Imperial College
London

“2
Compiler technology for solving
PDEs with performance portability

Paul H J Kelly
Group Leader, Software Performance Optimisation
Co-Director, Centre for Computational Methods in Science and Engineering

Department of Computing, Imperial College London
Joint work with :
David Ham (Imperial Computing/Maths/Grantham Inst for Climate Change)
Gerard Gorman, (Imperial Earth Science Engineering — Applied Modelling and Computation Group)
Mike Giles, Gihan Mudalige, Istvan Reguly (Mathematical Inst, Oxford)
Doru Bercea, Fabio Luporini, Graham Markall, Lawrence Mitchell, Florian Rathgeber, George Rokos (Software
Perf Opt Group, Imperial Computing)
Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial)
Michelle Mills Strout, Chris Krieger, Cathie Olschanowsky (Colorado State University)
Carlo Bertolli (IBM Research)
Ram Ramanujam (Louisiana State University)

1

Imperial College
London

This talk is about the
following idea:

B can we simultaneously

B raise the level at which
programmers can
reason about code,

B provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand?

Imperial College
London

This talk is about the
following idea:

B can we simultaneously

B raise the level at which
programmers can
reason about code,

B provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand?

Polyhedra
Shape

Dependence
Call-graph
Class-hierarchy
Points-to
Types
Syntax

B Compilation is like skiiing
B Analysis is not always the interesting part....

What we
are
doing...,

Targetting
MPI,
OpenMP,
OpenCL,
Dataflow/
FPGA, from
supercomp
uters to
mobile,
embedded
and
wearable

PyOP2/OP2

Unstructured-
mesh stencils

Firedrake

Finite-element
assembly

PAMELA

Dense SLAM
— 3D vision

PRAgMaTlc

Dynamic
mesh
adaptation

GiMMIiK
Small-matrix
multiplication

TINTL

Fourier
interpolation

Projects

Finite-
volume CFD

Finite-
element

Real-time 3D
scene
understanding

Adaptive-
mesh CFD

Unsteady
CFD - higher-
order flux-
reconstruction

Ab-initio
computational
chemistry
(ONETEP)

Contexts

Vectorisation,
parametric
polyhedral tiling

Tiling for
unstructured-
mesh stencils

Lazy, data-driven
compute-
communicate

Runtime code
generation

Multicore graph
worklists

Massive common
Sub-expressions

Optimisation of
composite
transforms

e

Technologies

Aeroengine
turbo-
machinery

Weather and
climate

Domestic
robotics,
augmented
reality

Tidal turbines

Formula-1,
UAVs

Solar energy,
drug design

Applications

What we
are
doing. ..

Targetting
MPI,
OpenMP,
OpenCL,
Dataflow/
FPGA, from
supercomp
uters to
mobile,
embedded
and
wearable

PyOP2/OP2

Unstructured-
mesh stencils

Firedrake

Finite-element
assembly

PAMELA

Dense SLAM
— 3D vision

PRAgMaTlc
Dynamic
mesh
adaptation

GiMMIiK
Small-matrix
multiplication

TINTL

Fourier
interpolation

Projects

Finite-
volume CFD

Finite-
element

Real-time 3D
scene
understanding

Adaptive-
mesh CFD

Unsteady
CFD - higher-
order flux-
reconstruction

Ab-initio
computational

chemistry
(ONETEP)

Contexts

Vectorisation,

parametric
polyhedral tiling

Tiling for
unstructured-
mesh stencils

Lazy, data-driven

compute-
communicate

Runtime code
generation

~—

Multicore graph
worklists

Massive common
Sub-expressions

Optimisation of
composite
transforms

Technologies

—

Aeroengine
turbo-
machinery

Weather and
climate

Tidal turbines

Domestic
robotics,
augmented
reality

Formula-1,
UAVs

Solar energy,
drug design

Applications

Imperial College

London

“2

OP2 and PyORPZ2: parallel loops over unstructured
meshes

How well does it work?

Loop fusion and tiling for unstructured-meshes
Firedrake: a compiler for a higher-level DSL
COFFEE: a compiler for a lower-level DSL

This talk’s message:

B Avoid analysis for transformational optimisation
B Transform at the right level of abstraction
B Design representations that get the abstraction right

Unstructured mesh
Sometimes adaptive (not in the rest of this talk)

OP2 is a C++ and Fortran library for parallel loops over the
mesh implemented by source-to-source transformation

PyOP2 is an major extension implemented in Python using
runtime code generation

Generates highly-optimised CUDA, OpenMP and MPI code

Key idea: parallel loop has access descriptor providing
declarative specification of the data access

/” '\;-H‘—‘x‘:\‘:/_"_,_.-—"'_ —

Example: mesh adaptation in AMCG’s Fluidity -

®

B Unstructured mesh
B Sometimes adaptive (not in the rest of this talk)

B OP2is a C++ and Fortran library for parallel loops over the
mesh implemented by source-to-source transformation

B PyOP2 is an major extension implemented in Python using
runtime code generation

B Generates highly-optimised CUDA, OpenMP and MPI code

B Key idea: parallel loop has access descriptor providing
declarative specification of the data access

Imperial College

PyOP2 — an active library
for unstructured mesh computations

declare sets, maps, and datasets

nodes = op2.Set(nnode)
edges = op2.Set(nedge)

[ppedge = op2.Map(edges, nodes, 2, pp) }

for iter in xrange(0, NITER):

6p2.par_loop(res, edges,
p_A(op2.READ),
p_u(op2.READ, ppedge[1]),
p_du(op2.INC, ppedge]0]),

/p_A = op2.Dat(edges, data=A))
p_r = op2.Dat(nodes, data=r)
p_u = op2.Dat(nodes, data=u)
Q_du = op2.Dat(nodes, data=du))

global variables and constants declarations
alpha = op2.Const(1, data=1.0, np.float32)
beta = op2.Global(1, data=1.0, np.float32)

\ beta(op2.READ))

~

/

u_sum = op2.Global(1, data=0.0, np.float32)
u_max = op2.Global(1, data=0.0, np.float32)

@2.par_loop(update, nodes,
p_r(op2.READ),
p_du(op2.RW),
p_u(op2.INC),
u_sum(op2.INC),

~

https://github.com/OP2/PyOP2/blob/master/demo/jacobi.py

\ u_max(op2.MAX))

%

VARY,

void res(float *A, float *u, float *du, PyOPZ —an aCtlve Ilbrary

const float *beta){ tructured mesh computations
B *du += (*beta) * (*A) * (u);
}

[n xrange(0, NITER):

op2.par_loop(res, edges, \

void L:pdate(float *r,* float *du, float *u, float o A(0p2.READ),
u_sum, float *u_max) {
*u += *du + alpha * (*r); p_u(op2.READ, ppedge[1]),
*du = 0.0f; p_du(op2.INC, ppedge[0]),
*u_sum += (*u) * (*u); beta(op2.READ))
*U_max ="*u_max>"*u?*u_ \ /

}

u_sum = op2.Global(1, data=0.0, np.float32)
ax = op2.Global(1, data=0.0, np.float32)

* |In this simple example, the

ke.rnels are given as C /p2.par_looplUpdate, nodes, ™
strings p_r(op2.READ),
* |n most of our work, the p_du(op2.RW),
kernels are automatically p_u(op2.INC),
generated u_sum(op2.INC),
* And passed as ASTs _U-max(op2.MAX))

!—IY[?RA: Full-scale industrial CFD

Runtime (Seconds)

32 | 16
=>OPlus
16 gz: -EF OP2 MPI (RCB) |
< —=-0P2 MPI+OMP (RCB)
-A- OP2 MPI (PTScotch) g
8 —&—OP2 MPI+OMP (PTScotch)
~@-0P2 MPI+CUDA (PTScotch)
4
!—"/—‘k [N
4 =)
2 .
=& OPlus =
1 S S -~ OP2 MPI (PTScotch) Q"
B 2 -EF OP2 MPI (RCB) -
0 YRS —&—OP2 MPL+OMP (PTScotch) (D
> - . —%-0P2 MPI+OMP (RCB)
TS A ~@-0P2 MPI+CUDA (PTScotch)
0.25 —A ! !
1 2 4 8 16 32 64 128 1 2 4 8
Nodes Nodes
(a) Strong Scaling (2.5M edges) (b) Weak Scaling (0.5M edges per node)

B Unmodified Fortran OP2 source code

exploits inter-node parallelism using MPI, ™ “Performance

e et al, http://arxiv.org/pdt14

- - - - H JJ
and intra-node parallelism using portability
OpenMP and CUDA S -
. (Cray XE6) (NVIDIA GPU Cluster)
B Application is a proprietary, full-scale, in-=xtcor AMD Opteron TxTesla K20m + o
- . . 6276 (Interlagos)2.3GHz Intel Xeon E5-1650 3.2GHz ==
production fluids dynamics package 32GB 5GB/GPU (ECC on) <3
128 8 S
Cray Gemini nfiniBand
. Deve_lop ed _by ROIIS Roy ce p Ic a_nd used CL}IIE 3?1.29 Red H;:’cDL1§n1ux Er?terprise 6.3i
for simulation of aeroplane engines Cray MPI8.14 PGI133 ICCT301, 5’
OpenMPI 1.6.4 (o))
(joint work with Mike Giles, Istvan Reguly, Gihan Mudalige at Oxford) -O3 -h {p3 -h ipa5 -O2 xAVX QQ:J

-arch=sm_35 -use_fast_math

Sparse tiling on an unstructured mesh, for locality

Visits edges
Increments nodes

Visits nodes
Depends on edges

B How can we fuse two loops, when there is a “halo”
dependence?

B |e load a block of mesh and do the iterations of loop 1, then the
iterations of loop 2, before moving to the next block

B If we could, we could dramatically improve the memory access
behaviour!

orini et al, IPDPS’

Strout, Lup

Imperial College

London Tiling an unstructured mesh for locality

Visits edges
Increments nodes

Visits nodes
Depends on edges

B Partition the iteration space of loop 1

Strout, Luporini et al, IPDPS’

Tiling an unstructured mesh for locality

Visits edges
Increments nodes

Visits nodes
Depends on edges

B Partition the iteration space of loop
B Colour the partitions

Strout, Luporini et al, IPDPS’

Tiling an unstructured mesh for locality

Visits edges
Increments nodes

Visits nodes
Depends on edges

B Partition the iteration space of loop
B Colour the partitions

B Project the tiles, using the knowledge that colour n can use
data produced by colour n-1

B Thus, the tile coloured #1 grows where it meets colour #0
B And shrinks where it meets colours #2 and #3

Strout, Luporini et al, IPDPS’

Tiling an unstructured mesh for locality

Visits edges
Increments nodes

Depends on edges

-,. Visits nodes

B Partition the iteration space of loop
B Colour the partitions

B Project the tiles, using the knowled
data produced by colour n-1

B Thus, the tile coloured #1 grows Whg‘untime y
B And shrinks where it meets colours Feorraro

~

Inspector-executor:
derive tasks and
task graph from
the mesh, at

Strout, Luporini et al, IPDPS’

Extreme results — OP2 loop fusion

Speedup of Airfoil on Intel ManyCore (4-socket 10-core machine)
25 | | | ‘ | | |

Speedup over OP2 serial

OP2 - no staging —=—
QPZ - tiIingI —e—

0
5 10 15 20 25 30 35 40
B Mesh size = 14M vertices Threads

B Airfoil test problem

B # LO_OP chain = 2 loops B Unstructured-mesh finite-
B No inspector/plans overhead volume

More realistic results — OP2 loop fusion

Speedup of Airfoil on Sandy Bridge

10 l I | l I | |
9 - Intel Sandy Bridge (dual-socket 8-core Intel ___________________ O SO RUURNURURE SR N]
Xeon E5-2680 2.00Ghz, 20MB of shared | | |
= 8 |- L3 cache per socket); Intel i icc 2013(-03,- R RRRERLL s — SIS =
= xSSE4 2/-xAVX) | r ‘ :
Q 22 ST S -
w0
o |
S 6 L .. —
g 5 L .. |
o a :
o I S EEIT et U PP o _
= : |
'ed) 3 N Z L R L |
() : ‘
S oL .
: : : : : OP2 - mpi —=—
1€ R T S TR TR PR S OP2 - openmp ——— |
‘ ‘ ‘ ‘ ‘ OP2 - tiling ——=—
0 | | | | | | |
2 4 6 8 10 12 14 16
Threads

B Mesh size = 1.5M edges m Airfoil test problem

® # Loop chain = 6 loops B Unstructured-mesh finite-
B No inspector/plans overhead volume

Imperial College

The finite element method in outline

]
I; I ‘{\- end do
J k
i K

ot

do element = 1,N
assemble(element)

/Z7L(ll(5)dX=/ vgdX.
0O 0O

k [

) Ax=b

.

B Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector

Imperial College

Multilayered abstractions for FE
_
® Local assembly:

B Specified using the FENICS project’'s DSL, UFL
(the “Unified Form Language”)

B Computes local assembly matrix

B Key operation is evaluation of expressions over
basis function representation of the element

® Mesh traversal:
B OP2

B Loops over the mesh

B Key is orchestration of data movement
~ I Solver:

B Interfaces to standard solvers, such as PetSc

e
can be represented in UFL as

(.
A weak form of the shallow water equations

/qV-udV=—/ u-n(gt —q¢)ds
Q TE

/v-Vth=02/ (" —h)n-vdS
Q

(u, h) = TrialFunctions (W)

M_u = inner (v,u) *dx

M_h = qg*h*dx

Ct = -inner (avg(u), jump(q,n)) *dS
c**2*xadjoint (Ct)

B 0onon

= M_u+M_h-0.5*xdt*(C-Ct+F)

V = FunctionSpace(mesh, ’Raviart-Thomas’,
H = FunctionSpace (mesh, ’DG’, 0)

W = VxH

(v, q) = TestFunctions (W)

f*xinner(v,as_vector ([-ul[1],u[0]]))*dx
assemble (M_u+M_h+0.5%xdt*x(C-Ct+F))

1)

The FEnICS
project’s Unified
Form Language
(UFL)

r

Local assembly kernel

void Mass (double localTensor [3][3])

{

const double qwl([6] = { ... };
const double CG1[3][6] = { ... };
for(int i = 0; i < 3; i++)

for(int j = 0; j < 3; j++)
for(int g = 0; g < 6; g++)
localTensor [i][j]
+= CG1[ilJ[g]l * CG1[jllgl * qwlgl);

parallel loop

over all grid cells,

in unspecified order,
partitioned

unstructured grid
defined by vertices,
edges and cells

Firedrake:

B An alternative implementation of the FEnICS language
B Using PyOP2 as an intermediate representation of parallel loops

B All embedded in Python

B The FEnICS project’'s UFL —
DSL for finite element

Unified Form discretisation
Language

B Compiler generates PyOP2
kernels and access descriptors

FEnICS Form
Compiler

Non-FE loops

B Stencil DSL for unstructured-mesh

B Explicit access descriptors
characterise access footprint of
kernels

B Runtime code generation

COFFEE kernel
optimiser/vectoriser

: Manycore Future/
Multicore IGPU

43/9

B The advection- OT

iffusi : — =DV?*T —u-VT
diffusion problem: 5 V u-V
B Weak form: Diffusion Advection
oT
g— dX = q(VT —uT) -nds— [Vqg-VTI'dX + [Vqg-uT dX
q Ot 50 0 0
B Thisis the
entire t=state.scalar fields["Tracer"] Extract fields

SpeCification u=state.vector_fields["Velocity"] from Fluidity

for a solver for p=TrialFunction(t) Setup test and

trial functions

an ad.VGCtIOn' g=TestFunction(t)
diffusion test

problem M=p*q*dx Mass matrix
d=-dt*dfsvty*dot(grad(q),grad(p))*dx # Diffusion term

D=M-0.5*d Diffusion matrix
B Same model

implemented adv = (gq*t+dt*dot(grad(q),u)*t)*dx Advection RHS

iIn FENICS/ diff = action(M+0.5*d,t) Diffusion RHS
Dolfin, and

also in Fluidity solve(M == adv, t) Solve advection
— hand-coded | solve(d == diff, t) Solve diffusion

Fortran
44/9

Imperial College Firedrake _— single.nOde performance
I R ——

B Here we compare 3(Ij%enchmark of an advection-diffusion problem for 100 time steps
performanc_e against —— Fluidity (1 core) +.+ DOLFIN MPI (12 cores)
two prod uction * % DOLFIN (1 core) <—< PyOP2 MPI (12 cores)

¢—0 PyOP2 sequential (1 core) a—a PyOP2 CUDA (1 GPU)
____________ B & Fluidity MPI (12 cores) -

codes solving the
same problem on the
same mesh:

B Fluidity: Fortran/
C++

B DOLFIN: the
FENICS project’s
Implementation
of UFL

N
(O]

N
(@)

______________ N\ FermiM2050 |

[
(=)

Relative speedup over Fluidity baseline
|_I
un

Markall, Rathgeber et al, ICS’13

2000000 300000 400000 500000 600000 700000 800000 90000C
Number of elements in the mesh

B Graph shows speedup over Fluidity on one core
of a 12-core Westmere node

Imperial College Firedrake - larger core counts

B Phase separation of the B 8M DOF mesh
two components of a binary

fluid B Ten timesteps

B Fourth-order parabolic
time-dependent non-linear B Up to 1536 cores
Cahn-Hilliard equation B Down to 5K DOFs per core

B GMRES solver with a B Running on ARCHER, a
fieldsplit preconditioner Cray XC30

using a lower Schur B Compute nodes contain
complement factorisation two 2.7 GHz, 12-core
B HYPRE Boomeramg E5-2697 v2 (|V3/é34{’g|939)f
E alaebrai tiari processors an o)
R oo ane RAM in two 32GB NUMA
regions.

B Example is in the demo
suite

B Firedrake and PETSc were compiled with version 4.8.2 of the GNU Compilers and Cray MPICH2 6.3.1 with the asynchronous progress feature
enabled was used for parallel runs. Generated code was compiled with the -O3 -mavx flags. The software revisions used were Firedrake
revision c8ed154 from September 25 2014, PyOP2 revision f67fd39 from September 24 2014 with PETSc revision 42857b6 from August 21
2014 and DOLFIN revision 30bbd31 from August 22 2014 with PETSc revision d7ebadd from August 13 2014.

E Generated code is compiledwith -O3 -fno-tree-vectorize in Firedrake and -O3 -ffast-math -march=native in DOLFIN
http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/cahn-hilliard/ python/documentation.html

imperial College Firedrake — Scaling

e e e
104: ' S I - o] B BothFiredrake

: 5 5 5 5 5 5 5 5 5 | and Dolfin scale
down to 10K
DOFs/core

But Firedrake is
much faster:

Better
implementation of
mixed spaces

Residuals and
Jacobians are
cached

Inlining and loop
nest

time [sec]

who e T @] oOptimisations/
[| — perfect speedup ¢ ¢ initial condition, DOLFIN <> { vectorization
104 |9~ initial condition, Firedrake X A Assemble cells, DOLFIN : 1 SOlver iS faSter

| A~A Assemble cells, Firedrake O- O SNES solver execution, DOLFIN
L|O-O SNES solver execution, Firedrake

5 | thanks to nested
i] matrix handling of

10-5 . I PR S I 1 L — I . R P
1 3 6 12 24 48 96 192 384 768 1536 i
8.01M 2.67M 133M 667k 333k 166k 83k 41k 20k 10k 5k gl)lr(]ed Spaces and
Number of cores / DOFs per core chur

complement
http.//fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/cahn-hilliard/ python/documentation.html

Imperial College Optimisation of kernels

= = =
void helmholtz(double A[3][3], double **coords) {

/l K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X _D10[3][3] = {{...}}
static const double X DO1[3][3] = {{...}}

for (inti=0;1<3; 1++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)
Aljllk] += ((YITkI*YT1[31+

+((K1*X_D10[i1[k]1+K3*X _DO1[il[k])*(K1*X_D10[i1[j1+K3*X_DO1[il[j1)+
+((K0*X_D10[i1[k]+K2*X_D01[il[k])*(K0*X_D10[i][j1+K2*X_DO1[il[j1)))*
*det*WIil);

}

B Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

B The local assembly operation computes a small dense submatrix
B Essentially computing (for example) integrals of flows across facets

B These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

Imperial College Optimisation of kernels
I . e e —

void helmholtz(double A[3][4], double **coords) { B Local assembly code

#define ALIGN __attribute__((aligned(32))) for the Helmholtz

// K, det = Compute Jacobian (coords) problem after
application of

static const double W[3] ALIGN ={...} ® padding

B data alignment,

static const double X _D10[3][4] ALIGN = {{...}}
{...}}
B Loop-invariant

static const double X _DO01[3][4] ALIGN = {

for (inti=0;i<3;i++) { code motion
double LI_0[4] ALIGN; B |n th|s examp|e, SUb-
double LI_1[4] ALIGN; expressions invariant
for (int r = 0; r<4; r++) { , to j are identical to
LI_O[r] = (K1*X_D10[i][rD+(K3*X_DO1[il[r]); those invariant to k. so
LI_1[r] = (KO*X_D10[i][r)+(K2*X _DO1[il[r])); they can be ’
} precomputed once in

for (int j = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)
Aljllk] += (YLIkI*Y[[1+ LI_O[K*LI_O[j]+ LI_1[k]*LI_1[jD*det*WI[il);

}
t

the r loop

Imperial College Optimisation of kernels

e A e e a——
void burgers(double A[12][12], double **coords, double **w) {F Local assem bly code

/I K, det = Compute Jacobian (coords) generated by
static const double W[5] = {...} Firedrake for a Burgers
static const double X1_D001[5][12] = {{...}} prOblem on a 3D tetra-
static const double X2_D001[5][12] = {{...}} hedral mesh using
//11 other basis functions definitions. Lag range p = 1
for (int i = 0; i<5; i++) { elements
double F0 = 0.0; B Somewhat more
//10 other declarations (F1, F2,...) Complicated!
for (int r = 0; r<12; r++) { B Examples like this
FO += (wlrl[01*X1_D100[il[r]); motivate more
//10 analogous statements (F1, F2, ...) COmp| ex
" transformations
for (int j = 0; j<12; j++) B Including loop fission

for (int k = 0; k<12; k++)

Aflk] += (..(K5*F9)+(K8*F10))*Y1[il[j])+
+((K0*X1_D100[i][kD+(K3*X1_D010[i][k])+(K6*X1_D001[il[kD)*Y2[1][;D)*F11)+
+(..(K2*¥X2_D100[i][kD+...+(K8*X2_D001[1][k]))*((K2*X2_D100[i][j1)+...+(K8*X2_DO0O01[il[j]))..
+ <roughly a hundred sum/muls go here>)..)*

*det*WIil);

imperial College Performance impact

Static linear elasticity - polynomial order 1 Static linear elasticity - polynomial order 2

35 T 90 T
Assembly XxX= Assembly Xx=
3L Solve x| 80 - Solve EZzzzd
NN Other = Other
—_ —~ 70 | -
g 2.5 + §
) S SN - SN a 60 |
[J] 2 L (0]
£ E 50 r 7
-~ -
S 15h S 40 - T
5 5
g 1k o 30 -
X X
18] w 20 L |
05 10 - .
0 0
no-opt ¢ opt no-opt opt no-opt opt no-opt 5 opt
"~ 7 Number of coefficient functions ~ 7 Number of coefficient functions

B Fairly serious, realistic example: static linear elasticity, p=2
tetrahedral mesh, 196608 elements

B Including both assembly time and solve time
B Single core of Intel Sandy Bridge

B Compared with Firedrake loop nest compiled with Intel’s icc
compiler version 13.1

B At low p, matrix insertion overheads dominate assembly time

B At higher p, and with more coefficient functions (f=2), we get up to
1.47x overall application speedup

Imperial College

Conclusions: PyOP2 layer

B The key idea in OP2/PyOP2 is access
descriptors

B OPZ2’'s access descriptors are declarative
specifications of how each loop iteration is
connected to the abstract mesh

B The kernels do not access the mesh

B The implementation is responsible for connecting
the kernel to the data

B The implementation is free to select layout, stage
data, schedule loops

B We can map from data to iterations

B What would a programming abstraction
for data locality look like?

Imperial College

Conclusions: Firedrake layer

B Dramatically raised level of abstraction

B But we still can match or exceed hand-coded,
iIn-production code

B Costs of abstraction are eliminated by dynamic
generation of code specialised to context

B Domain-specific optimisations can yield big
speedups over the best available general-
purpose compilers

B The real payoff lies in supporting the users
in navigating freely to the best way to model
their problem

B How can the barriers to adoption of DSLs be
overcome?

Imperial College

Acknowledgements
= = ———— .
Partly funded by

B NERC Doctoral Training Grant (NE/G523512/1)
EPSRC “MAPDES” project (EP/100677X/1)
EPSRC “PSL” project (EP/I006761/1)
Rolls Royce and the TSB through the SILOET programme
EPSRC "PAMELA" Programme Grant (EP/K008730/1)
EPSRC "PRISM” Platform Grant (EP/I006761/1)
EPSRC “Custom Computing” Platform Grant (EP/I012036/1)
AMD, Codeplay, Maxeler Technologies

B Code:
B http://www.firedrakeproject.orqg/
B http://op2.github.io/PyOP2/

Imperial College PyOPZ is on gith”b

- C' [op2.github.io/PyOP2/
PyOP2 0.10.0 documentation »

Table Of Contents Welcome to PyOP2’s documentation!

Welcome to PyOP2'’s

documentation! Contents:

Indices and tables

« Installing PyOP2
o Quick start

Next topic

Installing PyOP2

o Provisioning a virtual machine
This Page o Preparing the system
o Dependencies
LAl o Building PyOP2
Quick search o Setting up the environment
o Testing your installation
. |Go > Troubleshooting
Enter search terms or a module, « PyOP2 Concepts .
class or function name. o Sets and mappings
o Data

o Parallel loops
PyOP2 Kernels
o Kernel API
o Data layout
o Local iteration spaces
The PyOP2 Intermediate Representation
o Using the Intermediate Representation
o Achieving Performance Portability with the IR
o Optimizing kernels on CPUs
o How to select specific kernel optimizations
PyOP2 Architecture
o Multiole Backend Support

Imperial College

Firedrake is on github

LIt

™

€& - C' [www.firedrakeproject.org g =

&)
e @) y @ Indices and tables — Fire

!

M

‘Firedrake

Download Team

Firedrake is an automated system for the portable solution of partial differential equations using the finite element method (FEM).
Firedrake enables users to employ a wide range of discretisations to an infinite variety of PDEs and employ either conventional CPUs
or GPUs to obtain the solution.

N ¥

Firedrake employs the Unifed Form Language (UFL) and FEnIiCS Form Compiler (FFC) from the FEnICS Project and fields and
meshes from Fluidity. The parallel execution of the FEM solver is accomplished by the PyOP2 system.

« The Firedrake team

o Summer students 2013
» Obtaining Firedrake

o PyOP2

o Firedrake

~— .

Imperial College The FEniCS project"_ The bOOk
| EE——

800 / @ Automated Solution of Dif % \ \
L C | [www.amazon.co.uk/Automated-Solution-Differential-Equations-Element/dp/3642230989 wl=
Want Your Stuif Fast?
amazon-CO-Uk P's Amazon Today's Deals GiftCards Sell Help Try Prime Free for 30 Days »sign uj
Shop by - Hello, P Try 0
Department ~ Search | Books n Your Account~v Prime v -\.-.,Basket v

Books Advanced Search Browse Genres Best Sellers New & Future Releases Paperbacks Seasonal Offers Study Books Audiobooks Sell Your Books

and thousands of other textbooks are available for instant download on your Kindle Fire tablet or on the free Kindle apps for iPad, Andr
tablets, PC or Mac.

i Automated Solution of e |
click to LOOK INSIDE! Differential Equations by the Quantity: & & (
e Finite Element Method: The (@9 Add to Basket

&& = 4 -

FEnICS Book (Lecture Notes in or
Computational Science and Sign in to turn on 1-Click ordering. i

Engineering) [Hardcover] ([AddtoWishlist)
= o Anders Logg (Editor), Kent-Andre Mardal (Editor),
— ; Garth Wells (Editor)
LECTURE NOTES IN COMPUTATIONAL Be the first to review this item More Buying Choices

SCIENCE AND ENGINEERING

. 40 d & f £48.11 |
price: £62.99 g& this item Delivered c——

Anders Logq - Kent-Andre Mardal

Garth N. Wells Fditors FREE in the UK with Super Saver Have one to sell? [Sell yours here |

Delivery. See details and conditions
. Share A} ¥
AUtomatEd SOlUthﬂ In stock but may require up to 2
i i i additional days to deliver.

Of leferentlal Equatlons Disgatched from and sold by Amazon. Gift-wrap

by the Finite Element available. !

MethOd 32 new from £48.11 8 used from £51.23)

tde o

www.amazon.co.uk /deals-offers-savings /b/ref=cs_top_nav_gb27?ie=UTF8&node=350613011

-

