
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Exploring the Construction of a
Domain-Aware Toolchain for

High-Performance Computing
November 17, 2014

WOLFHPC Workshop

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

Authors: Patrick McCormick,
Christine Sweeney (presenter), Nick Moss,

 Dean Prichard, Samuel K. Gutierrez,
Kei Davis, Jamaludin Mohd-Yusof

Los Alamos National Laboratory
Funding by Office of Advanced Scientific Computing Research,

Office of Science, Program Manager, Lucy Nowell
2

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

§  Scout domain-specific language via conservative
extensions to C/C++ (compiled, not source-to-
source)

§  Supports mesh-based applications, in situ
visualization and data and task parallelism.

§  Includes a domain-aware debugging tool
§  Targets GPU (CUDA or OpenCL)
§  Targets Legion Runtime/Programming Model

(http://legion.stanford.edu)

Scout Project

Slide 3

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Talk Overview

§  Motivation and design decisions
§  Domain-specific language constructs
§  Compiler implementation and debugger
§  Evaluation
§  Conclusion and future work

Slide 4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Motivation and Vision for
Scout Domain-Aware Toolchain
§  Enable scientists to productively develop mesh-

based HPC applications via language and
toolchain infrastructure

§  Enable scientific applications to be portable to
different and future large-scale computer
architectures with little or no modification.

§  Focus on toolchain, not so much language
details, a specific scientific domain or
performance at the moment.

Slide 5

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Design Decisions for Scout

DSL versus general purpose library?
§  DSL provides natural way to express science via

domain-specific notations
Embedded versus extensions versus standalone DSL?
§  Domain-centric conservative extensions to C/C++

Compiled versus source-to-source?
§  Compiled can preserve domain-awareness
§  Enables finer-grained control over performance

optimizations

Slide 6

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Scout Domain-Specific Data Types

§  Mesh is first-class concrete data type
§  Unlike C/C++, developer should not assume any

details about memory layout of mesh structure.
§  Mesh can be passed as an argument to a

function

uniform mesh MyUniformMesh { !
 // Define the fields stored on the mesh. !
 cells" ": float pressure, temperature; !
 vertices ": float3 vorticity; !
 edges" ": float3 velocity; !
}; !
!
// Declare a two-dimensional uniform mesh with 3 cells !
// along the x-axis and 2 cells along the y-axis !
MyUniformMesh umesh[3,2]; !

Slide 7

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Data Parallel Scout DSL Constructs

§  Mesh elements may only be accessed via mesh-
centric constructs.

§  No assumptions should be made about order of
execution.

§  Built-ins for position, width, height, depth, cshift

// For all cells ‘c’ of the mesh ‘umesh’ !
forall cells c in umesh { !

"... !
 forall vertices v in c { // ‘v’ -> active vertex !

"// vertex values are read-only, cell values !
"// are read/write-able !

 c.temperature = ... v.velocity ...; !
 } !
} !

Slide 8

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Task Parallel Scout DSL Constructs

§  A “task function” must operate on a mesh
instance passed as a parameter

§  Task must not modify global variables otherwise
will not compile…

task void MyTask(MyMesh &m) { !
 // body of task... !
} !
!
... !
!
MyTask(m); // Invoke the task on the mesh !
!

Slide 9

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Visualization Scout DSL Constructs

§  Data-parallel model for doing in situ visualization
of mesh topology.

extern const float MAX_TEMPERATURE; !
... !
// Create a 512 x 512 window for displaying mesh elements !
window win[512, 512]; !
... !
// Render the cells to the window. ‘color’ !
// must be assigned to within the loop body. !
// This assigns a color to the ‘active’ cell. !
renderall cells c in umesh to win { !

"float norm_temp = c.temperature / MAX_TEMPERATURE; !
"// Use the HSV (hue, saturation, value) colorspace!
"// to assign a color from blue (cold) to red (hot) !
"// for the cell. !
"color = hsv(240.0 – 240.0 * norm_temp, 1.0, 1.0); !

} !

Slide 10

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

// Heat Transfer Example !
// Time steps loop. !
for(unsigned int t = 0; t < NTIME_STEPS; ++t) { !
 !
 forall cells c in heat_mesh { !
 if (position().x > 0 !
 && position().x < width()-1 !
 && position().y > 0 !
 && position().y < height()-1) { !
 float d2dx2 = cshift(c.t1, 1, 0) !
 - 2.0f * c.t1 !
 + cshift(c.t1, -1, 0); !
 d2dx2 /= dx * dx; !
 float d2dy2 = cshift(c.t1, 0, 1) !
 - 2.0f * c.t1 !
 + cshift(c.t1, 0, -1); !
 d2dy2 /= dy * dy; !
 t2 = (alpha * dt * (d2dx2 + d2dy2)) + c.t1; !
 } !
 } !
 forall cells c in heat_mesh { !
 t1 = t2; !
 } !
 renderall cells c in heat_mesh to render_win { !
 float norm_t1 = t1 / MAX_TEMP; !
 float hue = 240.0f - 240.0f * norm_t1; !
 color = hsv(hue, 1.0f, 1.0f); !
 } !
} !

Visualization Demo

Slide 11

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

LLVM Compiler Infrastructure
LLVM Project - modular and reusable compiler and
toolchain technologies. Subprojects:
§  LLVM Core - source- and target-independent optimizer

plus code-generation for CPU and GPU targets.
§  LLVM Intermediate Representation (IR) -language and

architecture independent representation of source code
§  Clang – C/C++ front-end and platform for building

source-level tools.
§  LLDB - native debugger built on Clang and LLVM

libraries.
§  See http://llvm.org

Slide 12

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Scout Implementation Overview

§  Front End (Clang) is modified to recognize Scout syntax and
semantics (rules).

§  Abstract Syntax Tree (AST) is modified to store Scout’s own
unique nodes.

§  Intermediate Representation (IR) is generated to support
Scout’s data types and statements.

§  Metadata maintains domain-specific information throughout
compilation and into debugging (DWARF data structures).

Clang infrastructure

front end

abstract syntax tree

DSL metadata

input
source

Domain-specific code regions
General-purpose code regions

llvm IR
executable

LLVM infrastructure

back endllvm IR

LLDB infrastructure Extended

DWARF

Slide 13

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Metadata in LLVM
§  Metadata is additional data that can be stored on

LLVM IR and gets used by debugging
§  Scout uses metadata to store:

–  mesh fields
–  GPU kernel indicators
–  task indicators.

Slide 14

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Metadata

uniform mesh MyUniformMesh { !
 // Define fields stored on !
 // the mesh. !
 cells: float temperature; !
 vertices: float3 velocity; !
 edges: float3 flux; !
}; !
!
// define a two-dimensional !
// uniform mesh with 3 cells !
// along the x-axis and 2 cells !
// along the y-axis !
MyUniformMesh umesh[3,2]; !

%MyUniformMesh = type { !
 float*, ; temperature !
 <3 x float>*, ; velocity !
 <3 x float>* ; flux !
... !
!
; mesh metadata !
!scout.meshmd = !{!0} // one mesh entry. !
 !
!0=metadata !
 !{metadata !”MyUniformMesh”, ; 1st entry !
 metadata !”uniform”, i32 2,; mesh kind/rank !
 metadata !”cells”, !
 metadata !1, ;cell fields at !1 !
 metadata !”vertices”, !
 metadata !2, ;vertex fields at !2 !
 metadata !”edges”, !
 metadata !3 ;edge fields at !3 !
 } !
; cell fields !
!1=metadata !{metadata !”float”, !
 metadata !”temperature”} !
; vertex fields !
!2=metadata !{metadata !”float3”, !
 metadata !”velocity”} !
; edge fields !
!3=metadata !{metadata !”float3”, !
 metadata !”flux”} !

Slide 15

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

IR and Code Generation for GPU
§  Lower forall body and use hardware-

independent loop variables
§  Create function out of forall to represent GPU

kernel (flag it via metadata)
§  Via an LLVM pass, transform thread index

values
§  For NVIDIA (CUDA), generate in-lined character

string version of kernel in NIVIDIA PTX.
§  For AMD (OpenCL runtime) create an

Executable and Linking Format (ELF) version of
the kernel.

Slide 16

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

IR Generation for Legion Runtime

§  Legion Runtime provides single programming
model for target, insulates from data layout,
movement and hardware

§  Generate LLVM IR that calls simplified C-based
Legion runtime interface

§  Express meshes as Legion logical regions and
task functions as Legion tasks

§  Distinguish task functions from non-task
functions via metadata

§  Initialize Legion and register tasks – transform
main() Slide 17

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Debugging with LLDB

§  During compilation with debug flag, Clang
generates IR metadata which then gets
converted to DWARF data structures.

§  DWARF Debugging Information Entry (DIE) data
structure is used for each function or variable;
many DIEs form a tree-like structure
representing the program.

§  When the user enters an expression into the
debugger, LLDB uses DWARF information to
reconstruct Clang AST, lower to IR and execute.

Slide 18

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Enabling Domain-Aware Debugging

§  Extend DWARF DIE tags and attributes
§  Extend LLDB and Clang to reconstruct domain-

specific AST nodes from the mesh DWARF
information

§  Leverage LLDB’s use of clang to JIT
expressions containing Scout constructs in the
debugger
– LLDB recreates the Clang AST (which

includes nodes for Scout constructs)
– AST gets lowered to IR as usual

Slide 19

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Debug Session
145 // Time step loop. !
146 for(unsigned int t = 0; t < NTIME_STEPS; ++t) { !
147 !
148 forall cells c in heat_mesh { !
149 // compute h_next!
… // … code omitted !
156 } !
157 !
158 forall cells c in heat_mesh { !
159 h_now = h_next; !
160 } !
161 } !
162 } !
163 return 0;!

(lldb) b heat4.sc:162
(lldb) expr { window render_win[512,512];
 renderall cells c in heat_mesh to render_win{
 float norm_h = h_now / MAX_TEMP;
 float hue = 240.0f - 240.0f * norm_h;
 color = hsva(hue, 1.0f, mask_now, 1.0f);
 }}
(lldb) c!

Slide 20

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Slide 21

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Evaluation of Scout

Challenges:
§  Significant investment for development
§  Acceptance and adoption of DSLs
Benefits:
§  Produces mesh-based programs with far fewer

lines of code
§  Significantly simplified a complex runtime

interface
§  Familiar programming language and toolchain

Slide 22

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Conclusions

§  Scout is a solid and extensible basis for further
exploration.

§  Initial results show that Scout’s approach can
improve productivity and simplify programming.

§  Chances for adoption and acceptance are higher
with familiar toolchain implementation.

Slide 23

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

§  Distributed debugging and debugging on
heterogeneous architectures

§  Preserve domain context within runtime for
debugging tasks that use Legion data model

§  Extend task keyword for data parallelism via
data decomposition of the mesh

Future Work

Slide 24

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Questions?

Thank you!

Slide 25

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Slide 26

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Slide 27

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

LA-UR-14-28752

LA-UR-14-28752

Legion Terminology

Via an API,
§  Define logical data regions
§  Register tasks — C/C++ functions that operate on data

regions, may invoke other tasks
For each task definition specify
§  What parts of logical data regions the task may access
§  Potentially fine-grained information about type of access

—read, write, read/write, etc.
Tasks launched (enqueued) serially, or mapped over
multiple (sub-)regions

Slide 28

