
!"#$%&'%()*)+,-%./%0123)44,55,%
678%49,%0:%;,<)84(,*4%76%=*,8+/

Toward !"#$%&'"#$%()*+%",-./0')
*-.01%"+.0)2,,03)4.3'5),-)6%.%"3%"+.0)
!'.7-"-#)8,7)988"+"'-%)613%':)
;<'7.%",-3

Devesh Tiwari
Oak Ridge National Laboratory
tiwari@ornl.gov

Thanks to Saurabh Gupta, Christian Engelmann, Sudharshan Vazhkudai, Jim Rogers,
Bin Nie, Evgenia Smirni, Franck Cappello, Rinku Gupta, Sheng Di, Marc Snir, Leo
Bautista-Gomez, Swann Perarnau, Nathan Debardeleben, Paolo Rech, Don Maxwell,
Changhee Jung, Martin Schulz, Ignacio Laguna, and many more smart folks!

This work used the resources of the Oak Ridge Leadership Computing Facility, located in the National
Center for Computational Sciences at the Oak Ridge National Laboratory, which is managed by UT Battelle,
LLC for the U.S. Department of Energy, under the contract No. DEAC05-00OR22725.

LLM Diagram

!""#$%"&'
rsyslogd

syslog
queue()*

rsyslogd

+",$-./'0

+",.%$%"&'
rsyslogd

+",.%$%"&'
rsyslogd

1'#2"34$%"&'
rsyslogd

+50#3'$6+1789$%"&'
rsyslogd

(Service nodes)

7:#'3%;/$/",$<"0#
rsyslogd

8<'$syslog =5'5'$.0$
"%/>$50'&$2<'%$
?'00;,'0$@;%%"#$A'$
-"32;3&'&$#"$#<'$()*

+B$@"%#3"//'3
syslog-ng

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30

CUG May 2013 Cray Inc. Private
8

>7?84,'/@%"&AB%:5&AB%>0C%DEFG%1?478&)5%:5&-,'%

System Generated Data for ModSim Efforts

LLM Diagram

!""#$%"&'
rsyslogd

syslog
queue()*

rsyslogd

+",$-./'0

+",.%$%"&'
rsyslogd

+",.%$%"&'
rsyslogd

1'#2"34$%"&'
rsyslogd

+50#3'$6+1789$%"&'
rsyslogd

(Service nodes)

7:#'3%;/$/",$<"0#
rsyslogd

8<'$syslog =5'5'$.0$
"%/>$50'&$2<'%$
?'00;,'0$@;%%"#$A'$
-"32;3&'&$#"$#<'$()*

+B$@"%#3"//'3
syslog-ng

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30

CUG May 2013 Cray Inc. Private
8

+",.%$%"&'
rsyslogd

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30Hard to store and manage

>7?84,'/@%"&AB%:5&AB%>0C%DEFG%1?478&)5%:5&-,'%

System Generated Data for ModSim Efforts

LLM Diagram

!""#$%"&'
rsyslogd

syslog
queue()*

rsyslogd

+",$-./'0

+",.%$%"&'
rsyslogd

+",.%$%"&'
rsyslogd

1'#2"34$%"&'
rsyslogd

+50#3'$6+1789$%"&'
rsyslogd

(Service nodes)

7:#'3%;/$/",$<"0#
rsyslogd

8<'$syslog =5'5'$.0$
"%/>$50'&$2<'%$
?'00;,'0$@;%%"#$A'$
-"32;3&'&$#"$#<'$()*

+B$@"%#3"//'3
syslog-ng

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30

CUG May 2013 Cray Inc. Private
8

+",.%$%"&'
rsyslogd

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30Hard to store and manage

>7?84,'/@%"&AB%:5&AB%>0C%DEFG%1?478&)5%:5&-,'%
>7?84,'/@%'/'57+H)4A9,8

System Generated Data for ModSim Efforts

LLM Diagram

!""#$%"&'
rsyslogd

syslog
queue()*

rsyslogd

+",$-./'0

+",.%$%"&'
rsyslogd

+",.%$%"&'
rsyslogd

1'#2"34$%"&'
rsyslogd

+50#3'$6+1789$%"&'
rsyslogd

(Service nodes)

7:#'3%;/$/",$<"0#
rsyslogd

8<'$syslog =5'5'$.0$
"%/>$50'&$2<'%$
?'00;,'0$@;%%"#$A'$
-"32;3&'&$#"$#<'$()*

+B$@"%#3"//'3
syslog-ng

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30

CUG May 2013 Cray Inc. Private
8

+",.%$%"&'
rsyslogd

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30Hard to store and manage

Accurate interpretation hard

>7?84,'/@%'/'57+H)4A9,8

System Generated Data for ModSim Efforts

System Generated Data for ModSim Efforts
LLM Diagram

!""#$%"&'
rsyslogd

syslog
queue()*

rsyslogd

+",$-./'0

+",.%$%"&'
rsyslogd

+",.%$%"&'
rsyslogd

1'#2"34$%"&'
rsyslogd

+50#3'$6+1789$%"&'
rsyslogd

(Service nodes)

7:#'3%;/$/",$<"0#
rsyslogd

8<'$syslog =5'5'$.0$
"%/>$50'&$2<'%$
?'00;,'0$@;%%"#$A'$
-"32;3&'&$#"$#<'$()*

+B$@"%#3"//'3
syslog-ng

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30

CUG May 2013 Cray Inc. Private
8

+",.%$%"&'
rsyslogd

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30Hard to store and manage

Accurate interpretation hard

System Generated Data for ModSim Efforts
LLM Diagram

!""#$%"&'
rsyslogd

syslog
queue()*

rsyslogd

+",$-./'0

+",.%$%"&'
rsyslogd

+",.%$%"&'
rsyslogd

1'#2"34$%"&'
rsyslogd

+50#3'$6+1789$%"&'
rsyslogd

(Service nodes)

7:#'3%;/$/",$<"0#
rsyslogd

8<'$syslog =5'5'$.0$
"%/>$50'&$2<'%$
?'00;,'0$@;%%"#$A'$
-"32;3&'&$#"$#<'$()*

+B$@"%#3"//'3
syslog-ng

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30

CUG May 2013 Cray Inc. Private
8

+",.%$%"&'
rsyslogd

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30Hard to store and manage

Accurate interpretation hard

Timely processing and analysis

System Generated Data for ModSim Efforts
LLM Diagram

!""#$%"&'
rsyslogd

syslog
queue()*

rsyslogd

+",$-./'0

+",.%$%"&'
rsyslogd

+",.%$%"&'
rsyslogd

1'#2"34$%"&'
rsyslogd

+50#3'$6+1789$%"&'
rsyslogd

(Service nodes)

7:#'3%;/$/",$<"0#
rsyslogd

8<'$syslog =5'5'$.0$
"%/>$50'&$2<'%$
?'00;,'0$@;%%"#$A'$
-"32;3&'&$#"$#<'$()*

+B$@"%#3"//'3
syslog-ng

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30

CUG May 2013 Cray Inc. Private
8

+",.%$%"&'
rsyslogd

+C$@"%#3"//'30
syslog-ng

DEFG$@"%#3"//'30Hard to store and manage

Accurate interpretation hard

Timely processing and analysis

System failures exhibit temporal and spatial locality.

0 5 10 15 20 25
Time between two failures (in hours)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

P
e
rc
e
n
ta
g
e
o
f
to
ta
l
fa
il
u
re
s

OLCF

(a)

0 20 40 60 80 10
0

Time between two failures (in hours)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

P
e
rc
e
n
ta
g
e
o
f
to
ta
l
fa
il
u
re
s

LANL System 4

(b)

0 20 40 60 80 10
0

Time between two failures (in hours)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

P
e
rc
e
n
ta
g
e
o
f
to
ta
l
fa
il
u
re
s

LANL System 5

(c)

(d) (e) (f)

Figure 6. Temporal characteristics of failures from multiple HPC systems. The dashed vertical line indicates the ì observedî mean time between failures
(MTBF). Multiple failures that occur beyond the x-axis limits are not shown here for clarity, but they contribute toward MTBF calculation.

LANL System 19
LANL System 18
LANL System 5
LANL System 4

OLCF

K-S test D-Statistics Critical
D-value

k = 0.64

LANL System 20

0.059
0.095
0.114
0.090

Log
Normal

0.073
0.038

0.082
0.075
0.087
0.184

Exp.

0.039
0.210

0.019
0.036
0.048
0.038

Weibull

0.016
0.041

0.022
0.078
0.078
0.062

0.024
0.028

Weibull
Shape

Parameter
System

k = 0.82
k = 0.86
k = 0.82
k = 0.90
k = 0.65

Figure 7. Result of Kolmogorov-Smirnov test (K-S test) for failure
logs of multiple systems. Null hypothesis that the samples for a given
system comes from a given probability distribution function is rejected
at level 0.05 if k-s test' s D-statistics is higher than the critical D-
value. Comparison between D-statistics and critical D-value shows that
Weibull distribution is a better � t in all cases except the last one.

We take advantage of this observation to reduce the checkpoint-
ing overhead on large-scale HPC systems by changing the check-
pointing intervals such that it captures the temporal locality in
failures. Towards that, we use two statistical techniques to � t our
failure inter-arrival times data against four distributions, normal,
Weibull, log normal, and the exponential distribution. First, Fig. 7
shows the results from the Kolmogorov-Smirnov test for different
distributions [15]. We notice that Weibull distribution � ts our sam-
ple data better than the exponential distribution. We also present the
QQ-plot for visualizing the � tness of these distributions (Fig. 8),
which reaf� rms the K-S test results.

We note that a Weibull distribution is speci� ed using both a
scale parameter (λ) and shape parameter (k). If the value of shape
parameter is less than one, it indicates a high infant mortality rate
(i.e., the failure rate decreases over time). We point out that shape
parameter (k) is less than one for the Weibull distributions that � t
our failure sample data. This has also been observed by other re-
searchers for various other systems [21, 31, 35, 17], indicating a
larger applicability of the new techniques presented in this work
(Section 5), which are based on this observation. Next, we show
how does a better � tting Weibull distribution affect the OCI and the
total execution time (as opposed to the previously discussed analyt-
ical model and simulation-based results that assumed exponential
distribution of failure inter-arrival times).

0 20 60 100

5
6

7
8

9
1

0
1

1 Normal

0 20 60 100

0
1

0
2

0
3

0
4

0
5

0

Exponential

0 20 60 100
0

2
0

4
0

6
0

8
0

1
0

0

Weibull

0 20 60 100

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0 Log Normal

QQ−Plot from Failure Log Samples (OLCF System)

0 100 200 300

5
2

5
3

5
4

5
5

5
6

5
7

Normal

0 100 200 300

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

Exponential

0 100 200 300

0
1

0
0

2
0

0
3

0
0

4
0

0

Weibull

0 100 200 300

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Log Normal

QQ−Plot from Failure Log Samples (LANL System 5)

Figure 8. QQ-Plot for graphical representation of � tting different
probability distribution functions (PDF). The quantiles drawn from
the sample (failure log) are on the x-axis and y-axis shows theoretical
quantiles. If the samples statistically come from a particular distribution
function then points of QQ-plot fall on or near the straight line with
slope=1. Only three representative failure logs are plotted due to space
constraints, the rest show similar behavior.

4.2 Effect of Temporal Locality in Failures on OCI

We found that the failure inter-arrival times are better � tted by a
Weibull distribution than an exponential distribution. Therefore, in
this section we present the results from our event-driven simulator
to study how the OCI and total execution time are affected if failure
events are drawn from a Weibull distribution instead of an expo-
nential distribution (as assumed in previously discussed analytical
model). Fig. 9 shows the total execution time of a ì heroî run on
three different systems (10K, 20K and 100K nodes). We notice that
the Weibull distribution curve is always below the exponential dis-
tribution curve. This result suggests that if failure events are drawn
from a Weibull distribution, it will result in an overall execution

MTBF MTBF MTBF

Observation holds true across systems and failure types,
consistently across long range of periods.

System failures exhibit temporal and spatial locality.

0 5 10 15 20 25
Time between two failures (in hours)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

P
e
rc
e
n
ta
g
e
o
f
to
ta
l
fa
il
u
re
s

OLCF

(a)

0 20 40 60 80 10
0

Time between two failures (in hours)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

P
e
rc
e
n
ta
g
e
o
f
to
ta
l
fa
il
u
re
s

LANL System 4

(b)

0 20 40 60 80 10
0

Time between two failures (in hours)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

P
e
rc
e
n
ta
g
e
o
f
to
ta
l
fa
il
u
re
s

LANL System 5

(c)

(d) (e) (f)

Figure 6. Temporal characteristics of failures from multiple HPC systems. The dashed vertical line indicates the ì observedî mean time between failures
(MTBF). Multiple failures that occur beyond the x-axis limits are not shown here for clarity, but they contribute toward MTBF calculation.

LANL System 19
LANL System 18
LANL System 5
LANL System 4

OLCF

K-S test D-Statistics Critical
D-value

k = 0.64

LANL System 20

0.059
0.095
0.114
0.090

Log
Normal

0.073
0.038

0.082
0.075
0.087
0.184

Exp.

0.039
0.210

0.019
0.036
0.048
0.038

Weibull

0.016
0.041

0.022
0.078
0.078
0.062

0.024
0.028

Weibull
Shape

Parameter
System

k = 0.82
k = 0.86
k = 0.82
k = 0.90
k = 0.65

Figure 7. Result of Kolmogorov-Smirnov test (K-S test) for failure
logs of multiple systems. Null hypothesis that the samples for a given
system comes from a given probability distribution function is rejected
at level 0.05 if k-s test' s D-statistics is higher than the critical D-
value. Comparison between D-statistics and critical D-value shows that
Weibull distribution is a better � t in all cases except the last one.

We take advantage of this observation to reduce the checkpoint-
ing overhead on large-scale HPC systems by changing the check-
pointing intervals such that it captures the temporal locality in
failures. Towards that, we use two statistical techniques to � t our
failure inter-arrival times data against four distributions, normal,
Weibull, log normal, and the exponential distribution. First, Fig. 7
shows the results from the Kolmogorov-Smirnov test for different
distributions [15]. We notice that Weibull distribution � ts our sam-
ple data better than the exponential distribution. We also present the
QQ-plot for visualizing the � tness of these distributions (Fig. 8),
which reaf� rms the K-S test results.

We note that a Weibull distribution is speci� ed using both a
scale parameter (λ) and shape parameter (k). If the value of shape
parameter is less than one, it indicates a high infant mortality rate
(i.e., the failure rate decreases over time). We point out that shape
parameter (k) is less than one for the Weibull distributions that � t
our failure sample data. This has also been observed by other re-
searchers for various other systems [21, 31, 35, 17], indicating a
larger applicability of the new techniques presented in this work
(Section 5), which are based on this observation. Next, we show
how does a better � tting Weibull distribution affect the OCI and the
total execution time (as opposed to the previously discussed analyt-
ical model and simulation-based results that assumed exponential
distribution of failure inter-arrival times).

0 20 60 100

5
6

7
8

9
1

0
1

1 Normal

0 20 60 100

0
1

0
2

0
3

0
4

0
5

0

Exponential

0 20 60 100
0

2
0

4
0

6
0

8
0

1
0

0

Weibull

0 20 60 100

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0 Log Normal

QQ−Plot from Failure Log Samples (OLCF System)

0 100 200 300

5
2

5
3

5
4

5
5

5
6

5
7

Normal

0 100 200 300

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

Exponential

0 100 200 300

0
1

0
0

2
0

0
3

0
0

4
0

0

Weibull

0 100 200 300

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Log Normal

QQ−Plot from Failure Log Samples (LANL System 5)

Figure 8. QQ-Plot for graphical representation of � tting different
probability distribution functions (PDF). The quantiles drawn from
the sample (failure log) are on the x-axis and y-axis shows theoretical
quantiles. If the samples statistically come from a particular distribution
function then points of QQ-plot fall on or near the straight line with
slope=1. Only three representative failure logs are plotted due to space
constraints, the rest show similar behavior.

4.2 Effect of Temporal Locality in Failures on OCI

We found that the failure inter-arrival times are better � tted by a
Weibull distribution than an exponential distribution. Therefore, in
this section we present the results from our event-driven simulator
to study how the OCI and total execution time are affected if failure
events are drawn from a Weibull distribution instead of an expo-
nential distribution (as assumed in previously discussed analytical
model). Fig. 9 shows the total execution time of a ì heroî run on
three different systems (10K, 20K and 100K nodes). We notice that
the Weibull distribution curve is always below the exponential dis-
tribution curve. This result suggests that if failure events are drawn
from a Weibull distribution, it will result in an overall execution

MTBF MTBF MTBF

Observation holds true across systems and failure types,
consistently across long range of periods.

Lazy Checkpointing Technique

S C

S Simulation/Computation

C Checkpoint

L Lost Work

Failure

S C S C S C S C S

S C S C S C S

OCI Checkpointing

Lazy Checkpointing 0 5 10 15 20 25
Time between two failures (in hours)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Pe
rc

en
ta

ge
of

to
ta

lf
ai

lu
re

s

OLCF

Lazy Checkpointing Technique

0 2 4 6 8 10 12 14

Time since last failure

0 � 0

0 � 1

0 � 2

0 � 3

0 � 4

0 � 5

Fa
ilu
re

Ra
te

Exponential

Weibull

Figure 12. Failure rate (MTBF 10 hrs). Figure 13. Comparing execution progress of iLazy and OCI techniques.

Checkpoint Time Total Run Time

iLazy

Petascale (20K nodes)

Increased OCI
iLazy

on top of
Increased OCI

34%

25%

51%

-0.45%

0.15%

-3.45%

24%

19%

38%

1.76%

1.75%

0.93%

Checkpoint Time Total Run Time
Exascale (100K nodes)

Figure 14. Effect of applying iLazy on top of increased OCI on dif-
ferent scale of systems. Note that in this case, increased OCI achieves
a slight performance improvement over OCI, since the OCI was deter-
mined assuming exponential distribution instead of Weibull distribution,
and hence, may not be the true optimum.

iLazy checkpointing strategy signi� cantly reduces the checkpoint-
ing overhead, albeit with increase in the amount of lost work.

Fig. 13 shows results from our event-driven simulator for a run
across 20K nodes, with a computational time of 500 hours per node,
a time-to-checkpoint of 30 minutes, a Weibull failure distribution
with k = 0 : 6, and model-estimated OCI of 2.98 hours. For a fair
comparison, both the iLazy and OCI schemes use the same failure
arrival times. We notice that the cumulative checkpointing over-
head reduces signi� cantly (iLazy is better than OCI by 34% in the
checkpoint overheads) with increase in cumulative lost work, re-
sulting in only 0.45% performance hit. By reducing the checkpoint
overhead, Lazy checkpointing is able to reduce the load and con-
tention on the storage subsystem, and amount of data moved.

Is iLazy more bene� cial than simply increasing the OCI?:
iLazy reduces the checkpointing overhead signi� cantly with min-
imal performance degradation. However, one may argue that this
reduction in checkpointing overhead can also be possibly obtained
with a larger checkpointing interval compared to the OCI since the
execution time curve is relatively � at near the OCI region (Fig. 9).

To test this, we increased the OCI by the same percentage gain
achieved by iLazy for the checkpoint overhead (Fig. 14). For ex-
ample, for a petascale system since iLazy provides 34% checkpoint
time reduction, we increased the OCI by 34% (referred as Increased
OCI). Increasing the OCI results in a 25% checkpoint time reduc-
tion. Next, we apply our iLazy technique assuming increased OCI
as our base OCI (i.e., increased OCI becomes the αoci in Eq. 11)
to assess if iLazy can still reduce the checkpointing overhead. We
note that applying iLazy on top of that further reduces the overhead
signi� cantly compared to the original OCI (by 51% and 38%, third
row in Fig. 14), albeit with a small performance degradation.

Observation 5. The iLazy checkpointing technique can provide
more reduction in checkpointing overhead than what is possible
by simply increasing the OCI by the same proportion.

While iLazy does mitigate the checkpointing overhead, it af-
fects the performance, especially when applied with increased OCI
(Fig. 14). Therefore, we dig deeper to understand the strengths and
limitations of iLazy.

Figure 15. Effect of applying iLazy for different checkpointing in-
tervals. The base case refers to the simulation of an application run on
20K nodes, using different checkpoint intervals without iLazy.

Understanding the strengths and limitations of iLazy:
Fig. 15 plots (using the event-driven simulator) the checkpoint

overhead, the wasted work and the total execution time for different
checkpoint intervals, for both iLazy and the base case. The base
case is simply a plot of the above three aspects of the application at
various checkpoint intervals (including OCI).

First, we observe (Fig. 15 (left)) that iLazy consistently provides
checkpoint savings for all intervals. This is consistent with our
previous result that iLazy reduces the checkpointing overhead even
when OCI is increased. Also, the checkpointing overhead curve for
the base case explains the decrease in checkpoint overhead when
checkpoint interval is increased beyond OCI.

Interestingly, we observe from Fig. 15 (right) that if the ì oper-
ating checkpointing intervalî is smaller than the OCI or near the
OCI, then iLazy provides both a signi� cant reduction in check-
pointing and runtime as the I/O savings offset the lost work in this
region. However, iLazy' s total runtime may still not be lower than
the OCI' s runtime.

However, if the ì operating checkpointing intervalî is much
larger than the OCI, the checkpoint savings decrease signi� cantly
and the performance degradation is noticeable. The reason is that
as the checkpointing interval grows, the wasted work relative to the
base case increases; at the same time, checkpointing savings de-
crease due to longer checkpoint intervals.

Observation 6. The iLazy checkpointing technique can signi� -
cantly mitigate the checkpoint overhead if the checkpoint interval
being used is smaller or nearby the OCI. The iLazy checkpointing
can be viewed as a technique to reap the same bene� ts as OCI, even
when OCI may not have been very accurately estimated.

iLazy vs incrementally increasing checkpointing interval:
Next, we investigate the effects of shaping the checkpointing

intervals with an alternative function to the one used in iLazy
(Eq. 11). Essentially, we wish to understand the additional bene� ts
of checkpoint placement, guided by a Weibull distribution. We
compare against a simple linearly increasing function, i.e., αoci,

Figure 9. Effect of distribution function on the total execution time
and OCI : 10K node system (top), 20K node system (middle) and
100K node system (bottom). The zoomed in section shows that the
OCI estimation, which assumes an exponential distribution is not af-
fected even though the actual run time may differ slightly.

Figure 10. Difference in average lost work fraction between Weibull
and exponential distributions.

time that is lower than the exponential case. The underlying reason
can be explained using our previous result (Fig. 6), which shows
that a large fraction of failures occur soon after the last failure, re-
sulting in less wasted work per failure on an average. We further
support this result by showing (Fig. 10) that the lost work fraction,
ϵ is lower for a Weibull distribution than for an exponential distri-
bution.

What is of signi� cant interest is that, while the execution time
differs, the OCI for these two distributions are quite similar (as
shown by the zoomed in section of Fig. 9). Both curves achieve
the minima for nearly the same OCI.

Observation 4. The OCI is not affected signi� cantly by the under-
lying distribution of failure inter-arrival being Weibull vs exponen-
tial. However, the Weibull distribution does result in a lower overall
execution time compared to the exponential counterpart because
the average lost work per failure is lesser compared to the expo-
nential case.

While our � ndings about the temporal locality in failures do not
affect the OCI estimation, it does provide an opportunity to improve
current checkpointing strategies by exploiting this observation.

Compute Checkpoint

 OCI

iLazy

Time

F2F1

Figure 11. iLazy Checkpointing: increasing checkpointing interval
does not always lead to more waste work.

5. Exploiting Temporal Locality in Failures for

Reducing Checkpointing Overhead

Lazy Checkpointing Overview: We have shown that OCI based
checkpointing is quite effective (Section 3.3), however it inherently
fails to capture the temporal locality in failures. Towards this end,
we propose to make OCI based checkpointing temporal locality
aware.

We showed that failures have high temporal locality. That is, the
failure rate decreases over time since the last failure (and until the
next failure).

To support this, we plot the failure rates of both distributions
for a � xed MTBF of 10 hours for illustration (Fig. 12). The � gure
shows that while the failure rate for the exponential distribution
remains a constant, it decreases for the Weibull distribution.

Note that the failure rate of an exponential distribution is given
by 1 = M , where M is the MTBF. The failure rate for a given

Weibull distribution (1 − e−(t
λ
)k) is given as k

λ
(t
λ
)k−1, where

λ is the scale parameter, k is the shape parameter, and t is the
time since the last failure. In Fig. 12, we determine λ using a Γ
(Gamma) function for k = 0 : 6 (representative of an OLCF-like
system, Fig. 7), such that the MTBF of this Weibull distribution
remains the same as the exponential distribution (M).

We observe that since the failure rate decreases over time, one
may accordingly get ì lazyî in taking checkpoints as more time
passes by since the last failure. Essentially, we should increase the
checkpointing interval over time such that it has the same slope as
the corresponding Weibull distribution' s failure rate curve. There-
fore, a simple formula to achieve this incrementally increasing
checkpoint interval, αlazy , is as follows:

αlazy = αoci

(

t
αoci

)(1−k)

(11)

where αoci is the same OCI as previously determined and t is
the time since the last failure. Note that the checkpoint interval
increases inversely to the slope of failure rate curve (k − 1).

We call this technique iLazy checkpointing (increasingly lazy,
or simply Lazy checkpointing) as the new checkpointing interval
(αlazy) keeps increasing over time until the next failure; at that
point the checkpointing interval is reset to αoci. When failures
are exponentially distributed, the iLazy technique automatically
reduces to the OCI case, guaranteeing no harm or bene� t.

iLazy reduces the checkpointing overhead for failures that occur
late, while potentially increasing the wasted work. Since iLazy
increases its checkpointing interval over time, it may seem that
the waste work penalty is always higher in the iLazy case when
compared to the OCI case. However, we illustrate that this is not
the case necessarily. As shown in Fig. 11, failure F1 will result in
more lost work for OCI than iLazy; however, the reverse is true for
failure F2. The cumulative lost work may be higher than the OCI
depending on all the failures and their arrival times. This requires
an understanding of application execution over its full run.

Therefore, to gain a better understanding of how the proposed
iLazy strategy works for an application' s execution, we com-
pare it with the OCI in terms of checkpoint overhead, wasted
work and computation (Fig. 13). This example illustrates how the

Computation Checkpoint

α β

Waste Restart

γ

Failure

α β+()ϵ

Computation Checkpoint Computation Checkpoint

Checkpoint
Interval

Figure 2. Periodic computation and checkpoint phases of scienti� c
application.

Ttotal = Tcompute + Tcheckpoint + Twaste (1)

where the total compute time, Tcompute, is equal to the check-
point interval times the total number of steps in a failure-free en-
vironment (Tcompute = Sα). Similarly, the time spent towards
checkpointing can be expressed as follows:

Tcheckpoint = (S − 1)β (2)

= (
Tcompute

α
− 1)β (3)

Total overhead due to failures can be broken down into two
components. First, each failure will cause a certain fraction, say ϵ,
of the computation and checkpointing duration, α+ β to go waste.
Second, each failure will have an associated recovery overhead, γ.
Thus, the total overhead due to failures can be expressed as:

Twaste = Nf (ϵ(α+ β) + γ) (4)

where Nf is the total number of failures. Both Nf and ϵ are
dependent on the nature of the failure distribution. Next, we derive
an expression for Nf assuming that failures follow an exponential
distribution, as assumed in previous studies [37, 36, 30, 7, 28]. We
will revisit the validity of this assumption using the failure logs col-
lected from supercomputer facilities (Section 4). We also quantita-
tively estimate the value of ϵ under these assumptions (Section 4.2).

The number of failures can be expressed as the difference be-
tween the total number of trials needed to complete S chunks with-
out encountering a failure and the number of times the chunks com-
plete successfully (S). Recall that each chunk is a pair of compute
and checkpointing activity, (α+β). The number of trials can be fur-
ther estimated as S divided by the probability of not failing before
the period α+ β (i.e., 1− Pr(t < (α+ β))). Therefore,

Nf =
S

1− Pr(t < (α+ β))
− S (5)

For an exponential distribution, the probability of failure before

time t is given by Pr(X ≤ t) = 1−e−
t
M , where M is the MTBF.

Using this, the above expression can be simpli� ed as:

Nf = S(e
α+β
M − 1) (6)

Putting it all together, the total job execution time (Eq. 1) can
be obtained as a complete function of the checkpoint interval, α, by

substituting S with
Tcompute

α
as follows:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (7)

+
Tcompute

α
(e

α+β
M − 1)(ϵ(α+ β) + γ)

For the range, where α+ β ≪ M , we can simplify the above
expression:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (8)

+
Tcompute

α
(
α+ β
M

)(ϵ(α+ β) + γ)

Optimal checkpoint interval, αoci, that will minimize the total
execution time can be obtained by solving d

dα
(Ttotal) = 0. The

Figure 3. Value of ϵ, i.e., lost work fraction for exponential distribution.

above formula can be differentiated to get the following:

1
M

(ϵ−
ϵβ2

α2
oci

−
ϵγ
α2
oci

)−
β

α2
oci

= 0 (9)

Solving this we get the expression for optimal checkpoint
interval (OCI):

αoci =

√

β2 +
βγ
ϵ

+
Mβ
ϵ

(10)

Previous studies have done similar theoretical exercise and de-
rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ϵ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ϵ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ϵ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ϵ beyond the MTBF interval.
A value of 0.50 for ϵ reduces the OCI estimation as approximated
by Daly' s formula as well [7]. We revisit the signi� cance and
implications of the ì fraction of lost workî , ϵ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scienti� c application ob-
tained from both our analytical model and the event-driven simu-
lation. The � gure depicts a ì heroî run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the � gure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-

S C

S Simulation/Computation

C Checkpoint

L Lost Work

Failure

S C S C S C S C S

S C S C S C S

OCI Checkpointing

Lazy Checkpointing 0 5 10 15 20 25
Time between two failures (in hours)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Pe
rc

en
ta

ge
of

to
ta

lf
ai

lu
re

s

OLCF

Lazy Checkpointing Technique

24 Devesh Tiwari, June 2015!

Devesh Tiwari, Saurabh Gupta, Sudharshan Vazhkudai, "Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate
Checkpointing Overheads on Extreme-Scale Systems", Proceedings of the 44th Annual IEEE/IFIP Int’l Conference on Dependable

Systems and Networks (DSN), 2014.!

[DSN 2014] Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate Checkpointing Overheads on Extreme-Scale Systems
Devesh Tiwari, S Gupta, S Vazhkudai, IEEE/IFIP Int’l Conference on Dependable Systems and Networks (DSN), 2014.

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.

Computation Checkpoint

�oci �

Base
OCI

Computation Checkpoint

Computation Checkpoint

�

��oci

�max�oci

t0 t1 t2 t3 t4

Computation Checkpoint

��oci

iLazy

Time

Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, ↵

max�oci

) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (↵

oci

).
The amount of “additional” lost work compared to the OCI case

can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((↵

max�oci

�↵

oci

)), if
a failure did occur in this time window.

performance loss = (↵
max�oci

� ↵

oci

)(e�(
t2
�

)k � e�(
t4
�

)k)

= (↵
max�oci

� ↵

oci

)(e�(
2(↵

oci

+�)
�

)k � e�(
↵

max�oci

+↵

oci

+2�

�

)k)

Note that the probability that an event happens between time t
x

and t

y

is given by Pr(t
x

, t

y

) = e�(t

x

�

)k � e�(
t

y

�

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(�) multiplied by the probability that the failure happens beyond
time t3.

performance gain = �e�(
t3
�

)k

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

�e�(
↵

max�oci

+↵

oci

+�

�

)k = (↵
max�oci

� ↵

oci

)e�(
2(↵

oci

+�)
�

)k

�(↵
max�oci

� ↵

oci

)e�(
↵

max�oci

+↵

oci

+2�

�

)k

If the ↵

lazy

(Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at ↵

max�oci

.
Note that our estimation of the maximum value of checkpoint

interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.

Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, ↵

max�oci

) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (↵

oci

).
The amount of “additional” lost work compared to the OCI case

can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((↵

max�oci

�↵

oci

)), if
a failure did occur in this time window.

performance loss = (↵
max�oci

� ↵

oci

)(e�(
t2
�

)k � e�(
t4
�

)k)

= (↵
max�oci

� ↵

oci

)(e�(
2(↵

oci

+�)
�

)k � e�(
↵

max�oci

+↵

oci

+2�

�

)k)

Note that the probability that an event happens between time t
x

and t

y

is given by Pr(t
x

, t

y

) = e�(t

x

�

)k � e�(
t

y

�

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(�) multiplied by the probability that the failure happens beyond
time t3.

performance gain = �e�(
t3
�

)k

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

�e�(
↵

max�oci

+↵

oci

+�

�

)k = (↵
max�oci

� ↵

oci

)e�(
2(↵

oci

+�)
�

)k

�(↵
max�oci

� ↵

oci

)e�(
↵

max�oci

+↵

oci

+2�

�

)k

If the ↵

lazy

(Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at ↵

max�oci

.
Note that our estimation of the maximum value of checkpoint

interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.

Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, ↵

max�oci

) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (↵

oci

).
The amount of “additional” lost work compared to the OCI case

can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((↵

max�oci

�↵

oci

)), if
a failure did occur in this time window.

performance loss = (↵
max�oci

� ↵

oci

)(e�(
t2
�

)k � e�(
t4
�

)k)

= (↵
max�oci

� ↵

oci

)(e�(
2(↵

oci

+�)
�

)k � e�(
↵

max�oci

+↵

oci

+2�

�

)k)

Note that the probability that an event happens between time t
x

and t

y

is given by Pr(t
x

, t

y

) = e�(t

x

�

)k � e�(
t

y

�

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(�) multiplied by the probability that the failure happens beyond
time t3.

performance gain = �e�(
t3
�

)k

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

�e�(
↵

max�oci

+↵

oci

+�

�

)k = (↵
max�oci

� ↵

oci

)e�(
2(↵

oci

+�)
�

)k

�(↵
max�oci

� ↵

oci

)e�(
↵

max�oci

+↵

oci

+2�

�

)k

If the ↵

lazy

(Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at ↵

max�oci

.
Note that our estimation of the maximum value of checkpoint

interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.

Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, ↵

max�oci

) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (↵

oci

).
The amount of “additional” lost work compared to the OCI case

can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((↵

max�oci

�↵

oci

)), if
a failure did occur in this time window.

performance loss = (↵
max�oci

� ↵

oci

)(e�(
t2
�

)k � e�(
t4
�

)k)

= (↵
max�oci

� ↵

oci

)(e�(
2(↵

oci

+�)
�

)k � e�(
↵

max�oci

+↵

oci

+2�

�

)k)

Note that the probability that an event happens between time t
x

and t

y

is given by Pr(t
x

, t

y

) = e�(t

x

�

)k � e�(
t

y

�

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(�) multiplied by the probability that the failure happens beyond
time t3.

performance gain = �e�(
t3
�

)k

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

�e�(
↵

max�oci

+↵

oci

+�

�

)k = (↵
max�oci

� ↵

oci

)e�(
2(↵

oci

+�)
�

)k

�(↵
max�oci

� ↵

oci

)e�(
↵

max�oci

+↵

oci

+2�

�

)k

If the ↵

lazy

(Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at ↵

max�oci

.
Note that our estimation of the maximum value of checkpoint

interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

Analytical performance bounds
on iLazy checkpointing strategy

Refer to the paper for details

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.

Computation Checkpoint

�oci �

Base
OCI

Computation Checkpoint

Computation Checkpoint

�

��oci

�max�oci

t0 t1 t2 t3 t4

Computation Checkpoint

��oci

iLazy

Time

Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, ↵

max�oci

) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (↵

oci

).
The amount of “additional” lost work compared to the OCI case

can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((↵

max�oci

�↵

oci

)), if
a failure did occur in this time window.

performance loss = (↵
max�oci

� ↵

oci

)(e�(
t2
�

)k � e�(
t4
�

)k)

= (↵
max�oci

� ↵

oci

)(e�(
2(↵

oci

+�)
�

)k � e�(
↵

max�oci

+↵

oci

+2�

�

)k)

Note that the probability that an event happens between time t
x

and t

y

is given by Pr(t
x

, t

y

) = e�(t

x

�

)k � e�(
t

y

�

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(�) multiplied by the probability that the failure happens beyond
time t3.

performance gain = �e�(
t3
�

)k

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

�e�(
↵

max�oci

+↵

oci

+�

�

)k = (↵
max�oci

� ↵

oci

)e�(
2(↵

oci

+�)
�

)k

�(↵
max�oci

� ↵

oci

)e�(
↵

max�oci

+↵

oci

+2�

�

)k

If the ↵

lazy

(Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at ↵

max�oci

.
Note that our estimation of the maximum value of checkpoint

interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.

Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, ↵

max�oci

) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (↵

oci

).
The amount of “additional” lost work compared to the OCI case

can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((↵

max�oci

�↵

oci

)), if
a failure did occur in this time window.

performance loss = (↵
max�oci

� ↵

oci

)(e�(
t2
�

)k � e�(
t4
�

)k)

= (↵
max�oci

� ↵

oci

)(e�(
2(↵

oci

+�)
�

)k � e�(
↵

max�oci

+↵

oci

+2�

�

)k)

Note that the probability that an event happens between time t
x

and t

y

is given by Pr(t
x

, t

y

) = e�(t

x

�

)k � e�(
t

y

�

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(�) multiplied by the probability that the failure happens beyond
time t3.

performance gain = �e�(
t3
�

)k

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

�e�(
↵

max�oci

+↵

oci

+�

�

)k = (↵
max�oci

� ↵

oci

)e�(
2(↵

oci

+�)
�

)k

�(↵
max�oci

� ↵

oci

)e�(
↵

max�oci

+↵

oci

+2�

�

)k

If the ↵

lazy

(Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at ↵

max�oci

.
Note that our estimation of the maximum value of checkpoint

interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.

Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, ↵

max�oci

) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (↵

oci

).
The amount of “additional” lost work compared to the OCI case

can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((↵

max�oci

�↵

oci

)), if
a failure did occur in this time window.

performance loss = (↵
max�oci

� ↵

oci

)(e�(
t2
�

)k � e�(
t4
�

)k)

= (↵
max�oci

� ↵

oci

)(e�(
2(↵

oci

+�)
�

)k � e�(
↵

max�oci

+↵

oci

+2�

�

)k)

Note that the probability that an event happens between time t
x

and t

y

is given by Pr(t
x

, t

y

) = e�(t

x

�

)k � e�(
t

y

�

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(�) multiplied by the probability that the failure happens beyond
time t3.

performance gain = �e�(
t3
�

)k

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

�e�(
↵

max�oci

+↵

oci

+�

�

)k = (↵
max�oci

� ↵

oci

)e�(
2(↵

oci

+�)
�

)k

�(↵
max�oci

� ↵

oci

)e�(
↵

max�oci

+↵

oci

+2�

�

)k

If the ↵

lazy

(Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at ↵

max�oci

.
Note that our estimation of the maximum value of checkpoint

interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.

Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, ↵

max�oci

) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (↵

oci

).
The amount of “additional” lost work compared to the OCI case

can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((↵

max�oci

�↵

oci

)), if
a failure did occur in this time window.

performance loss = (↵
max�oci

� ↵

oci

)(e�(
t2
�

)k � e�(
t4
�

)k)

= (↵
max�oci

� ↵

oci

)(e�(
2(↵

oci

+�)
�

)k � e�(
↵

max�oci

+↵

oci

+2�

�

)k)

Note that the probability that an event happens between time t
x

and t

y

is given by Pr(t
x

, t

y

) = e�(t

x

�

)k � e�(
t

y

�

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(�) multiplied by the probability that the failure happens beyond
time t3.

performance gain = �e�(
t3
�

)k

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

�e�(
↵

max�oci

+↵

oci

+�

�

)k = (↵
max�oci

� ↵

oci

)e�(
2(↵

oci

+�)
�

)k

�(↵
max�oci

� ↵

oci

)e�(
↵

max�oci

+↵

oci

+2�

�

)k

If the ↵

lazy

(Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at ↵

max�oci

.
Note that our estimation of the maximum value of checkpoint

interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

Analytical performance bounds
on iLazy checkpointing strategy

Refer to the paper for details

0 2 4 6 8 10 12 14

Time since last failure

0 � 0

0 � 1

0 � 2

0 � 3

0 � 4

0 � 5

Fa
ilu
re

Ra
te

Exponential

Weibull

Figure 12. Failure rate (MTBF 10 hrs). Figure 13. Comparing execution progress of iLazy and OCI techniques.

Checkpoint Time Total Run Time

iLazy

Petascale (20K nodes)

Increased OCI
iLazy

on top of
Increased OCI

34%

25%

51%

-0.45%

0.15%

-3.45%

24%

19%

38%

1.76%

1.75%

0.93%

Checkpoint Time Total Run Time
Exascale (100K nodes)

Figure 14. Effect of applying iLazy on top of increased OCI on dif-
ferent scale of systems. Note that in this case, increased OCI achieves
a slight performance improvement over OCI, since the OCI was deter-
mined assuming exponential distribution instead of Weibull distribution,
and hence, may not be the true optimum.

iLazy checkpointing strategy signi� cantly reduces the checkpoint-
ing overhead, albeit with increase in the amount of lost work.

Fig. 13 shows results from our event-driven simulator for a run
across 20K nodes, with a computational time of 500 hours per node,
a time-to-checkpoint of 30 minutes, a Weibull failure distribution
with k = 0 : 6, and model-estimated OCI of 2.98 hours. For a fair
comparison, both the iLazy and OCI schemes use the same failure
arrival times. We notice that the cumulative checkpointing over-
head reduces signi� cantly (iLazy is better than OCI by 34% in the
checkpoint overheads) with increase in cumulative lost work, re-
sulting in only 0.45% performance hit. By reducing the checkpoint
overhead, Lazy checkpointing is able to reduce the load and con-
tention on the storage subsystem, and amount of data moved.

Is iLazy more bene� cial than simply increasing the OCI?:
iLazy reduces the checkpointing overhead signi� cantly with min-
imal performance degradation. However, one may argue that this
reduction in checkpointing overhead can also be possibly obtained
with a larger checkpointing interval compared to the OCI since the
execution time curve is relatively � at near the OCI region (Fig. 9).

To test this, we increased the OCI by the same percentage gain
achieved by iLazy for the checkpoint overhead (Fig. 14). For ex-
ample, for a petascale system since iLazy provides 34% checkpoint
time reduction, we increased the OCI by 34% (referred as Increased
OCI). Increasing the OCI results in a 25% checkpoint time reduc-
tion. Next, we apply our iLazy technique assuming increased OCI
as our base OCI (i.e., increased OCI becomes the αoci in Eq. 11)
to assess if iLazy can still reduce the checkpointing overhead. We
note that applying iLazy on top of that further reduces the overhead
signi� cantly compared to the original OCI (by 51% and 38%, third
row in Fig. 14), albeit with a small performance degradation.

Observation 5. The iLazy checkpointing technique can provide
more reduction in checkpointing overhead than what is possible
by simply increasing the OCI by the same proportion.

While iLazy does mitigate the checkpointing overhead, it af-
fects the performance, especially when applied with increased OCI
(Fig. 14). Therefore, we dig deeper to understand the strengths and
limitations of iLazy.

Figure 15. Effect of applying iLazy for different checkpointing in-
tervals. The base case refers to the simulation of an application run on
20K nodes, using different checkpoint intervals without iLazy.

Understanding the strengths and limitations of iLazy:
Fig. 15 plots (using the event-driven simulator) the checkpoint

overhead, the wasted work and the total execution time for different
checkpoint intervals, for both iLazy and the base case. The base
case is simply a plot of the above three aspects of the application at
various checkpoint intervals (including OCI).

First, we observe (Fig. 15 (left)) that iLazy consistently provides
checkpoint savings for all intervals. This is consistent with our
previous result that iLazy reduces the checkpointing overhead even
when OCI is increased. Also, the checkpointing overhead curve for
the base case explains the decrease in checkpoint overhead when
checkpoint interval is increased beyond OCI.

Interestingly, we observe from Fig. 15 (right) that if the ì oper-
ating checkpointing intervalî is smaller than the OCI or near the
OCI, then iLazy provides both a signi� cant reduction in check-
pointing and runtime as the I/O savings offset the lost work in this
region. However, iLazy' s total runtime may still not be lower than
the OCI' s runtime.

However, if the ì operating checkpointing intervalî is much
larger than the OCI, the checkpoint savings decrease signi� cantly
and the performance degradation is noticeable. The reason is that
as the checkpointing interval grows, the wasted work relative to the
base case increases; at the same time, checkpointing savings de-
crease due to longer checkpoint intervals.

Observation 6. The iLazy checkpointing technique can signi� -
cantly mitigate the checkpoint overhead if the checkpoint interval
being used is smaller or nearby the OCI. The iLazy checkpointing
can be viewed as a technique to reap the same bene� ts as OCI, even
when OCI may not have been very accurately estimated.

iLazy vs incrementally increasing checkpointing interval:
Next, we investigate the effects of shaping the checkpointing

intervals with an alternative function to the one used in iLazy
(Eq. 11). Essentially, we wish to understand the additional bene� ts
of checkpoint placement, guided by a Weibull distribution. We
compare against a simple linearly increasing function, i.e., αoci,

Figure 9. Effect of distribution function on the total execution time
and OCI : 10K node system (top), 20K node system (middle) and
100K node system (bottom). The zoomed in section shows that the
OCI estimation, which assumes an exponential distribution is not af-
fected even though the actual run time may differ slightly.

Figure 10. Difference in average lost work fraction between Weibull
and exponential distributions.

time that is lower than the exponential case. The underlying reason
can be explained using our previous result (Fig. 6), which shows
that a large fraction of failures occur soon after the last failure, re-
sulting in less wasted work per failure on an average. We further
support this result by showing (Fig. 10) that the lost work fraction,
ϵ is lower for a Weibull distribution than for an exponential distri-
bution.

What is of signi� cant interest is that, while the execution time
differs, the OCI for these two distributions are quite similar (as
shown by the zoomed in section of Fig. 9). Both curves achieve
the minima for nearly the same OCI.

Observation 4. The OCI is not affected signi� cantly by the under-
lying distribution of failure inter-arrival being Weibull vs exponen-
tial. However, the Weibull distribution does result in a lower overall
execution time compared to the exponential counterpart because
the average lost work per failure is lesser compared to the expo-
nential case.

While our � ndings about the temporal locality in failures do not
affect the OCI estimation, it does provide an opportunity to improve
current checkpointing strategies by exploiting this observation.

Compute Checkpoint

 OCI

iLazy

Time

F2F1

Figure 11. iLazy Checkpointing: increasing checkpointing interval
does not always lead to more waste work.

5. Exploiting Temporal Locality in Failures for

Reducing Checkpointing Overhead

Lazy Checkpointing Overview: We have shown that OCI based
checkpointing is quite effective (Section 3.3), however it inherently
fails to capture the temporal locality in failures. Towards this end,
we propose to make OCI based checkpointing temporal locality
aware.

We showed that failures have high temporal locality. That is, the
failure rate decreases over time since the last failure (and until the
next failure).

To support this, we plot the failure rates of both distributions
for a � xed MTBF of 10 hours for illustration (Fig. 12). The � gure
shows that while the failure rate for the exponential distribution
remains a constant, it decreases for the Weibull distribution.

Note that the failure rate of an exponential distribution is given
by 1 = M , where M is the MTBF. The failure rate for a given

Weibull distribution (1 − e−(t
λ
)k) is given as k

λ
(t
λ
)k−1, where

λ is the scale parameter, k is the shape parameter, and t is the
time since the last failure. In Fig. 12, we determine λ using a Γ
(Gamma) function for k = 0 : 6 (representative of an OLCF-like
system, Fig. 7), such that the MTBF of this Weibull distribution
remains the same as the exponential distribution (M).

We observe that since the failure rate decreases over time, one
may accordingly get ì lazyî in taking checkpoints as more time
passes by since the last failure. Essentially, we should increase the
checkpointing interval over time such that it has the same slope as
the corresponding Weibull distribution' s failure rate curve. There-
fore, a simple formula to achieve this incrementally increasing
checkpoint interval, αlazy , is as follows:

αlazy = αoci

(

t
αoci

)(1−k)

(11)

where αoci is the same OCI as previously determined and t is
the time since the last failure. Note that the checkpoint interval
increases inversely to the slope of failure rate curve (k − 1).

We call this technique iLazy checkpointing (increasingly lazy,
or simply Lazy checkpointing) as the new checkpointing interval
(αlazy) keeps increasing over time until the next failure; at that
point the checkpointing interval is reset to αoci. When failures
are exponentially distributed, the iLazy technique automatically
reduces to the OCI case, guaranteeing no harm or bene� t.

iLazy reduces the checkpointing overhead for failures that occur
late, while potentially increasing the wasted work. Since iLazy
increases its checkpointing interval over time, it may seem that
the waste work penalty is always higher in the iLazy case when
compared to the OCI case. However, we illustrate that this is not
the case necessarily. As shown in Fig. 11, failure F1 will result in
more lost work for OCI than iLazy; however, the reverse is true for
failure F2. The cumulative lost work may be higher than the OCI
depending on all the failures and their arrival times. This requires
an understanding of application execution over its full run.

Therefore, to gain a better understanding of how the proposed
iLazy strategy works for an application' s execution, we com-
pare it with the OCI in terms of checkpoint overhead, wasted
work and computation (Fig. 13). This example illustrates how the

Computation Checkpoint

α β

Waste Restart

γ

Failure

α β+()ϵ

Computation Checkpoint Computation Checkpoint

Checkpoint
Interval

Figure 2. Periodic computation and checkpoint phases of scienti� c
application.

Ttotal = Tcompute + Tcheckpoint + Twaste (1)

where the total compute time, Tcompute, is equal to the check-
point interval times the total number of steps in a failure-free en-
vironment (Tcompute = Sα). Similarly, the time spent towards
checkpointing can be expressed as follows:

Tcheckpoint = (S − 1)β (2)

= (
Tcompute

α
− 1)β (3)

Total overhead due to failures can be broken down into two
components. First, each failure will cause a certain fraction, say ϵ,
of the computation and checkpointing duration, α+ β to go waste.
Second, each failure will have an associated recovery overhead, γ.
Thus, the total overhead due to failures can be expressed as:

Twaste = Nf (ϵ(α+ β) + γ) (4)

where Nf is the total number of failures. Both Nf and ϵ are
dependent on the nature of the failure distribution. Next, we derive
an expression for Nf assuming that failures follow an exponential
distribution, as assumed in previous studies [37, 36, 30, 7, 28]. We
will revisit the validity of this assumption using the failure logs col-
lected from supercomputer facilities (Section 4). We also quantita-
tively estimate the value of ϵ under these assumptions (Section 4.2).

The number of failures can be expressed as the difference be-
tween the total number of trials needed to complete S chunks with-
out encountering a failure and the number of times the chunks com-
plete successfully (S). Recall that each chunk is a pair of compute
and checkpointing activity, (α+β). The number of trials can be fur-
ther estimated as S divided by the probability of not failing before
the period α+ β (i.e., 1− Pr(t < (α+ β))). Therefore,

Nf =
S

1− Pr(t < (α+ β))
− S (5)

For an exponential distribution, the probability of failure before

time t is given by Pr(X ≤ t) = 1−e−
t
M , where M is the MTBF.

Using this, the above expression can be simpli� ed as:

Nf = S(e
α+β
M − 1) (6)

Putting it all together, the total job execution time (Eq. 1) can
be obtained as a complete function of the checkpoint interval, α, by

substituting S with
Tcompute

α
as follows:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (7)

+
Tcompute

α
(e

α+β
M − 1)(ϵ(α+ β) + γ)

For the range, where α+ β ≪ M , we can simplify the above
expression:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (8)

+
Tcompute

α
(
α+ β
M

)(ϵ(α+ β) + γ)

Optimal checkpoint interval, αoci, that will minimize the total
execution time can be obtained by solving d

dα
(Ttotal) = 0. The

Figure 3. Value of ϵ, i.e., lost work fraction for exponential distribution.

above formula can be differentiated to get the following:

1
M

(ϵ−
ϵβ2

α2
oci

−
ϵγ
α2
oci

)−
β

α2
oci

= 0 (9)

Solving this we get the expression for optimal checkpoint
interval (OCI):

αoci =

√

β2 +
βγ
ϵ

+
Mβ
ϵ

(10)

Previous studies have done similar theoretical exercise and de-
rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ϵ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ϵ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ϵ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ϵ beyond the MTBF interval.
A value of 0.50 for ϵ reduces the OCI estimation as approximated
by Daly' s formula as well [7]. We revisit the signi� cance and
implications of the ì fraction of lost workî , ϵ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scienti� c application ob-
tained from both our analytical model and the event-driven simu-
lation. The � gure depicts a ì heroî run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the � gure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-

S C

S Simulation/Computation

C Checkpoint

L Lost Work

Failure

S C S C S C S C S

S C S C S C S

OCI Checkpointing

Lazy Checkpointing 0 5 10 15 20 25
Time between two failures (in hours)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Pe
rc

en
ta

ge
of

to
ta

lf
ai

lu
re

s

OLCF Key is to balance the trade-off
between reduction in checkpointing
overhead and possible increase in

the waste work

Refer to the paper for model validation and simulation results

Lazy Checkpointing Technique

27 Devesh Tiwari, June 2015!

[DSN 2014] Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate Checkpointing Overheads on Extreme-Scale Systems
Devesh Tiwari, S Gupta, S Vazhkudai, IEEE/IFIP Int’l Conference on Dependable Systems and Networks (DSN), 2014.

Quarantine Job Scheduling Technique

Job 2

Job 3

Job 1

Job 1

Job 1

Job 1

Job 1Job 1

Job 1

Job 1

Job 3Job

Job

Job

Job

Job

Job Q
ua

ra
nt

in
e

Quara
ntine

Job

Job

Job

Job Job

Job

Job

Idea: On job restart or a new job allocation
a fraction of compute capacity is not utilized (quarantined)

Quarantine Granularity

Fraction of avoided system
failures versus compute
resource waste

Quarantine Time Duration

Diminishing returns on the
number of avoided failures

System Utilization vs. Reliability

Trading-off lower system
utilization for improved reliability

[DSN 2015] Understanding and Exploiting Spatial Properties of System Failures on Extreme-Scale HPC Systems
Saurabh Gupta, Devesh Tiwari, Chris Jantzi, Jim Rogers, Don Maxwell, IEEE/IFIP Int’l Conf on Dependable Systems and Networks (DSN), 2015.

Quarantine Job Scheduling Technique

Quarantine hours

System Utilization
Quarantine node hours

Quarantine hours

(a) (b)

Fig. 9: Impact of near future window size parameter on fraction of failures avoided (a), fraction of quarantine node hours (b).

(a)

!"!#$

%"!#$

&!"!#$

&%"!#$

'!"!#$

'%"!#$

!$ %!$ &!!$ &%!$ '!!$

#
$(
)$*

(+
,$
-(

./
0$1
2$

3.
4/
42
5.
2,

$6
(+

,$ 74812,5$
749,$
:;4+,$
*(+,$

(b)

Fig. 10: Evaluation of Quarantine Technique with varying duration of quarantine from 1 hour to 180 hours: Fraction of failures
avoided (a), and fraction of quarantine node-hours (b).

time in quarantine mode (i.e., the loss). The simulation results
indicate that with only 0.02% loss of node-hours in quaran-
tine, 3.85% of the failures can be avoided when Quarantine
Technique is applied at node granularity. If we increase the
granularity of quarantine to blade or cage, 5.07% or 7.21%
failures can be avoided respectively. These results indicate
that with increasing granularity of quarantine, the number of
failures avoided also increases, and this again shows that the
spatial locality is not just a node-level phenomenon. Overall,
the percentage of failures avoided for each granularity closely
follows the spatial locality results in Section III-D.

Observation 5. After a failure, putting a group of spatially-
nearby nodes in quarantine can effectively exploit the spatial
locality in failures. It can prevent a significant fraction of
system failures from affecting production jobs by trading
off relatively small fraction of computational resources. The
respective benefits and overheads depend on the granularity
of quarantine.

Interesting observations can be made from Fig. 8 (b), which
shows fraction of node-hours used by debugging jobs on Titan
per day. We observe that 1.4% of the node hours are already
spent in debug jobs on average over this period. On a per day
basis, 65% of the days saw more than 0.7% node-hours of the
system used for debug jobs. In this manner, the overhead of
using the quarantine method is minimized significantly if we
schedule debug jobs on the nodes under quarantine. Moreover,
the load of debug queue can be used to decide the granularity

and duration of quarantine which can be easily tuned. Design
of such a dynamic scheme is out of the scope of this study. In
the following section, we investigate the impact of granularity
and duration of quarantine on the fraction of node hours in
quarantine and failures avoided.

Observation 6. A large fraction of quarantine node hours can
be allocated towards debug or non-production jobs. Therefore,
the compute-hours wasted due to Quarantine Technique can be
minimized significantly or even completely obviated in some
cases, depending upon the system usage.

C. Understanding the Effect of Parameters and Trade-offs

One key consideration while putting a group of nodes
in quarantine is to decide the duration of quarantine in the
“number of hours” or “number of future failures”. It may seem
that they would both work equally well for specifying duration
of quarantine because they put the nodes in quarantine for a
similar amount of time on average (given time in hours =
number of failures ⇥ MTBF). In Fig. 9 (a) and (b), we show
that though the number of node-hours spent in quarantine stays
same for either choice of quarantine duration, the percentage of
failures avoided is significantly different. Using a time window
works significantly better than using number of failures. This
is due to temporal locality in failures, where the number of
failures that occur within a time window of ‘number of failures
⇥ MTBF’ is actually more than the number of failures [5].

8

Quarantine hours

System Reliability
Fraction of failures avoided

Quarantine hours

(a) (b)

Fig. 9: Impact of near future window size parameter on fraction of failures avoided (a), fraction of quarantine node hours (b).

!"!#$

%"!#$

&!"!#$

&%"!#$

'!"!#$

'%"!#$

!$ %!$ &!!$ &%!$ '!!$

#
$(
)$*
+,
-.
/0
1$2

3(
,4
04

$

(a) (b)

Fig. 10: Evaluation of Quarantine Technique with varying duration of quarantine from 1 hour to 180 hours: Fraction of failures
avoided (a), and fraction of quarantine node-hours (b).

time in quarantine mode (i.e., the loss). The simulation results
indicate that with only 0.02% loss of node-hours in quaran-
tine, 3.85% of the failures can be avoided when Quarantine
Technique is applied at node granularity. If we increase the
granularity of quarantine to blade or cage, 5.07% or 7.21%
failures can be avoided respectively. These results indicate
that with increasing granularity of quarantine, the number of
failures avoided also increases, and this again shows that the
spatial locality is not just a node-level phenomenon. Overall,
the percentage of failures avoided for each granularity closely
follows the spatial locality results in Section III-D.

Observation 5. After a failure, putting a group of spatially-
nearby nodes in quarantine can effectively exploit the spatial
locality in failures. It can prevent a significant fraction of
system failures from affecting production jobs by trading
off relatively small fraction of computational resources. The
respective benefits and overheads depend on the granularity
of quarantine.

Interesting observations can be made from Fig. 8 (b), which
shows fraction of node-hours used by debugging jobs on Titan
per day. We observe that 1.4% of the node hours are already
spent in debug jobs on average over this period. On a per day
basis, 65% of the days saw more than 0.7% node-hours of the
system used for debug jobs. In this manner, the overhead of
using the quarantine method is minimized significantly if we
schedule debug jobs on the nodes under quarantine. Moreover,
the load of debug queue can be used to decide the granularity

and duration of quarantine which can be easily tuned. Design
of such a dynamic scheme is out of the scope of this study. In
the following section, we investigate the impact of granularity
and duration of quarantine on the fraction of node hours in
quarantine and failures avoided.

Observation 6. A large fraction of quarantine node hours can
be allocated towards debug or non-production jobs. Therefore,
the compute-hours wasted due to Quarantine Technique can be
minimized significantly or even completely obviated in some
cases, depending upon the system usage.

C. Understanding the Effect of Parameters and Trade-offs

One key consideration while putting a group of nodes
in quarantine is to decide the duration of quarantine in the
“number of hours” or “number of future failures”. It may seem
that they would both work equally well for specifying duration
of quarantine because they put the nodes in quarantine for a
similar amount of time on average (given time in hours =
number of failures ⇥ MTBF). In Fig. 9 (a) and (b), we show
that though the number of node-hours spent in quarantine stays
same for either choice of quarantine duration, the percentage of
failures avoided is significantly different. Using a time window
works significantly better than using number of failures. This
is due to temporal locality in failures, where the number of
failures that occur within a time window of ‘number of failures
⇥ MTBF’ is actually more than the number of failures [5].

8

Quarantine node hours

Feedback to the job schedulerFeedback to the job scheduler

Fraction of failures avoided

Quarantine Job Scheduling Technique

3.85%
5.07%

7.21%

9.64%

0.02% 0.09% 0.69%
2.04%

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%

Node Blade Cage Cabinet
Quarantine time duration 48 hours

% Failures Avoided % Quarantine Hours

0.69%0.69% Mean
1.4%
0.69%

Debug or non-production jobs can be
scheduled on quarantine nodes

Significant fraction of failures can be avoided
from interrupting production applications

Ensuring High System Utilization

Quarantine Job Scheduling Technique

3.85%
5.07%

7.21%

9.64%

0.02% 0.09% 0.69%
2.04%

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%

Node Blade Cage Cabinet
Quarantine time duration 48 hours

% Failures Avoided % Quarantine Hours

0.69%0.69%

!"!#
$"!#
%"!#
&"!#
'"!#
("!#
)"!#
*"!#
+"!#

Percentage of Node-hours used
by debug jobs

Mean
1.4%
0.69%

Debug or non-production jobs can be
scheduled on quarantine nodes

Significant fraction of failures can be avoided
from interrupting production applications

Ensuring High System Utilization

Debug or non-production jobs can be
scheduled on quarantine nodes

Significant fraction of failures can be avoided
from interrupting production applications

Feedback Loop for ModSim Community

These insights can potentially change the way
we design fault-injection modsim frameworks, operate production

machines, and plan for future systems.

(a) (b)

Figure 2: Cumulative single bit error (SBE) count distribution
over days (a), and cumulative SBE count distribution
over days excluding top 2 days (b).

First, our analysis is post-hoc in nature and hence, by def-
inition it can not answer what-if scenarios where one may
require changing the system/workload environment to observe
the effect of a change.

Second, we note that such a large-scale computing facility
is often very dynamic in nature with respect to software stack
changes. Operational practices are continuously tweaked and
unscheduled outages take place among other system updates.
We have limited control over such factors. Therefore, isolating
the impact of the above factors on our study is challenging.
Instead, as we discuss our findings in the paper, we specifically
point out the external factors that we believe may influence our
findings. Previous works have also pointed out that NVIDIA’s
GPU error logging has improved over time [33, 34]. Our error
collection framework attempts mitigate this by collecting the
same error information via multiple possible methods.

Third, our study provides insights about correlation between
applications/users and GPU error characteristics. Yet, it is not
possible to investigate specific applications since we do not
have access to application source codes. We point out that
we have little to no knowledge about users’ intentions. User
behavior may change over time as the scientific knowledge in
a particular domain improves. A new computational model or
method in a particular domain may affect all applications in
that domain at a given time or over a period of time. We also
note that while our logs report the application name (binary
name) at the end of each job, it is possible for a user to use
the same binary name for two different applications, or the
same application with different input types. However, for our
analysis we conservatively treat them as the same application
because of the lack of more detailed knowledge.

We show that performing similar analysis at the user-level
mitigates some of the side-effects and provides additional
understanding. However, this is a fundamental challenge that
can not be rectified in a post-hoc analysis, especially for a
production supercomputing facility where system resource
managers can not influence user computing practices/behavior.

(a) (b)

Figure 3: Daily SBE count across time excluding the top two
days (a), and autocorrelation function of the SBE in-
terarrival times (b).

3. Analyzing Single Bit Errors (SBE) on the Ti-
tan Supercomputer

In this section, we aim to understand the temporal character-
istics of single bit errors (SBE) on the Titan supercomputer.
While previous studies have shown that most of the SBEs tend
to occur only in a few GPU cards [34], the temporal charac-
teristics of the SBEs have not been explored because of the
inability to collect SBE occurrence information continuously
over time. As described earlier in Section 2, our framework
enables us to collect SBE counts at the batch job granularity.

Fig. 2(a) shows the CDF of the single bit error counts on
a per day granularity. Recall that the time stamp of each
SBE occurrence is not recorded. However, since the Titan
supercomputer is highly utilized, we are able to collect the
SBE data from a large number of batch jobs and aggregate
them over 24-hour periods. It should be noted in Fig. 2(a)
that the x-axis presents the days in the observation data in
increasing order of their daily SBE count.

The steep curve of the distribution suggests that only a few
days accounts for most of SBEs. In fact, only three days
account for the 97.18% of the total SBEs, while the top ten
days with most SBEs account for 97.84% of the total SBEs.
Due to this skewness, it not clear how errors are being ac-
cumulated over the rest of the days. To better view this, we
plot in Fig. 2(b) the cumulative distribution function of SBE
counts but exclude the top two days. We observe that SBE
occurrences are not proportionally distributed over the rest of
the days either, i.e., 40% of the days with the lowest SBE daily
counts account for only 10% of the total SBE counts, while
the remaining 60% of the days account for 90% of SBEs.

This uneven distribution of SBEs across days led us to
investigate how these errors appear across time. Fig. 3(a)
shows the normalized SBE count per day for the whole period
of the study. We normalize the daily SBE count by the average
of the daily SBE count over the whole period. This figure
indicates that the density of SBEs across days is fairly uneven
and appears bursty.

To examine whether there is burstiness and/or periodicity
in SBEs, we turn into the time series of SBE occurrences and
plot the autocorrelation function of the inter-arrival times of

3

(a) (b)

Figure 5: GPU resource distribution for the SBE offender
nodes (excluding top two SBE offenders): GPU core
hours (a), and GPU memory utilization (b).

therefore, higher GPU resource utilization alone may not be
considered as the “cause”. Fig. 5 shows the normalized GPU
core hours and memory utilization for all SBE offender nodes.
The normalization is performed using the average for all SBE
offender nodes except the top two nodes (which are considered
outliers, as their SBEs occur in a single day only). We observe
that the nodes with higher SBE count do not necessarily use
higher GPU core hours or run workloads with higher memory
utilization.

While GPU resource utilization does not seem to be di-
rectly correlated with the SBE occurrence frequency on the
GPU nodes, we suspect that the variance in GPU resource uti-
lization may be correlated to higher SBE occurrences. More
precisely, we want to test the hypothesis that days with higher
variance in GPU utilization experience higher single bit er-
rors. Fig. 6 shows the top 50 days which encountered most
SBEs (in increasing order) and the corresponding variance in
GPU resource utilization on that day. We note that Fig. 6(a)
and (b) indicate that the couple of days with the highest SBE
count may also experience the highest variance in their GPU
resource utilization. However, a more closer look at top 4 to 50
days (Fig. 6(c) and (d)) shows that variance in GPU resource
utilization does not imply higher daily SBEs. Based on this
finding, we point out that GPU resilience simulation and mod-
eling frameworks do not necessarily need to vary the soft-error
rate based on the compute load or variance in the load. This
will simplify the design of such tools without compromising
the accuracy of the study.

Observation 3 We found that GPU resource utilization and
variance in the GPU resource utilization do not seem to be
significantly correlated with the SBE occurrences. Higher
GPU resource utilization or its variance do not necessarily
result in a higher SBE count.

We learned that the GPU resource utilization is not
highly correlated with the SBE frequency on SBE offender
nodes. Here, we investigate the relationship between specific
users/applications and SBE counts. In other words, is a certain
fraction of users/applications experiencing more single bit er-
rors than others? If so, what are the respective GPU resource
utilization levels?

(a) top 50 days (b) top 50 days

(c) top 4 to 50 days (d) top 4 to 50 days

Figure 6: Variance in the GPU resource utilization and daily
SBE count: GPU core hours for top 50 days (a),
for top 50 days excluding the top 3 days (b), GPU
memory utilization for top 50 days (c), and for top 50
days excluding the top 3 days (d). (Days are sorted
in increasing order of SBE count.)

(a) (b)

Figure 7: GPU core-hours for users (a), and applications (b)
experiencing SBEs.

Fig. 7(a) shows the SBE count of different users versus
their respective GPU core hours. Both SBE count and GPU
core hours have been normalized by their respective average
values. We also point out that only users that encountered at
least one single bit error are included in the plot. We found
that the correlation between GPU core hours and SBE count
is significant when studied at the user-level. The Pearson
coefficient is 0.59 with p-value < 0.05 while the Spearman
coefficient is 0.89 with p-value < 0.05. This indicates a strong
non-linear correlation. We did similar analysis between the
SBE count for users versus their respective GPU memory
utilization. We found similar trends in the results (not shown
here due to lack of space).

Fig. 7(b) shows that SBE count for applications versus its
respective GPU core hours. Only the applications affected by
SBEs are included in the plot. Similar to our previous analysis
for users, we found strong non-linear correlation in this case as

5

Figure 8: DPR errors for SBE offender cards (excluding top
two SBE offenders which had no DPRs).

well. The Pearson coefficient is 0.67 with p-value < 0.05 while
the Spearman coefficient is 0.89 with p-value < 0.05. Analysis
between the SBE count of different applications versus their
respective GPU memory utilization shows similar trends.

In summary, our data suggests that GPU resource utiliza-
tion at the user-level appears highly correlated with the SBE
frequency for different users and applications.

Observation 4 SBE occurrence frequency appears highly cor-
related with users and applications. This correlation is better
expressed by a non-linear relationship and is not necessarily
an artifact of the bursty nature of single bit errors.

4. Analyzing Dynamic Page Retirement (DPR)
Errors on the Titan Supercomputer

Dynamic Page Retirement (DPR) is an important resilience
feature to improve the longevity of an otherwise good GPU
card. A page in the GPU device memory is blacklisted if two
single bit errors or one double bit error occur on the same
page. This page is not allocated to the application on the next
reload of the GPU driver [3]. In this section, we study single
bit errors and dynamic page retirement errors together since
SBEs can cause DPRs. We also investigate the impact of GPU
resource utilization and applications on DPR occurrence.

For the measurement period, we observe a total of 50 DPR
errors on 43 distinct GPU cards. Recall that we observe that
SBEs tend to be more concentrated in a few selected GPU
cards. More generally, the distribution of SBEs is not uni-
form among all the 590 SBE offender cards. Therefore, we
hypothesize that DPR errors are more likely to occur in the
top SBE offender cards. Fig. 8 shows the DPR and SBE error
frequency for all SBE offender cards (excluding the top 2 SBE
offenders which do not have any DPR). The plot shows that
some top SBE offender cards do observe DPR errors. For
example, the top 10 SBE offender cards account for 4 DPR
errors, while the top 20 SBE offender cards account for 7 DPR
errors out of total 50 DPRs. Cards with low SBE counts show
no DPRs during the measurement period. Most of the top SBE
offenders do not experience any DPRs either. It is possible
that some top SBE offender cards may potentially experience
a DPR error in the future but we argue that our measurement

(a) (b)

Figure 9: Histograms of difference in SBE count for a 24-
hour windows after and before the DPR occurrence
for DPR offender nodes (a), and non-DPR offender
nodes (b). Dotted vertical lines represent the average
difference in SBE count.

period is long enough to account for most of such cases given
the bursty occurrences of SBEs.

Observation 5 Top SBE offender GPU cards do not neces-
sarily experience more dynamic page retirement errors. In
fact, DPR errors may occur on any SBE offender cards, even
to those with relatively lower single bit error counts.

One can also reasonably hypothesize that the SBE count is
likely to be higher on DPR offender nodes before the DPR
error, since two SBEs trigger a DPR. To test this hypothesis,
we calculate the difference of SBE counts after and before
each DPR occurrence within a certain time window (i.e., 24-
hour), for both DPR offender nodes and non-DPR offender
nodes. In other words, we accumulate the SBE count on the
node for 24 hour window both after and before the DPR event,
and then take the difference. Fig. 9 presents the histograms
of the difference in SBE count for a 24-hour window for both
DPR offender nodes and non-DPR offender nodes. The dotted
vertical line in each graph shows the average. Average value of
this difference for DPR offenders is around 160 while the value
for non-DPR offenders is around 0. Similarly, the cumulative
distribution in Fig. 10(a) shows that DPR offending nodes and
non-DPR nodes have significantly different distribution. We
also conduct the Kolmogorov-Smirnov Test (KS test) to test
this hypothesis. We find that D = 0.389, p-value = 5.991⇥
10�7. For our sample size here, the critical D value is 0.19
and therefore we can reject the null hypothesis, and conclude
that DPR offending nodes show significantly higher values of
difference in SBE counts compared to non-DPR nodes.

Next, we test if SBEs continue to occur on the DPR offender
nodes beyond the 24-hour period since the last DPR error
occurrence. If so, for how long do the DPR offender nodes
continue to experience single bit errors? Fig. 10 shows the
cumulative distributions of difference in SBE count for two
different size of time windows. As a comparison point, we
present results for 24 hours time-window and 72 hours time-
window (Fig. 10(a) and (b)). We observe that the cumulative
distribution does not change significantly from 24 hours to 72
hours. This indicates that the majority of SBEs occurring after

6

(a) (b)

Figure 2: Cumulative single bit error (SBE) count distribution
over days (a), and cumulative SBE count distribution
over days excluding top 2 days (b).

First, our analysis is post-hoc in nature and hence, by def-
inition it can not answer what-if scenarios where one may
require changing the system/workload environment to observe
the effect of a change.

Second, we note that such a large-scale computing facility
is often very dynamic in nature with respect to software stack
changes. Operational practices are continuously tweaked and
unscheduled outages take place among other system updates.
We have limited control over such factors. Therefore, isolating
the impact of the above factors on our study is challenging.
Instead, as we discuss our findings in the paper, we specifically
point out the external factors that we believe may influence our
findings. Previous works have also pointed out that NVIDIA’s
GPU error logging has improved over time [33, 34]. Our error
collection framework attempts mitigate this by collecting the
same error information via multiple possible methods.

Third, our study provides insights about correlation between
applications/users and GPU error characteristics. Yet, it is not
possible to investigate specific applications since we do not
have access to application source codes. We point out that
we have little to no knowledge about users’ intentions. User
behavior may change over time as the scientific knowledge in
a particular domain improves. A new computational model or
method in a particular domain may affect all applications in
that domain at a given time or over a period of time. We also
note that while our logs report the application name (binary
name) at the end of each job, it is possible for a user to use
the same binary name for two different applications, or the
same application with different input types. However, for our
analysis we conservatively treat them as the same application
because of the lack of more detailed knowledge.

We show that performing similar analysis at the user-level
mitigates some of the side-effects and provides additional
understanding. However, this is a fundamental challenge that
can not be rectified in a post-hoc analysis, especially for a
production supercomputing facility where system resource
managers can not influence user computing practices/behavior.

(a) (b)

Figure 3: Daily SBE count across time excluding the top two
days (a), and autocorrelation function of the SBE in-
terarrival times (b).

3. Analyzing Single Bit Errors (SBE) on the Ti-
tan Supercomputer

In this section, we aim to understand the temporal character-
istics of single bit errors (SBE) on the Titan supercomputer.
While previous studies have shown that most of the SBEs tend
to occur only in a few GPU cards [34], the temporal charac-
teristics of the SBEs have not been explored because of the
inability to collect SBE occurrence information continuously
over time. As described earlier in Section 2, our framework
enables us to collect SBE counts at the batch job granularity.

Fig. 2(a) shows the CDF of the single bit error counts on
a per day granularity. Recall that the time stamp of each
SBE occurrence is not recorded. However, since the Titan
supercomputer is highly utilized, we are able to collect the
SBE data from a large number of batch jobs and aggregate
them over 24-hour periods. It should be noted in Fig. 2(a)
that the x-axis presents the days in the observation data in
increasing order of their daily SBE count.

The steep curve of the distribution suggests that only a few
days accounts for most of SBEs. In fact, only three days
account for the 97.18% of the total SBEs, while the top ten
days with most SBEs account for 97.84% of the total SBEs.
Due to this skewness, it not clear how errors are being ac-
cumulated over the rest of the days. To better view this, we
plot in Fig. 2(b) the cumulative distribution function of SBE
counts but exclude the top two days. We observe that SBE
occurrences are not proportionally distributed over the rest of
the days either, i.e., 40% of the days with the lowest SBE daily
counts account for only 10% of the total SBE counts, while
the remaining 60% of the days account for 90% of SBEs.

This uneven distribution of SBEs across days led us to
investigate how these errors appear across time. Fig. 3(a)
shows the normalized SBE count per day for the whole period
of the study. We normalize the daily SBE count by the average
of the daily SBE count over the whole period. This figure
indicates that the density of SBEs across days is fairly uneven
and appears bursty.

To examine whether there is burstiness and/or periodicity
in SBEs, we turn into the time series of SBE occurrences and
plot the autocorrelation function of the inter-arrival times of

3

Future large scale system will have heterogeneity
in terms reliability levels, too.

Parts of large systems will go in transient lower
reliability, degraded performance, and large

performance variability modes.

My Personal View

Traditional “replace and continue” approach will
not be sustainable.

We will need theoretically-sound techniques and
tools to “dynamically” manage this new kind of

heterogeneity.

Traditional “replace and continue” approach will
not be sustainable.

We will need theoretically-sound techniques and
tools to “dynamically” manage this new kind of

heterogeneity.

Denial and blame shifting will continue to work for
some time in near future. !

Thanks!

Devesh Tiwari
Oak Ridge National Laboratory

tiwari@ornl.gov

devesh.dtiwari@gmail.com

