on all parts for which they  
bound higher order mesh entities 

 Remote copy: entity copy in  
another part  
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boundary!
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Mesh - Multiple Parts Per Process 
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  Purpose 
  Supports changing number of parts 
  Dealing with problems with current graph-based partitioners on really large 

numbers of processors  
  Architecture-aware two-level mesh partitioning  

  Multiple-Parts Per Process contained in Mesh Instance 
  For effective manipulation, a mesh instance defined on each process 

contains part handles assigned to the process 

A 3D mesh in 4 parts per process (16 parts total) 

4 parts 1 process 

Different color 
represents 

different part 

Different color 
represents 

different process 



Mesh - Two-Level Partitioning 
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  Exploit hybrid architecture of BG/Q, Cray XE6, etc… 
 Reduced memory usage 

  Approach 
 Partition mesh to processes, then partition to Pthreads 
 Message passing, via MPI,  

between processes 
 Shared memory, via Pthreads,  

within process 
 Transparent-to-application use of  

Pthreads 

Process 1 
Process 2 

Process 3 

Process 4 

pthreads"

pthreads"

Pa
rt"

pthreads"
Pi"

pthreads"
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Mesh - Two-Level Partitioning 
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  Entity is created at most once per process 
 Part boundary entity is created at most once per process 
 Part boundary entity on process i is shared by all  

on-process residence parts 
 Only owning part can modify entity 

(no race condition guaranteed) 
 Remote copy: entity copy on  

another process 
 Parallel control utility provides  

architecture info to mesh,  
then the mesh is distributed   
accordingly. 

* Authors thanks to Micah Corah and Ian Dunn (Dept. of Computer Science, 
RPI) for development and testing on RPI BG/Q. !
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Parallel Control  
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Message Passing abstraction 
 size, rank, send, receive 

Present 
 Architecture info collection via HWLOC* 

 Communication rounds for termination detection 
 Local - Fixed neighborhoods 
 Global - Unknown neighborhoods 

In Progress 
 Hybrid MPI/Pthread communications 

 Hybrid rank = (MPI rank)*(#Pthread per process) + thread rank 
 Hybrid send/receive 

 Pthread management – create, run, and join 

  * Portable Hardware Locality (http://www.open-mpi.org/projects/hwloc/) 



Mesh Partitioning 
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   Parallel simulation requires that the mesh be distributed with 
equal work-load and minimum inter-part communications 

   Observations on graph-based dynamic balancing 
 Parallel construction and balancing of graph with small cuts takes 

reasonable time 
 Graph/hyper-graph partitions are powerful for unstructured meshes, 

however they use one order (as in 0,1,2,3) of mesh entity as the 
graph nodes, hence the balance of other mesh entities may not be 
optimal 

  Accounting for multiple criteria and or multiple interactions is not obvious 
 Hypergraphs allows edges to connect more that two vertices – has 

been used to help account for migration communication costs 
 Schloegel and Karypis (2002) discuss an effective optimization 

method for three, or fewer, constraints 



Partitioning using Mesh Adjacencies (ParMA) 
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  Mesh adjacencies represent application data more completely 
then standard graph-partitioning models. 
  All mesh entities can be considered, while graph-partitioning models use 

only a subset of mesh adjacency information. 
  Any adjacency can be obtained in O(1) time (assuming use of a complete 

mesh adjacency structure). 

  Advantages 
  Avoid graph construction (assuming you have complete  

representation) 
  Directly account for multiple entity types – important for  

the solve process - typically the most computationally  
expensive step 

  Easy to use with diffusive procedures 

  Disadvantage 
  Lack of well developed algorithms for more global parallel partitioning 

operations directly from mesh adjacencies 

Regions"
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Vertices"
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ParMA – Multi-Criteria Partition Improvement 
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   Improve scaling of applications by reducing imbalances 
through exchange of mesh regions between 
neighboring parts 
 Current algorithm focused on improved scalability of the solve 

by accounting for balance of multiple entity types 
 Imbalance is limited to a small number of heavily loaded parts, referred 

to as spikes, which limit the scalability of applications 
 Application defined priority list of entity types such that imbalance of 

high priority types is not increased when balancing lower priority types 
 Similar approaches can be used to: 

 Improve balance during mesh adaptation – likely want extensions past 
diffusive methods   

 Supporting Two-level partitioning – heterogeneous resources 



ParMA – Multi-Criteria Partition Improvement 
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  Input: 
 Priority list of mesh entity types to be balanced (region, face, edge, 

vertex)  
 Partitioned mesh with complete representation and communication, 

computation and migration weights for each entity 
  Algorithm: 
  From high to low priority if separated by ‘>’ (different groups) 

 From low to high dimension entity types if separated by ‘=’ (same group) 
  Compute migration schedule (Collective) 
  Select regions for migration (Embarrassingly Parallel) 
  Migrate selected regions (Collective) 

Ex) “Rgn>Face=Edge>Vtx” is the user’s input  
Step 1: improve balance for mesh regions 
Step 2.1: improve balance for mesh edges 
Step 2.2: improve balance for mesh faces 
Step 3: improve balance for mesh vertices 

Mesh element selection 



ParMA – Multi-Criteria Partition Improvement (Zhou)  
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133M	  region	  mesh	  on	  16k	  parts	  Table	  2:Balance	  of	  par;;ons	  

Table	  3:	  Time	  usage	  and	  itera;ons	  (tests	  on	  Jaguar	  Cray	  XT5	  system)	  

Table	  1:Tests	  



PHASTA - Strong Scaling (K. Jansen) 
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  AAA 5B elements: 288k Cores on JUGENE IBM BG/P  

without	  ParMA	  strong	  scaling	  factor	  is	  
0.88	  (4me	  is	  70.5	  secs),	  

for	  produc4on	  runs	  savings	  can	  be	  in	  43	  cpu-‐years	  



120 parts with ~30% of 
the average load "

~20 parts with > 200% 
imbalance, peak 

imbalance is ~430%"

ParMA – Predictive Load Balancing 
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  Parallel unstructured mesh adaptation typically generate parts 
with 400% or more imbalance on non-trivial geometries due to 
local coarsening & refinement. 
  Refining then repartitioning can exceed 
available memory in some processes,  
even if the system’s total memory is  
sufficient. 
  Solution: Redistribute mesh before adapting 
 Merge parts that will be coarsened  

to create some empty parts. 
 Split parts with substantial refinement  

into the empty parts to remove  
imbalance spikes of refined mesh. 

 Refine/coarsen the mesh. 
 Apply ParMA’s diffusive partition improvement 

Histogram of element 
imbalance in 1024 part 

adapted mesh on Onera M6 
wing if no load balancing is 
applied prior to adaptation."



Closing Remarks 

Research Contributions 
 Parallel mesh data structure with all needed mesh-level 

operations for adaptive simulations on a massively parallel 
computers 

Future Directions 
 Architecture-awareness: node-socket-core-processing unit 
 Identifying optimal granularity and major h/w factors for max. 

scalability 
 Interaction with other threaded/non-threaded parallel library 
 Two-level partitioning with ParMA 

More Information Online 
 PUMI: http://www.scorec.rpi.edu/FMDB/ 
 ParMA: http://redmine.scorec.rpi.edu/projects/parma 
 SCOREC: http://www.scorec.rpi.edu 
 FASTMath: http://www.fastmath-scidac.org 
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Thank You 
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For More Information Contact: "
smithc11@rpi.edu "

WOLFHPC 2012!


