
Compiler technology for solving
PDEs with performance portability

Paul H J Kelly
Group Leader, Software Performance Optimisation

Co-Director, Centre for Computational Methods in Science and Engineering
Department of Computing, Imperial College London

Joint work with :
David Ham (Imperial Computing/Maths/Grantham Inst for Climate Change)

Gerard Gorman, (Imperial Earth Science Engineering – Applied Modelling and Computation Group)
Mike Giles, Gihan Mudalige, Istvan Reguly (Mathematical Inst, Oxford)

Doru Bercea, Fabio Luporini, Graham Markall, Lawrence Mitchell, Florian Rathgeber, George Rokos (Software
Perf Opt Group, Imperial Computing)

Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial)
Michelle Mills Strout, Chris Krieger, Cathie Olschanowsky (Colorado State University)

Carlo Bertolli (IBM Research)
Ram Ramanujam (Louisiana State University) 1

Have your cake and eat it too

This talk is about the
following idea:
!   can we simultaneously
!   raise the level at which

programmers can
reason about code,

! provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand?

Have your cake and eat it too

This talk is about the
following idea:
!   can we simultaneously
! raise the level at which

programmers can
reason about code,

!  provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand?

!   Compilation is like skiiing
!   Analysis is not always the interesting part....

Syntax

Points-to
Class-hierarchy

Dependence
Shape

.....

Types

Call-graph

Polyhedra

Register allocation
Instruction selection/scheduling

Storage layout

Tiling
Parallelisation

Mapping

Loop nest ordering
!.

ht
tp

://
w

w
w

.n
ik

ki
em

cd
ad

e.
co

m
/s

ub
Fi

le
s/

2D
E

xa
m

pl
es

.h
tm

l
ht

tp
://

w
w

w
.g

in
z.

co
m

/n
ew

_z
ea

la
nd

/s
ki

_n
ew

_z
ea

la
nd

_w
an

ak
a_

ca
dr

on
a

What we
are
doing….

PyOP2/OP2
Unstructured-
mesh stencils

GiMMiK
Small-matrix
multiplication

Firedrake
Finite-element
assembly

PAMELA
Dense SLAM
– 3D vision

PRAgMaTIc
Dynamic
mesh
adaptation

TINTL
Fourier
interpolation

Unsteady
CFD - higher-
order flux-
reconstruction

Finite-
volume CFD

Real-time 3D
scene
understanding

Adaptive-
mesh CFD

Ab-initio
computational
chemistry
(ONETEP)

Finite-
element

Formula-1,
UAVs

Aeroengine
turbo-
machinery

Domestic
robotics,
augmented
reality

Tidal turbines

Solar energy,
drug design

Weather and
climate

Projects Contexts Applications

Massive common
sub-expressions

Vectorisation,
parametric
polyhedral tiling

Lazy, data-driven
compute-
communicate

Multicore graph
worklists

Optimisation of
composite
transforms

Tiling for
unstructured-
mesh stencils

Technologies

Targetting
MPI,
OpenMP,
OpenCL,
Dataflow/
FPGA, from
supercomp
uters to
mobile,
embedded
and
wearable

Runtime code
generation

What we
are
doing….

PyOP2/OP2
Unstructured-
mesh stencils

GiMMiK
Small-matrix
multiplication

Firedrake
Finite-element
assembly

PAMELA
Dense SLAM
– 3D vision

PRAgMaTIc
Dynamic
mesh
adaptation

TINTL
Fourier
interpolation

Unsteady
CFD - higher-
order flux-
reconstruction

Finite-
volume CFD

Real-time 3D
scene
understanding

Adaptive-
mesh CFD

Ab-initio
computational
chemistry
(ONETEP)

Finite-
element

Formula-1,
UAVs

Aeroengine
turbo-
machinery

Domestic
robotics,
augmented
reality

Tidal turbines

Solar energy,
drug design

Weather and
climate

Projects Contexts Applications Technologies

Targetting
MPI,
OpenMP,
OpenCL,
Dataflow/
FPGA, from
supercomp
uters to
mobile,
embedded
and
wearable

Massive common
sub-expressions

Vectorisation,
parametric
polyhedral tiling

Lazy, data-driven
compute-
communicate

Multicore graph
worklists

Tiling for
unstructured-
mesh stencils

Runtime code
generation

Optimisation of
composite
transforms

7

This talk
!  OP2 and PyOP2: parallel loops over unstructured

meshes
!  How well does it work?
!  Loop fusion and tiling for unstructured-meshes
!  Firedrake: a compiler for a higher-level DSL
!  COFFEE: a compiler for a lower-level DSL
! This talk’s message:
! Avoid analysis for transformational optimisation
! Transform at the right level of abstraction
! Design representations that get the abstraction right

!   Unstructured mesh
!   Sometimes adaptive (not in the rest of this talk)

!   OP2 is a C++ and Fortran library for parallel loops over the
mesh implemented by source-to-source transformation

!   PyOP2 is an major extension implemented in Python using
runtime code generation

!   Generates highly-optimised CUDA, OpenMP and MPI code

!   Key idea: parallel loop has access descriptor providing
declarative specification of the data access

Example: mesh adaptation in AMCG’s Fluidity -
http://amcg.ese.ic.ac.uk/index.php?title=Heated_Cylinder_Adapt_Example

Example: mesh adaptation in AMCG’s Fluidity -
http://amcg.ese.ic.ac.uk/index.php?title=Heated_Cylinder_Adapt_Example

Unstructured mesh
Sometimes adaptive

OP2 is a Python, C++ and Fortran library for parallel loops
over the mesh

Reference implementation is pure library
Active library/DSL compiler processes code that uses OP2
Generates highly-optimised CUDA, OpenMP and MPI code

Key idea: parallel loop has access descriptor providing
declarative specification of the data access

Example: mesh adaptation in AMCG’s Fluidity -
http://amcg.ese.ic.ac.uk/index.php?title=Heated_Cylinder_Adapt_Example

!   Unstructured mesh
!   Sometimes adaptive (not in the rest of this talk)

!   OP2 is a C++ and Fortran library for parallel loops over the
mesh implemented by source-to-source transformation

!   PyOP2 is an major extension implemented in Python using
runtime code generation

!   Generates highly-optimised CUDA, OpenMP and MPI code

!   Key idea: parallel loop has access descriptor providing
declarative specification of the data access

PyOP2 – an active library
for unstructured mesh computations

declare sets, maps, and datasets
nodes = op2.Set(nnode)
edges = op2.Set(nedge)

ppedge = op2.Map(edges, nodes, 2, pp)

p_A = op2.Dat(edges, data=A)
p_r = op2.Dat(nodes, data=r)
p_u = op2.Dat(nodes, data=u)
p_du = op2.Dat(nodes, data=du)

global variables and constants declarations
alpha = op2.Const(1, data=1.0, np.float32)
beta = op2.Global(1, data=1.0, np.float32)

for iter in xrange(0, NITER):
 op2.par_loop(res, edges,
 p_A(op2.READ),
 p_u(op2.READ, ppedge[1]),
 p_du(op2.INC, ppedge[0]),
 beta(op2.READ))

 u_sum = op2.Global(1, data=0.0, np.float32)
 u_max = op2.Global(1, data=0.0, np.float32)

 op2.par_loop(update, nodes,
 p_r(op2.READ),
 p_du(op2.RW),
 p_u(op2.INC),
 u_sum(op2.INC),
 u_max(op2.MAX))

Example – Jacobi solver

ht
tp

s:
//g

ith
ub

.c
om

/O
P

2/
P

yO
P

2/
bl

ob
/m

as
te

r/d
em

o/
ja

co
bi

.p
y

PyOP2 – an active library
for unstructured mesh computations

for iter in xrange(0, NITER):
 op2.par_loop(res, edges,
 p_A(op2.READ),
 p_u(op2.READ, ppedge[1]),
 p_du(op2.INC, ppedge[0]),
 beta(op2.READ))

 u_sum = op2.Global(1, data=0.0, np.float32)
 u_max = op2.Global(1, data=0.0, np.float32)

 op2.par_loop(update, nodes,
 p_r(op2.READ),
 p_du(op2.RW),
 p_u(op2.INC),
 u_sum(op2.INC),
 u_max(op2.MAX))

Example – Jacobi solver

void res(float *A, float *u, float *du,
 const float *beta){
*du += (*beta) * (*A) * (*u);
}

void update(float *r, float *du, float *u, float
 *u_sum, float *u_max) {

 *u += *du + alpha * (*r);
 *du = 0.0f;
 *u_sum += (*u) * (*u);
 *u_max = *u_max > *u ? *u_max : *u;
}

•  In this simple example, the
kernels are given as C
strings

•  In most of our work, the
kernels are automatically
generated

•  And passed as ASTs

HYDRA: Full-scale industrial CFD

! Unmodified Fortran OP2 source code
exploits inter-node parallelism using MPI,
and intra-node parallelism using
OpenMP and CUDA

! Application is a proprietary, full-scale, in-
production fluids dynamics package

! Developed by Rolls Royce plc and used
for simulation of aeroplane engines

(joint work with Mike Giles, Istvan Reguly, Gihan Mudalige at Oxford)

8

TABLE 1: Benchmark systems specifications

System Ruby HECToR Jade
(Development machine) (Cray XE6) (NVIDIA GPU Cluster)

Node 2×Tesla K20c + 2×16-core AMD Opteron 2×Tesla K20m +
Architecture 2×6-core Intel Xeon E5-2640 2.50GHz 6276 (Interlagos)2.3GHz Intel Xeon E5-1650 3.2GHz

Memory/Node 5GB/GPU (ECC off) + 64GB 32GB 5GB/GPU (ECC on)
Num of Nodes 1 128 8

Interconnect shared memory Cray Gemini FDR InfiniBand
O/S RedHat Linux Enterprise 6.3 CLE 3.1.29 Red Hat Linux Enterprise 6.3

Compilers PGI 13.3, ICC 13.0.1, Cray MPI 8.1.4 PGI 13.3, ICC 13.0.1,
OpenMPI 1.6.4 OpenMPI 1.6.4

Compiler -O2 -xAVX -O3 -h fp3 -h ipa5 -O2 -xAVX
flags -arch=sm 35 -use fast math -arch=sm 35 -use fast math

16

32

64

128

256

512

1 6 12 24

T
im

e
(s

e
c
o
n
d
s
)

Number of threads

OPlus

OP2 (initial)

OP2

(a) OPlus vs OP2 (MPI only)

0

5

10

15

20

25

30

35

40

6 12 24

T
im

e
(s

e
c
o
n
d
s
)

Number of threads

OPlus

OP2

+PTScotch

+renum

(b) OPlus vs OP2 (with PTSotch and renumbering)
Fig. 9: Single node performance on Ruby (NASA Rotor 37, 2.5M edges, 20 iterations)

lel platforms and (4) how the OP2 framework facilitate
the deployment of such optimisations. In the next
section we analyze Hydra’s performance with OP2
and present work assessing these issues.

4 PERFORMANCE AND OPTIMISATIONS

We begin by initially benchmarking the runtime of
Hydra with OP2 on a single node. Key specifications
of the single node system are detailed in column 1
of TABLE 1. The system is a two socket Intel Xeon
E5-2640 system with 64GB of main memory. The
processors are based on Intel’s latest Sandy-bridge
architecture. The compiler flags that give the best
runtimes are listed. This system, named Ruby, also
consists of two NVIDIA Tesla K20 GPUs. Each GPU
consists of 5 GB of global memory. We use CUDA 5.0
in this study. TABLE 1 also details the large cluster
systems used later in the benchmarking study. These
will be used to explore the distributed memory scaling
performance of Hydra.

As mentioned previously, Hydra consists of several
components [22] and in this paper we report on the
non-linear solver configured to compute in double
precision floating point arithmetic. Hydra can also
be used to express multi-grid simulations, but for
simplicity of the performance analysis and reporting
we utilize experiments with a single grid (mesh) level.
The configuration and input meshes of Hydra in
these experiments model a standard application in
CFD, called NASA Rotor37 [23]. It is a transonic axial

compressor rotor widely used for validation in CFD.
Fig. 8 shows a representation of the mach contours for
this application on a single blade. The mesh used for
the single node performance benchmarking consists
of 2.5 million edges.

Fig. 9(a) presents the performance of Hydra with
both OPlus and OP2 on up to 12 cores (and 24 SMT
threads) on the Ruby single node system using the
message passing (MPI) parallelization. This is a like-
for-like comparison where the same mesh is solved
by both versions. The partitioning routine used in
both cases is a recursive coordinate bisection (RCB)
mesh partitioning [24] where the 3D coordinates of the
mesh is repeatedly split in the x, y and z directions
respectively until the required number of partitions
(where one partition is assigned to one MPI process)
is achieved. The timing presented are for the end-to-
end runtime of the main time-marching loop for 20
iterations. Usual production runs solving this mesh
would take hundreds of iterations to converge.

We see that the OP2 version (noted as OP2 initial) is
about 50% slower than the hand coded OPlus version.
The generated code from OP2 appears to be either
missing a performance optimisation inherent in the
original Hydra code and/or the OP2 generated code
and build structure is introducing new bottlenecks. By
simply considering the runtime on a single thread we
see that even without MPI communications the OP2
(initial) version performs with the same slowdown.
Thus it was apparent that some issue is affecting

! “Performance
portability”

R
eg

ul
y,

 M
ud

al
ig

e
et

 a
l,

ht
tp

://
ar

xi
v.

or
g/

pd
f/1

40
3.

72
09

.p
df

Sparse tiling on an unstructured mesh, for locality

!   How can we fuse two loops, when there is a “halo”
dependence?

! Ie load a block of mesh and do the iterations of loop 1, then the
iterations of loop 2, before moving to the next block

!   If we could, we could dramatically improve the memory access
behaviour!

• 16

Loop 2

Loop 1
Visits edges
Increments nodes

Visits nodes
Depends on edges

S
tro

ut
, L

up
or

in
i e

t a
l,

IP
D

P
S

’1
4

Tiling an unstructured mesh for locality

!   Partition the iteration space of loop 1

• 34

Loop 2

Loop 1
Visits edges
Increments nodes

Visits nodes
Depends on edges

S
tro

ut
, L

up
or

in
i e

t a
l,

IP
D

P
S

’1
4

Tiling an unstructured mesh for locality

!   Partition the iteration space of loop 1
! Colour the partitions

• 35

Loop 2

Loop 1
0

2
1

3 2

0

0
2

1
3 2

0

Visits edges
Increments nodes

Visits nodes
Depends on edges

S
tro

ut
, L

up
or

in
i e

t a
l,

IP
D

P
S

’1
4

Tiling an unstructured mesh for locality

!   Partition the iteration space of loop 1
! Colour the partitions
!   Project the tiles, using the knowledge that colour n can use

data produced by colour n-1
!   Thus, the tile coloured #1 grows where it meets colour #0
!   And shrinks where it meets colours #2 and #3

• 36

Loop 2

Loop 1
0

2
1

3 2

0

0
2

1
3 2

0

Visits edges
Increments nodes

Visits nodes
Depends on edges

S
tro

ut
, L

up
or

in
i e

t a
l,

IP
D

P
S

’1
4

!   Partition the iteration space of loop 1
! Colour the partitions
!   Project the tiles, using the knowledge that colour n can use

data produced by colour n-1
!   Thus, the tile coloured #1 grows where it meets colour #0
!   And shrinks where it meets colours #2 and #3

Tiling an unstructured mesh for locality

• 37

Loop 2

Loop 1
0

2
1

3 2

0

0
2

1
3 2

0

Visits edges
Increments nodes

Visits nodes
Depends on edges

S
tro

ut
, L

up
or

in
i e

t a
l,

IP
D

P
S

’1
4

Inspector-executor:
derive tasks and
task graph from
the mesh, at
runtime

Extreme results – OP2 loop fusion
Results on OP2 Airfoil

• Mesh size = 14M vertices
• # Loop chain = 2 loops
• OpenMP Parallelism given by multiple tiles/partitions per color
• No inspector/plans overhead

(4-socket 10-core machine)

11

!   Mesh size = 14M vertices
!   # Loop chain = 2 loops
!   No inspector/plans overhead

! Airfoil test problem
!   Unstructured-mesh finite-

volume

More realistic results – OP2 loop fusion

!   Mesh size = 1.5M edges
!   # Loop chain = 6 loops
!   No inspector/plans overhead

! Airfoil test problem
!   Unstructured-mesh finite-

volume

(a) (b)

(c) (d)

Fig. 6: The Airfoil’s loop chain performance in terms of execution time and speedup relative to the best sequential execution

time for Sandy Bridge(a,c) and Westmere(b,d). The speedup is evaluated with respect to the omp version with one thread (i.e.

the slowest sequential back-end).

Choosing the correct input parameters to the tiling process is

key to achieving performance improvements. The parameters

include, the number of tiles, the iteration space to use as

the seed partition, and the numbering of the see partition.

The quality of the seed partition and associated coloring is

especially important. Together these determine the degree of

parallelism in the task graph.

VI. RELATED WORK

Our definition of a loop chain was presented in [8] along

with a discussion of how the loop chain abstraction is compli-

mentary to previous projects that performed task scheduling in

order to achieve asynchronous parallelism. In essence, projects

that require manual task definition [16]–[19] may benefit from

the semantics of a loop chain. Additionally, loop chaining is

a general abstraction that allows for broader application than

abstractions tailored to specific applications [20] or with more

restrictive requirements [21], [22].

For unstructured codes, there has been various inspector/ex-

ecutor strategies [23] that reschedule across loops to improve

data locality while still providing parallelism [2], [7], [24],

[25]. These methods include communication avoiding ap-

proaches [5] that optimize a series of loops over unstructured

meshes. These strategies fall under the broader category of

sparse tiling. In this paper we present a generalized sparse

tiling algorithm, whereas previous work was specific to par-

ticular benchmarks.

Various code transformation have been developed to

reschedule computation and reorder data for loop-chain-like

code patterns. Many of these techniques also generate parallel

execution schedules for the loops. The approach in [26]

identifies partitionable loops, and schedules these loops for

execution on a distributed memory machine. Likewise, there

are approaches that take parallel loops identified by OpenMP

pragmas and transform them for execution on distributed

memory clusters [27].

The approach presented in this paper differs from these

techniques in two key ways. First, these approaches generate

a schedule in which each partition or processing element

executes its assigned iterations of one loop, then communicates

a subset of its results to other partitions that are dependent

on that data. After executing its iterations of a loop, each

processing element potentially waits to receive data from other

partitions. The full sparse tiling approach described here does

not require any synchronization or communication during the

execution of a tile due to the atomicity of the tile. Before

a tile begins execution, it waits until all necessary data is

available and then executes from start to finish without further

communication or synchronization. This approach can better

exploit the locality available across the sequence of loops.

VII. CONCLUSIONS

Full sparse tiling has previously been shown to deliver

significant performance gains when applied ad hoc to specific

Intel Sandy Bridge (dual-socket 8-core Intel
Xeon E5-2680 2.00Ghz, 20MB of shared
L3 cache per socket); Intel icc 2013 (-O3, -
xSSE4.2/-xAVX).

The finite element method in outline

!"#$%$&$'(#)#*+,#
##-..$&/%$0$%$&$'(1#
$'!#!"#

i

j k

i i

i

j j

j

k k

k

!"#$#%&

!  Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector

Multilayered abstractions for FE
!  Local assembly:
!  Specified using the FEniCS project’s DSL, UFL

(the “Unified Form Language”)
!  Computes local assembly matrix
!  Key operation is evaluation of expressions over

basis function representation of the element

!  Mesh traversal:
!  OP2
!  Loops over the mesh
!  Key is orchestration of data movement
!  Solver:
!  Interfaces to standard solvers, such as PetSc

The FEniCS
project’s Unified
Form Language

(UFL)

Firedrake: a finite-element framework
!   An alternative implementation of the FEniCS language
!   Using PyOP2 as an intermediate representation of parallel loops
!   All embedded in Python

!   Stencil DSL for unstructured-mesh
!   Explicit access descriptors

characterise access footprint of
kernels

!   Runtime code generation

!   The FEniCS project’s UFL –
DSL for finite element
discretisation

!   Compiler generates PyOP2
kernels and access descriptors

43/9

PyOP2

Non-FE loops FEniCS Form
Compiler

Unified Form
Language

COFFEE kernel
optimiser/vectoriser

Multicore Manycore
/GPU

Future/
other

!"#$%#&'#

!"#$%&'()*"'++,-'()./01.-(,2%$.
!"#!$!%&#'$($)*+,%(-#./0)$'%)/12222223245!)$'!2+,%(-#2
6"#!$!%&7%'!8)*+,%(-#./9%(8',!:/1222232+)8;2<(6,-,!:2
2
="0),$(<6>'!,8>?!@222222222222222222232A%!6=2!%#!2$>-2
B"0%#!<6>'!,8>?!@2222222222222222222232!),$(2+6>'!,8>#2
2
C"=DBD-52222222222222222222222222222232C$##2;$!),52
-"E-!D-+#7!:D-8!?F)$-?B@GF)$-?=@@D-5232H,++6#,8>2!%);2
H"CEI&JD-222222222222222222222222222232H,++6#,8>2;$!),52
2
$-72"2?BD!K-!D-8!?F)$-?B@G6@D!@D-522232L-7%'!,8>2MNA2
-,++2"2$'!,8>?CKI&JD-G!@222222222222232H,++6#,8>2MNA2
2
#8(7%?C2""2$-7G2!@222222222222222222232A8(7%2$-7%'!,8>2
#8(7%?H2""2-,++G2!@22222222222222222232A8(7%2-,++6#,8>2
.

• 4
4

!   This is the
entire
specification
for a solver for
an advection-
diffusion test
problem

!   Same model

implemented
in FEniCS/
Dolfin, and
also in Fluidity
– hand-coded
Fortran

2.2. The Finite Element Method 13

elements of order k − 1 are used for the space for v and u [KLRT12].

We note how modifications to the equation being solved result in changes to the weak form,

and the choice of basis functions. This demonstrates how flexibility in the weak form and basis

functions is necessary for solving a wide range of problems.

The Advection-Diffusion Equation

A general form of the Advection-Diffusion equation is:

∂T

∂t
= ∇ · (D∇T)−∇ · (uT) +R (2.13)

where T is the concentration of some tracer in a fluid with velocity u and diffusivity D that

evolves over time t and has a source R. If we assume that the velocity field is divergence-free,

the source term is zero, and diffusivity is isotropic, Equation 2.13 simplifies to:

∂T

∂t
= D∇2T� �� �

Diffusion

− u ·∇T� �� �
Advection

(2.14)

where we refer to the marked terms as the advection term and the diffusion term. The weak

form of Equation 2.14 after integration by parts of the advection and diffusion terms is:

�

Ω

q
∂T

∂t
dX =

�

∂Ω

q(∇T − uT) · n ds−
�

Ω

∇q ·∇T dX +

�

Ω

∇q · uT dX (2.15)

Only the spatial derivatives are discretised using the finite element method in this example.

Although it is possible to discretise time with the finite element method, it is presently uncom-

mon to do so in practice. Discretising the time derivative with a theta scheme [HNW93] where

θ = 0.5 yields the following:

2.2. The Finite Element Method 13

elements of order k − 1 are used for the space for v and u [KLRT12].

We note how modifications to the equation being solved result in changes to the weak form,

and the choice of basis functions. This demonstrates how flexibility in the weak form and basis

functions is necessary for solving a wide range of problems.

The Advection-Diffusion Equation

A general form of the Advection-Diffusion equation is:

∂T

∂t
= ∇ · (D∇T)−∇ · (uT) +R (2.13)

where T is the concentration of some tracer in a fluid with velocity u and diffusivity D that

evolves over time t and has a source R. If we assume that the velocity field is divergence-free,

the source term is zero, and diffusivity is isotropic, Equation 2.13 simplifies to:

∂T

∂t
= D∇2T� �� �

Diffusion

− u ·∇T� �� �
Advection

(2.14)

where we refer to the marked terms as the advection term and the diffusion term. The weak

form of Equation 2.14 after integration by parts of the advection and diffusion terms is:

�

Ω

q
∂T

∂t
dX =

�

∂Ω

q(∇T − uT) · n ds−
�

Ω

∇q ·∇T dX +

�

Ω

∇q · uT dX (2.15)

Only the spatial derivatives are discretised using the finite element method in this example.

Although it is possible to discretise time with the finite element method, it is presently uncom-

mon to do so in practice. Discretising the time derivative with a theta scheme [HNW93] where

θ = 0.5 yields the following:

!   Weak form:

! The advection-
diffusion problem:

44/9

!  Here we compare
performance against
two production
codes solving the
same problem on the
same mesh:
!  Fluidity: Fortran/

C++
!  DOLFIN: the

FEniCS project’s
implementation
of UFL

!   Graph shows speedup over Fluidity on one core
of a 12-core Westmere node

Fermi M2050

Firedrake – single-node performance

M
ar

ka
ll,

 R
at

hg
eb

er
 e

t a
l,

IC
S

’1
3

!  Phase separation of the
two components of a binary
fluid

!  Fourth-order parabolic
time-dependent non-linear
Cahn-Hilliard equation

!  GMRES solver with a
fieldsplit preconditioner
using a lower Schur
complement factorisation

!  HYPRE Boomeramg
!  algebraic multigrid

preconditioner
!  Example is in the demo

suite

Firedrake – larger core counts

http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/cahn-hilliard/ python/documentation.html

!  8M DOF mesh
!  Ten timesteps

!  Up to 1536 cores
!  Down to 5K DOFs per core

!  Running on ARCHER, a
Cray XC30

!  Compute nodes contain
two 2.7 GHz, 12-core
E5-2697 v2 (Ivy Bridge)
processors and 64GB of
RAM in two 32GB NUMA
regions.

!  Firedrake and PETSc were compiled with version 4.8.2 of the GNU Compilers and Cray MPICH2 6.3.1 with the asynchronous progress feature
enabled was used for parallel runs. Generated code was compiled with the -O3 -mavx flags. The software revisions used were Firedrake
revision c8ed154 from September 25 2014, PyOP2 revision f67fd39 from September 24 2014 with PETSc revision 42857b6 from August 21
2014 and DOLFIN revision 30bbd31 from August 22 2014 with PETSc revision d7ebadd from August 13 2014.

!  Generated code is compiledwith -O3 -fno-tree-vectorize in Firedrake and -O3 -ffast-math -march=native in DOLFIN

Firedrake – Scaling

http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/cahn-hilliard/ python/documentation.html

21

Cahn-Hilliard strong scaling for a problem with 8M DOFs for ten time steps on up to
1536 cores. Perfect speedup is indicated with respect to a single core.

!   Both Firedrake
and Dolfin scale
down to 10K
DOFs/core

!   But Firedrake is
much faster:

!   Better
implementation of
mixed spaces

!   Residuals and
Jacobians are
cached

! Inlining and loop
nest
optimisations/
vectorization

!   Solver is faster
thanks to nested
matrix handling of
mixed spaces and
Schur
complement

! Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

! The local assembly operation computes a small dense submatrix
! Essentially computing (for example) integrals of flows across facets
! These are combined to form a global system of simultaneous

equations capturing the discretised conservation laws expressed by
the PDE

Optimisation of kernels

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly A:5

LISTING 1: Local assembly code generated by Firedrake for a Helmholtz problem on a 2D
triangular mesh using Lagrange p = 1 elements.
void helmholtz(double A[3][3], double **coords) {
// K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X D10[3][3] = {{...}}
static const double X D01[3][3] = {{...}}

for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

A[j][k] += ((Y[i][k]*Y[i][j]+
+((K1*X D10[i][k]+K3*X D01[i][k])*(K1*X D10[i][j]+K3*X D01[i][j]))+
+((K0*X D10[i][k]+K2*X D01[i][k])*(K0*X D10[i][j]+K2*X D01[i][j])))*
*det*W[i]);

}

LISTING 2: Local assembly code generated by Firedrake for a Burgers problem on a 3D tetra-
hedral mesh using Lagrange p = 1 elements.
void burgers(double A[12][12], double **coords, double **w) {
// K, det = Compute Jacobian (coords)

static const double W[5] = {...}
static const double X1 D001[5][12] = {{...}}
static const double X2 D001[5][12] = {{...}}
//11 other basis functions definitions.
...
for (int i = 0; i<5; i++) {
double F0 = 0.0;
//10 other declarations (F1, F2,...)
...
for (int r = 0; r<12; r++) {
F0 += (w[r][0]*X1 D100[i][r]);
//10 analogous statements (F1, F2, ...)
...

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)

A[j][k] += (..(K5*F9)+(K8*F10))*Y1[i][j])+
+(((K0*X1 D100[i][k])+(K3*X1 D010[i][k])+(K6*X1 D001[i][k]))*Y2[i][j]))*F11)+
+(..((K2*X2 D100[i][k])+...+(K8*X2 D001[i][k]))*((K2*X2 D100[i][j])+...+(K8*X2 D001[i][j]))..)+
+ <roughly a hundred sum/muls go here>)..)*
*det*W[i]);

}
}

(2) Definition of basis functions used, intuitively, to interpolate the contribution to the
PDE solution over the element. The choice of basis functions is expressed in UFL
directly by users. In the generated code, they are represented as global read-only
two dimensional arrays (i.e., using static const in C) of double precision floats.

(3) Evaluation of the element matrix in an affine loop nest, in which the integration is
performed.

Table I shows the variable names we will use in the upcoming code snippets to refer to
the various kernel objects.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Optimisation of kernels

A:8 F. Luporini et al.

LISTING 3: Local assembly code for the Helmholtz problem in Listing 1 after application of
padding, data alignment, and licm, for an AVX architecture. In this example, sub-expressions
invariant to j are identical to those invariant to k, so they can be precomputed once in the r loop.
void helmholtz(double A[3][4], double **coords) {
#define ALIGN attribute ((aligned(32)))
// K, det = Compute Jacobian (coords)

static const double W[3] ALIGN = {...}
static const double X D10[3][4] ALIGN = {{...}}
static const double X D01[3][4] ALIGN = {{...}}

for (int i = 0; i<3; i++) {
double LI 0[4] ALIGN;
double LI 1[4] ALIGN;
for (int r = 0; r<4; r++) {
LI 0[r] = ((K1*X D10[i][r])+(K3*X D01[i][r]));
LI 1[r] = ((K0*X D10[i][r])+(K2*X D01[i][r]));

}
for (int j = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)
A[j][k] += (Y[i][k]*Y[i][j]+LI 0[k]*LI 0[j]+LI 1[k]*LI 1[j])*det*W[i]);

}
}

delegation to the compiler through standard pragmas (unroll). Tiling at the level of
vector registers is an additional feature of COFFEE. Based on the observation that
the evaluation of the element matrix can be reduced to a summation of outer prod-
ucts along the j and k dimensions, a model-driven vector-register tiling strategy can
be implemented. If we consider the code snippet in Listing 3 and we ignore the pres-
ence of the operation det*W3[i], the computation of the element matrix is abstractly
expressible as

Ajk =
�

x∈B�⊆B
y∈B��⊆B

xj · yk j, k = 0, ..., 2 (1)

where B is the set of all basis functions (or temporary variables, e.g., LI 0) accessed in
the kernel, whereas B� and B�� are generic problem-dependent subsets. Regardless of
the specific input problem, by abstracting from the presence of all variables indepen-
dent of both j and k, the element matrix computation is always reducible to this form.
Figure 2 illustrates how we can evaluate 16 entries (j, k = 0, ..., 3) of the element ma-
trix using just 2 vector registers, which represent a 4×4 tile, assuming |B�| = |B��| = 1.
Values in a register are shuffled each time a product is performed. Standard compiler
auto-vectorization for both GNU and Intel compilers, instead, executes 4 broadcast
operations (i.e., “splat” of a value over all of the register locations) along the outer di-
mension to perform the calculation. In addition to incurring a larger number of cache
accesses, it needs to keep between f = 1 and f = 3 extra registers to perform the same
16 evaluations when unroll-and-jam is used, with f being the unroll-and-jam factor.

The storage layout of A, however, is incorrect after the application of this outer-
product-based vectorization (op-vect, in the following). It can be efficiently restored
with a sequence of vector shuffles following the pattern highlighted in Figure 3, ex-
ecuted once outside of the ijk loop nest. The generated pseudo-code for the simple
Helmholtz problem when using op-vect is shown in Figure 4.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

! Local assembly code
for the Helmholtz
problem after
application of
! padding,
! data alignment,
! Loop-invariant

code motion
! In this example, sub-

expressions invariant
to j are identical to
those invariant to k, so
they can be
precomputed once in
the r loop

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly A:5

LISTING 1: Local assembly code generated by Firedrake for a Helmholtz problem on a 2D
triangular mesh using Lagrange p = 1 elements.
void helmholtz(double A[3][3], double **coords) {
// K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X D10[3][3] = {{...}}
static const double X D01[3][3] = {{...}}

for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

A[j][k] += ((Y[i][k]*Y[i][j]+
+((K1*X D10[i][k]+K3*X D01[i][k])*(K1*X D10[i][j]+K3*X D01[i][j]))+
+((K0*X D10[i][k]+K2*X D01[i][k])*(K0*X D10[i][j]+K2*X D01[i][j])))*
*det*W[i]);

}

LISTING 2: Local assembly code generated by Firedrake for a Burgers problem on a 3D tetra-
hedral mesh using Lagrange p = 1 elements.
void burgers(double A[12][12], double **coords, double **w) {
// K, det = Compute Jacobian (coords)

static const double W[5] = {...}
static const double X1 D001[5][12] = {{...}}
static const double X2 D001[5][12] = {{...}}
//11 other basis functions definitions.
...
for (int i = 0; i<5; i++) {
double F0 = 0.0;
//10 other declarations (F1, F2,...)
...
for (int r = 0; r<12; r++) {
F0 += (w[r][0]*X1 D100[i][r]);
//10 analogous statements (F1, F2, ...)
...

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)

A[j][k] += (..(K5*F9)+(K8*F10))*Y1[i][j])+
+(((K0*X1 D100[i][k])+(K3*X1 D010[i][k])+(K6*X1 D001[i][k]))*Y2[i][j]))*F11)+
+(..((K2*X2 D100[i][k])+...+(K8*X2 D001[i][k]))*((K2*X2 D100[i][j])+...+(K8*X2 D001[i][j]))..)+
+ <roughly a hundred sum/muls go here>)..)*
*det*W[i]);

}
}

(2) Definition of basis functions used, intuitively, to interpolate the contribution to the
PDE solution over the element. The choice of basis functions is expressed in UFL
directly by users. In the generated code, they are represented as global read-only
two dimensional arrays (i.e., using static const in C) of double precision floats.

(3) Evaluation of the element matrix in an affine loop nest, in which the integration is
performed.

Table I shows the variable names we will use in the upcoming code snippets to refer to
the various kernel objects.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Optimisation of kernels
! Local assembly code

generated by
Firedrake for a Burgers
problem on a 3D tetra-
hedral mesh using
Lagrange p = 1
elements

! Somewhat more
complicated!

! Examples like this
motivate more
complex
transformations

! Including loop fission

Performance impact

! Fairly serious, realistic example: static linear elasticity, p=2
tetrahedral mesh, 196608 elements

! Including both assembly time and solve time
! Single core of Intel Sandy Bridge
! Compared with Firedrake loop nest compiled with Intel’s icc

compiler version 13.1

! At low p, matrix insertion overheads dominate assembly time
! At higher p, and with more coefficient functions (f=2), we get up to

1.47x overall application speedup

A:20 F. Luporini et al.

(a) (b)

Fig. 9: Performance improvement over non-optimized code for the static linear elas-
ticity equation. The tetrahedral mesh is composed of 196608 elements. Experiments
were executed on a single core of a Sandy Bridge architecture.

invariant code motion, alignment and padding, and expression splitting. We recall that
the cost of the insertion of the computed local element matrices (and vectors) in the
global matrix (vector) is incorporated in assembly.

We first notice that, in the scenario [f = 1, p = 1], the assembly is dominated by
matrix insertion: despite the application of several transformations, only a minimal
performance gain is achieved. This changes instantly increasing p or f . In these sce-
narios, not only the cost of assembly becomes larger with respect to solve, but also does
it make insertion cost negligible. In such cases, the transformations automatically ap-
plied by COFFEE successfully decrease the impact of assembly over solve. Interesting
is the fact that generalized loop-invariant code motion was particularly invasive, with
23 temporaries generated and several redundancies discovered (see Section 3.2).

In these experiments, we observe a maximum performance improvement of 1.47×
over the non-optimized local assembly code, obtained in the case [f = 2, p = 2]. How-
ever, we reiterate the fact that full-application speed ups rise proportionally with the
amount of time spent in assembly and, therefore, with the complexity of the equa-
tion. By increasing polynomial order and number of coefficient functions, or by simply
studying a different, more complex equation, it is our experience that performance
gains become increasingly more relevant. The choice of studying the static linear elas-
ticity equation was to show that even relatively simple problems can be characterized
by a large proportion of execution time spent in assembly.

6. GENERALITY OF THE APPROACH AND APPLICABILITY TO OTHER DOMAINS
We have demonstrated that our cross-loop optimizations for arithmetic intensity are
effective in the context of automated code generation for finite element local assembly.
In this section, we discuss about their applicability in other computational domains
and, more in general, their integrability within a general-purpose compiler.

We observe that our choice was to develop COFFEE as a separate, self-contained
software module, with clear input/output interfaces, rather then incorporating it
within PyOP2. This was motivated by two critical aspects that characterize the gener-
ality of our research.

Separation of concerns. We believe that in domain-specific frameworks there must
be a clear, logical separation of roles reflecting the various levels of abstractions, with
domain-specialists that can completely abstract from performance optimization. In
Firedrake, for instance, COFFEE decouples the mathematical specification of a fi-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Conclusions: PyOP2 layer
!  The key idea in OP2/PyOP2 is access

descriptors
!  OP2’s access descriptors are declarative

specifications of how each loop iteration is
connected to the abstract mesh

!  The kernels do not access the mesh
!  The implementation is responsible for connecting

the kernel to the data
!  The implementation is free to select layout, stage

data, schedule loops
!  We can map from data to iterations

! What would a programming abstraction
for data locality look like?

Conclusions: Firedrake layer
! Dramatically raised level of abstraction
! But we still can match or exceed hand-coded,

in-production code
! Costs of abstraction are eliminated by dynamic

generation of code specialised to context
! Domain-specific optimisations can yield big

speedups over the best available general-
purpose compilers

! The real payoff lies in supporting the users
in navigating freely to the best way to model
their problem

! How can the barriers to adoption of DSLs be
overcome?

Acknowledgements

Partly funded by
!  NERC Doctoral Training Grant (NE/G523512/1)
!  EPSRC “MAPDES” project (EP/I00677X/1)
!  EPSRC “PSL” project (EP/I006761/1)
!  Rolls Royce and the TSB through the SILOET programme
!  EPSRC “PAMELA” Programme Grant (EP/K008730/1)
!  EPSRC “PRISM” Platform Grant (EP/I006761/1)
!  EPSRC “Custom Computing” Platform Grant (EP/I012036/1)
!  AMD, Codeplay, Maxeler Technologies

!  Code:
! http://www.firedrakeproject.org/
!   http://op2.github.io/PyOP2/

PyOP2 is on github

Firedrake is on github

The FEniCS project... The book

