
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

LA-UR-14-28752 
 
LA-UR-14-28752 
 

Exploring the Construction of a 
Domain-Aware Toolchain for  

High-Performance Computing 
November 17, 2014 

WOLFHPC Workshop 

 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

LA-UR-14-28752 
 

Authors:  Patrick McCormick,  
Christine Sweeney (presenter), Nick Moss, 

 Dean Prichard, Samuel K. Gutierrez,  
Kei Davis, Jamaludin Mohd-Yusof 

 

Los Alamos National Laboratory 
Funding by Office of Advanced Scientific Computing Research,  

Office of Science, Program Manager, Lucy Nowell 
2 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

LA-UR-14-28752 
 
LA-UR-14-28752 
 

§  Scout domain-specific language via conservative 
extensions to C/C++ (compiled, not source-to-
source) 

§  Supports mesh-based applications, in situ 
visualization and data and task parallelism. 

§  Includes a domain-aware debugging  tool 
§  Targets GPU (CUDA or OpenCL)  
§  Targets Legion Runtime/Programming Model 

(http://legion.stanford.edu) 
 

Scout Project  
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Talk Overview 

§  Motivation and design decisions  
§  Domain-specific language constructs  
§  Compiler implementation and debugger 
§  Evaluation  
§  Conclusion and future work 
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Motivation and Vision for  
Scout Domain-Aware Toolchain 
§  Enable scientists to productively develop mesh-

based HPC applications via language and 
toolchain infrastructure  

§  Enable scientific applications to be portable to 
different and future large-scale computer 
architectures with little or no modification. 

§  Focus on toolchain, not so much language 
details, a specific scientific domain or 
performance at the moment.   
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Design Decisions for Scout 

DSL versus general purpose library? 
§  DSL provides natural way to express science via 

domain-specific notations 
Embedded versus extensions versus standalone DSL? 
§  Domain-centric conservative extensions to C/C++ 

Compiled versus source-to-source? 
§  Compiled can preserve domain-awareness 
§  Enables finer-grained control over performance 

optimizations  
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Scout Domain-Specific Data Types 

§  Mesh is first-class concrete data type 
§  Unlike C/C++, developer should not assume any 

details about memory layout of mesh structure. 
§  Mesh can be passed as an argument to a 

function 

 
 

uniform mesh MyUniformMesh { !
  // Define the fields stored on the mesh. !
  cells" ": float pressure, temperature; !
  vertices ": float3 vorticity; !
  edges" ": float3 velocity; !
}; !
!
// Declare a two-dimensional uniform mesh with 3 cells !
// along the x-axis and 2 cells along the y-axis !
MyUniformMesh umesh[3,2]; !

Slide 7 
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Data Parallel Scout DSL Constructs 

§  Mesh elements may only be accessed via mesh-
centric constructs.   

§  No assumptions should be made about order of 
execution. 

§  Built-ins for position, width, height, depth, cshift 

// For all cells ‘c’ of the mesh ‘umesh’ !
forall cells c in umesh { !

"... !
  forall vertices v in c { // ‘v’ -> active vertex !

"// vertex values are read-only, cell values !
"// are read/write-able !

    c.temperature = ... v.velocity ...; !
  } !
}  !
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Task Parallel Scout DSL Constructs 

§  A “task function” must operate on a mesh 
instance passed as a parameter    

§  Task must not modify global variables otherwise 
will not compile… 

task void MyTask(MyMesh &m) { !
  // body of task... !
} !
!
... !
!
MyTask(m); // Invoke the task on the mesh !
!
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Visualization Scout DSL Constructs 

§  Data-parallel model for doing in situ visualization 
of mesh topology. 

extern const float MAX_TEMPERATURE; !
... !
// Create a 512 x 512 window for displaying mesh elements !
window win[512, 512]; !
... !
// Render the cells to the window.  ‘color’ !
// must be assigned to within the loop body. !
// This assigns a color to the ‘active’ cell. !
renderall cells c in umesh to win { !

"float norm_temp = c.temperature / MAX_TEMPERATURE; !
"// Use the HSV (hue, saturation, value) colorspace!
"// to assign a color from blue (cold) to red (hot) !
"// for the cell. !
"color = hsv(240.0 – 240.0 * norm_temp, 1.0, 1.0); !

} !
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// Heat Transfer Example !
// Time steps loop. !
for(unsigned int t = 0; t < NTIME_STEPS; ++t) { !
    !
  forall cells c in heat_mesh { !
    if (position().x > 0 !
        && position().x < width()-1 !
        && position().y > 0 !
        && position().y < height()-1) { !
      float d2dx2 = cshift(c.t1, 1, 0) !
                    - 2.0f * c.t1 !
                    + cshift(c.t1, -1, 0); !
      d2dx2 /= dx * dx; !
      float d2dy2 = cshift(c.t1, 0, 1) !
                    - 2.0f * c.t1 !
                    + cshift(c.t1, 0, -1); !
      d2dy2 /= dy * dy; !
      t2 = (alpha * dt * (d2dx2 + d2dy2)) + c.t1; !
        } !
  } !
  forall cells c in heat_mesh { !
    t1 = t2; !
  } !
  renderall cells c in heat_mesh to render_win { !
    float norm_t1 = t1 / MAX_TEMP; !
    float hue = 240.0f - 240.0f * norm_t1; !
    color = hsv(hue, 1.0f, 1.0f); !
  } !
} !

Visualization Demo 
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LLVM Compiler Infrastructure 
LLVM Project - modular and reusable compiler and 
toolchain technologies.  Subprojects: 
§  LLVM Core - source- and target-independent optimizer 

plus code-generation for CPU and GPU targets. 
§  LLVM Intermediate Representation (IR) -language and 

architecture independent representation of source code 
§  Clang – C/C++ front-end and platform for building 

source-level tools.   
§  LLDB - native debugger built on Clang and LLVM 

libraries. 
§  See http://llvm.org 
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Scout Implementation Overview 

§  Front End (Clang) is modified to recognize Scout syntax and 
semantics (rules). 

§  Abstract Syntax Tree (AST) is modified to store Scout’s own 
unique nodes. 

§  Intermediate Representation (IR) is generated to support 
Scout’s data types and statements. 

§  Metadata maintains domain-specific information throughout 
compilation and into debugging (DWARF data structures). 

Clang infrastructure

front end

abstract syntax tree

DSL metadata

input
source

Domain-specific code regions
General-purpose code regions

llvm IR
executable

LLVM infrastructure

back endllvm IR

LLDB infrastructure Extended

DWARF
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Metadata in LLVM 
§  Metadata is additional data that can be stored on 

LLVM IR and gets used by debugging 
§  Scout uses metadata to store: 

–   mesh fields 
–   GPU kernel indicators 
–   task indicators.   
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Metadata 

uniform mesh MyUniformMesh { !
  // Define fields stored on !
  // the mesh. !
  cells: float temperature; !
  vertices: float3 velocity; !
  edges: float3 flux; !
}; !
!
// define a two-dimensional !
// uniform mesh with 3 cells !
// along the x-axis and 2 cells !
// along the y-axis !
MyUniformMesh umesh[3,2]; !

%MyUniformMesh = type { !
  float*,       ; temperature !
  <3 x float>*, ; velocity !
  <3 x float>*  ; flux !
... !
!
; mesh metadata !
!scout.meshmd = !{!0}  // one mesh entry. !
 !
!0=metadata !
  !{metadata !”MyUniformMesh”, ; 1st entry !
    metadata !”uniform”, i32 2,; mesh kind/rank !
    metadata !”cells”, !
    metadata !1,         ;cell fields at !1 !
    metadata !”vertices”, !
    metadata !2,         ;vertex fields at !2 !
    metadata !”edges”, !
    metadata !3          ;edge fields at !3 !
   } !
; cell fields !
!1=metadata !{metadata !”float”, !
              metadata !”temperature”} !
; vertex fields !
!2=metadata !{metadata !”float3”, !
              metadata !”velocity”} !
; edge fields !
!3=metadata !{metadata !”float3”, !
              metadata !”flux”} !
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IR and Code Generation for GPU 
§  Lower forall body and use hardware-

independent loop variables 
§  Create function out of forall to represent GPU 

kernel (flag it via metadata) 
§  Via an LLVM pass, transform thread index 

values  
§  For NVIDIA (CUDA),  generate in-lined character 

string version of kernel in NIVIDIA PTX. 
§  For AMD (OpenCL runtime) create an 

Executable and Linking Format (ELF) version of 
the kernel. 
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IR Generation for Legion Runtime 

§  Legion Runtime provides single programming 
model for target, insulates from data layout, 
movement and hardware 

§  Generate LLVM IR that calls simplified C-based 
Legion runtime interface  

§  Express meshes as Legion logical regions and 
task functions as Legion tasks 

§  Distinguish task functions from non-task 
functions via metadata 

§  Initialize Legion and register tasks – transform 
main() Slide 17 
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Debugging with LLDB 

§  During compilation with debug flag, Clang 
generates IR metadata which then gets 
converted to DWARF data structures. 

§  DWARF Debugging Information Entry (DIE) data 
structure is used for each function or variable; 
many DIEs form a tree-like structure 
representing the program. 

§  When the user enters an expression into the 
debugger, LLDB uses DWARF information to 
reconstruct Clang AST, lower to IR and execute. 
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Enabling Domain-Aware Debugging 

§  Extend DWARF DIE tags and attributes 
§  Extend LLDB and Clang to reconstruct domain-

specific AST nodes from the mesh DWARF 
information 

§  Leverage LLDB’s use of clang to JIT 
expressions containing Scout constructs in the 
debugger  
– LLDB recreates the Clang AST (which 

includes nodes for Scout constructs) 
– AST gets lowered to IR as usual 
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Debug Session 
145  // Time step loop. !
146  for(unsigned int t = 0; t < NTIME_STEPS; ++t) { !
147    !
148    forall cells c in heat_mesh { !
149      // compute h_next!
…        // … code omitted !
156    } !
157 !
158    forall cells c in heat_mesh { !
159      h_now = h_next; !
160    } !
161   } !
162  } !
163  return 0;!

(lldb) b heat4.sc:162 
(lldb) expr  { window render_win[512,512];  
 renderall cells c in heat_mesh to render_win{ 
    float norm_h = h_now / MAX_TEMP; 
    float hue = 240.0f - 240.0f * norm_h; 
    color = hsva(hue, 1.0f, mask_now, 1.0f); 
  }} 
(lldb) c!
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Evaluation of Scout 

Challenges: 
§  Significant investment for development 
§  Acceptance and adoption of DSLs 
Benefits:  
§  Produces mesh-based programs with far fewer 

lines of code 
§  Significantly simplified a complex runtime 

interface 
§  Familiar programming language and toolchain 
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Conclusions 

§  Scout is a solid and extensible basis for further 
exploration. 

§  Initial results show that Scout’s approach can 
improve productivity and simplify programming. 

§  Chances for adoption and acceptance are higher 
with familiar toolchain implementation. 
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§  Distributed debugging and debugging on 
heterogeneous architectures 

§  Preserve domain context within runtime for 
debugging tasks that use Legion data model 

§  Extend task keyword for data parallelism via 
data decomposition of the mesh 

Future Work 
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Questions? 

Thank you! 
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Legion Terminology 

Via an API, 
§  Define logical data regions 
§  Register tasks — C/C++ functions that operate on data 

regions, may invoke other tasks 
For each task definition specify 
§  What parts of logical data regions the task may access 
§  Potentially fine-grained information about type of access

—read, write, read/write, etc. 
Tasks launched (enqueued) serially, or mapped over 
multiple (sub-)regions 
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