
Assessing the Impact of
Execution Model Selection on
Data Locality
KEVIN J. BARKER, VINAY AMATYA, DANIEL CHAVARRÍA,
ADOLFY HOISIE, SRIRAM KRISHNAMOORTHY, GOKCEN KESTOR,
JOSEPH MANZANO

PACIFIC NORTHWEST NATIONAL LABORATORY

Workshop on Modeling and Simulation of Systems and Applications
August, 2016

Motivation: Execution Model Attributes

  Execution Models can be classified according to several attributes
  These are not linearly independent
  We have described the SCaLeM methodology:

  Synchronization, Concurrency, Locality, and Memory

  These attributes trade off against one another in practice

8/10/16 2

Synch	

Locality	

Concur.	 Memory	

Execu&on	Models	

Synch	 Coordina(on	between	Concurrency	
Units	

Locality	 Differen(a(on	between	local	and	
remote	regions	or	units	

Concurrency	 Crea(on,	management,	and	
destruc(on	of	concurrency	units	

Memory	 Availability	of	address	ranges	and	
opera(ons	on	such	ranges	

Motivation: Interplay between Attributes

  Application behavior may be sensitive to this interplay
  Inherent in their algorithms

  Fine-grained algorithms may incur large synchronization costs
  Inherent in their data sets

  Locality impacted by sparseness of data structures
  Inherent in execution model implementation

  High overheads for certain operations
  Management of layouts for important (i.e., heavily used) data structures

  Objective: characterize this complex interplay for the attributes of
Concurrency and Locality
  I.e., how is data locality impacted within execution models that support
fine-grained task decomposition?

8/10/16 3

Overdecomposition: Impact on
Performance

  Implemented using the ParalleX or CSP (using MPI+OpenMP) EMs
  Increased levels of over-decomposition yields improved performance
  Because of the cost of data movement, we want to understand the interaction

between concurrency and locality EM attributes

8/10/16 4

0.00#
200.00#
400.00#
600.00#
800.00#

1,000.00#
1,200.00#
1,400.00#
1,600.00#
1,800.00#
2,000.00#

HP
X#4
#no
de
s,#6
4#d
om
ain
s#

HP
X#8
#no
de
s,#6
4#d
om
ain
s#

HP
X#1
2#n
od
es,
#32
76
8#d
om
ain
s#

HP
X#8
#no
de
s,#3
27
68
#do
ma
ins
#

HP
X#1
2#n
od
es,
#40
96
#do
ma
ins
#

HP
X#8
#no
de
s,#4
09
6#d
om
ain
s#

HP
X#8
#no
de
s,#5
12
#do
ma
ins
#

HP
X#4
#no
de
s,#5
12
#do
ma
ins
#

MP
I#4
#no
de
s,#6
4#d
om
ain
s#

MP
I#8
#no
de
s,#6
4#d
om
ain
s#

MP
I/O
MP
#8#
do
ma
ins
#sc
ale
d#

Best%configura.on%

Best#configuraEon#

Application Analysis Framework

Assumption: Algorithms and
applications are written to target a
specific Execution Model
Assumption: Applications are
expressed through programming
models and runtime primitives

  Characterizing an application and its

underlying runtime serve to showcase
their inherent attributes

Challenge: Capturing application
behavior and attributing it to different
components

8/10/16 5

Symbol'Tables'

Segment'Tables'

Dynamic'
Reloca3on'Tables'

Sta$c&Analysis&
Memory'Trace'

Compute'Trace'

Sync'Trace'

Comms'Trace'

Heap'Trace'

Dynamic&Analysis&

Applica3on'

RTS'Libs'

Func3on'
Originator'

Data'Structure'
A>ribu3on'

Reuse'
Distance'
Analysis'

Locality&Analysis&

Data Collection: Dynamic Instrumentation

  Dynamic Instrumentation Features:
  Partial order of operations between

different concurrent actors
  Complete observability of events and

operations regardless of origin
  Frequency of operations
  Usable to run “What-if” scenarios

  Shortcomings:
  No performance or complete ordering
  Overheads in both space and time

  Tools:
  Intel PIN tool for x86 code
  Collect operations associated with a

particular attribute (e.g., load/store)
  Reusable across Execution Models

8/10/16 6

Symbol'Tables'

Segment'Tables'

Dynamic'
Reloca3on'Tables'

Sta$c&Analysis&
Memory'Trace'

Compute'Trace'

Sync'Trace'

Comms'Trace'

Heap'Trace'

Dynamic&Analysis&

Applica3on'

RTS'Libs'

Func3on'
Originator'

Data'Structure'
A>ribu3on'

Reuse'
Distance'
Analysis'

Locality&Analysis&

Case Study: Reuse Distance for HPCG

  Implementations using MPI and HPX runtimes

  Our metric for locality is reuse distance
  Defined to be the number of unique addresses accessed between
successive accesses to the same location
  Metric is designed to be architecture independent

  Does not consider cache sizes or number of cache levels
  Does not consider accesses to the same page or cache line, but only to the
same address

  Case study workload: HPCG
  Pre-conditioned CG solver with 3D rectangular grid domain
  Sparse matrix with 27 non-zero entities per matrix row
  Majority of time spent in sparse matrix-vector multiply

8/10/16 7

HPCG Under MPI+OpenMP and ParalleX
Execution Models

HPCG:	HPX	–	Mul(ple	Threads	

HPCG:	MPI+OpenMP	–	Mul(ple	Threads	

1	Thread	 4	Threads	2	Threads	

1	Thread	 2	Threads	 4	Threads	

8/10/16 8

Reuse Distance for 4 OpenMP Threads

8/10/16 9

Reuse Distance for 4 HPX Worker Threads

8/10/16 10

Conclusions and Next Steps

  Improved reuse distance (and improved data locality) results from
over-decomposition

  Some execution models easily allow for data over-decomposition,
while others do not

  Future plans:
  Data access attribution (e.g., runtime vs. application)

8/10/16 11

