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Motivation:  Execution Model Attributes 

  Execution Models can be classified according to several attributes 
  These are not linearly independent 
  We have described the SCaLeM methodology: 

  Synchronization, Concurrency, Locality, and Memory 

  These attributes trade off against one another in practice 
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Motivation:  Interplay between Attributes 

  Application behavior may be sensitive to this interplay 
  Inherent in their algorithms 

  Fine-grained algorithms may incur large synchronization costs 
  Inherent in their data sets 

  Locality impacted by sparseness of data structures 
  Inherent in execution model implementation 

  High overheads for certain operations 
  Management of layouts for important (i.e., heavily used) data structures 

  Objective:  characterize this complex interplay for the attributes of 
Concurrency and Locality 
  I.e., how is data locality impacted within execution models that support 
fine-grained task decomposition? 
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Overdecomposition:  Impact on 
Performance 

  Implemented using the ParalleX or CSP (using MPI+OpenMP) EMs 
  Increased levels of over-decomposition yields improved performance 
  Because of the cost of data movement, we want to understand the interaction 

between concurrency and locality EM attributes 
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Application Analysis Framework 

Assumption:  Algorithms and 
applications are written to target a 
specific Execution Model 
Assumption:  Applications are 
expressed through programming 
models and runtime primitives 

 
  Characterizing an application and its 

underlying runtime serve to showcase 
their inherent attributes 

 
Challenge:  Capturing application 
behavior and attributing it to different 
components 
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Data Collection:  Dynamic Instrumentation 

  Dynamic Instrumentation Features: 
  Partial order of operations between 

different concurrent actors 
  Complete observability of events and 

operations regardless of origin 
  Frequency of operations 
  Usable to run “What-if” scenarios 

  Shortcomings: 
  No performance or complete ordering 
  Overheads in both space and time 

  Tools: 
  Intel PIN tool for x86 code 
  Collect operations associated with a 

particular attribute (e.g., load/store) 
  Reusable across Execution Models 
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Case Study:  Reuse Distance for HPCG 

  Implementations using MPI and HPX runtimes 

  Our metric for locality is reuse distance 
  Defined to be the number of unique addresses accessed between 
successive accesses to the same location 
  Metric is designed to be architecture independent 

  Does not consider cache sizes or number of cache levels 
  Does not consider accesses to the same page or cache line, but only to the 
same address 

  Case study workload:  HPCG 
  Pre-conditioned CG solver with 3D rectangular grid domain 
  Sparse matrix with 27 non-zero entities per matrix row 
  Majority of time spent in sparse matrix-vector multiply 
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HPCG Under MPI+OpenMP and ParalleX 
Execution Models 

HPCG:	HPX	–	Mul(ple	Threads	

HPCG:	MPI+OpenMP	–	Mul(ple	Threads	

1	Thread	 4	Threads	2	Threads	

1	Thread	 2	Threads	 4	Threads	
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Reuse Distance for 4 OpenMP Threads 
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Reuse Distance for 4 HPX Worker Threads 
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Conclusions and Next Steps 

  Improved reuse distance (and improved data locality) results from 
over-decomposition 

  Some execution models easily allow for data over-decomposition, 
while others do not 

  Future plans: 
  Data access attribution (e.g., runtime vs. application) 
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