
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-4701C

Structural	Simulation	Toolkit	(SST)
Modsim2017

SST	Team

Why	SST?

§ Problem:	Simulation	is	slow
§ Tradeoff	between	accuracy	and	time	to	simulate
§ Many	simulators	are	serial,	unable	to	simulate	very	large	systems

§ Problem:	Lack	of	simulator	flexibility
§ Tightly-coupled	simulations:	Difficult	to	modify
§ Difficult	to	simulate	at	different	levels	of	accuracy

The	Structural	Simulation	Toolkit:	
A	parallel,	discrete-event	simulation	framework	

for	scalability	and	flexibility

2

What	is	SST?

3

Goals
• Become the standard architectural

simulation framework for HPC
• Be able to evaluate future systems on

DOE/DOD workloads
• Use supercomputers to design

supercomputers

Status
• Parallel Core, basic components
• Current Release (7.1)

• Improved components
• Modular core/elements
• More Internal documentation

Technical Approach
• Parallel

• Parallel Discrete Event core with
conservative optimization over
MPI/Threads

• Multiscale
• Detailed and simple models for

processor, network, & memory
• Interoperability

• DRAMSim, ,memory models
• routers, NICs, schedulers

• Open
• Open Core, non-viral, modular

Consortium
• “Best of Breed” simulation suite
• Combine Lab, Academic & Industry

Key	Capabilities

§ Parallel
§ Built	from	the	ground	up	to	be	scalable
§ Demonstrated	scaling	to	512+	host	processors
§ Conservative,	Distance-based	Optimization
§ MPI	+	Threads

§ Flexible
§ Enables	“mix	and	match”	of	simulation	components
§ Custom	architectures
§ Multiscale	tradeoff	between	accuracy	and	simulation	time

§ E.g.,	cycle-accurate	network	with	trace-driven	endpoints

§ Open	API
§ Easily	extensible	with	new	models
§ Modular	framework
§ Open-source	core

4

Existing	SST	Element	Libraries
§ memHierarchy - Cache	and	Memory	
§ cassini - Cache	prefetchers
§ DRAMSim2 - DDR
§ NVDIMMSim - Emerging	Memories
§ Goblin - HMC

§ ariel - PIN-based	Tracing
§ MacSim - GPGPU

§ m5C - Gem5	integration	layer

§ ember - State-machine	Message	generation
§ firefly - Communication	Protocols
§ hermes - MPI-like	interface

§ merlin - Network	router	model	and	NIC

§ scheduler - Job-scheduler	simulation	models

5

Detailed Memory
Models

Dynamic Trace-based
Processor Model

Cycle-based Processor
Model

High-level Program
Communication

Models

Cycle-based Network
Model

High-level System
Workflow Model

New	Additions	to	SST:	Core
§ Overhaul	of	the	SST	element	information	description	

system	
§ Improved	external	component	support	(much	easier	to	

support	than	external	development	community)
§ HDF5	&	JSON	support	for	statistics	output
§ Improved	thread	scaling
§ Easier	Builds	(removed	Boost	Dependency)
§ Early	support	for	running	SST	on	IBM	POWER	
§ Implementation	of	a	“stop	at”	wall	time	feature	for	

working	within	scheduled	cluster	environments
§ Support	for	describing	co-ordinates	of	components	in	

Python	configuration	(for	visualizations)

6

New	Additions	:	Messier

§ Messier:	NV	Memory	
model

§ Focus	on	NV-DIMMs	e.g.:
§ #	Banks,	Latencies
§ Row	buffers,	write	buffers
§ policies,	outstanding	
requests,	ordering

§ Address	mapping

§ Report:	SAND2017-1830	
7

NVM-Based DIMM

NVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM Chip

Rank

Bank

NVM Internal
Controller

Write
Buffer

Outstanding
Requests Tracker

Request
Buffer Scheduler

Wear
Leveler

Power
Manager

NVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM Chip

Rank

transactions

Memory Controller Backend

Write Buffer

Rank Rank

1 If (size > threshold and writes are less than max)
 flush one write entry

2 find a transaction ready to execute

Outstanding

3 Add the dispatched transaction to outstanding
and execute it

ready_trans

write request

read request

New	Additions	:	Memory
§ Improvements	to	IBM	CramSim
for	enable	threaded	simulations

§ Improved	multi-level	memory	
models

§ Performance	and	scaling	
improvements	(event-driven	
(clock-less)	memory	models)

§ Scratchpad	support
§ New	TLB	model

8

Processor

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

Stacked DRAM

MLM Controller

SRAM
Mapping

Table
Policy

Dispatcher

DMA UnitDMA Unit

NVM-Based DIMM

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

(Cache)

New	Additions	to	SST
§ Support	for	memory	modeling	in	
large-scale	network	analysis

§ Early	support	for	some	SHMEM	
based	communication	models	(in	
progress)

§ Juno	Processor	Model
§ Simplified	processor	model
§ Designed	for	extensibility
§ Uses:	Tutorial,	Correctness	checking

9

User
BinaryEngine

Communication

NIC

Merlin Network

Application SM

MemHierarchy

New	Additions	SST/Macro

§ Macro	/	Merlin	Integration
§ Beta	release	of	OTF2	trace	replay	skeleton
§ Beta	release	of	Clang-based	auto-skeletonization
source-to-source	tools

§ Integrated	job	launcher	components	for	simulating	
PBS	or	SLURM-like	batch	systems

10

Macro Endpoint NIC Merlin Network

Use	Cases
§ Processing-in-memory
§ Multi-Level	Memory

§ HW	Tradeoffs:	capacity	ratios,	
§ SW	Tradeoffs:	application,	runtime,	OS,	

HW	control

§ Scalable	Network	Studies
§ Network	on	Chip
§ Coherent	system	interconnect	NIC

§ Scheduling

1 1 1 1 1

0.67

0.84

0.99

0.50 0.54

0.69

0.84

1.07

0.50 0.54

0

0.275

0.55

0.825

1.1

1.375

GUPS Stream PF MiniFE Lulesh

PIM Normalized Execution Time

More	SST	Use	Cases

12

NVM-Based DIMM

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

Rank

Bank

NVM Internal
Controller

Write
Buffer

Requests
Tracker

Request
Buffer Scheduler

Wear
Leveler
Power

Manager

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

Rank

Memory Bus

Network

P

Scratch

P P

"$"

Fast

Slow
Memory

P

Scratch

P P

"$"

Fast

Slow
Memory

P

Scratch

P P

"$"

Fast

Slow
Memory Network

P

Scratch

P P

"$"

Fast

Slow
Memory

P

Scratch

P P

"$"

Fast

Slow
Memory

P

Scratch

P P

"$"

Fast

Slow
Memory

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

Directory
Controller

DDR
Directory
Controller

Logic
Layer

Stacked
Vault

L3

L2

L1

L0

Emerging NV
Memory
Technologies

Photonic
Network
Topology &
Routing

Multi-Level
Memory
(HBM+DDR+NV)

Dissaggregated
Memory

OCCAM	&	SST

§ Occam
§ Provides	a	framework	for	SST

§ Configuration
§ Experiment	Organization
§ Output	Visualization	
§ Curation
§ Sharing	Results

§ SST
§ Provides	a simulator	for	Occam

13

Agenda – Tuesday, July 18

1

09:00-09:15 Welcome
09:15-10:45 Introduction to SST
10:45-11:00 Break
11:00-12:15 Introduction to OCCAM

 Exercise 1: Creating and running simulations
12:15-13:15 Lunch
13:15-14:15 Using OCCAM

 Exercise 2: Adding and using simulations
14:15-15:15 Sharing with OCCAM

 Exercise 3: Deriving and sharing results
15:15-15:30 Break & OCCAM survey

15:30-16:15 Coming Attractions of OCCAM
16:15-17:00 Lab: A hands-on challenge of design exploration!

Future	Directions

14

§ HDL	Simulation	via	Verilator &	
Chisel
§ Low-level	hardware	design
§ Path	to	tape-out	(Chisel)

§ New	Processor	Models
§ RISC	V
§ Juno

§ Improved	NoC Models
§ Faster	Performance
§ NoC QoS
§ Optical	Circuit	Routing

Future	Directions:	Neural	Inspired
§ Custom	processors	/	accelerators
§ Generic	models	(e.g.	NEST,	N2A)
§ Explore

§ System	Integration	Issues
§ Architectural	Bottlenecks
§ Programmability

§ Allows…
§ Exploration	of	conventional	/	Neural	

interface	(e.g.	different	message	
routing	protocols)

§ Allows	Neural	“cores”	to	connect	to	
conventional	processors,	network,	
memory,	etc… (explore	’speeds	and	
feeds’)

§ Scalability:	SST	can	utilize	thread- and	
MPI-level	parallelism

15

CrossSim
set_matrix()
run_xbar()

etc...

Xyce

Neuron
Model

CrossSim SST
Component

CrossSim SST Component

Network
Interface

Buffers

Control
Unit

State machine?

Network
Memory

CPU

Dedicated
Activation

HW

Dedicated
Activation

HW

.py
SST Config

Conv.
Proc NetMemNeural

Core

.py
PYNN
Config

Future	Directions:	More	
Framework	Integration

§ Beyond	Moore	Computing	
§ New	Architectures	(e.g.	Neuromorphic)
§ New	Devices	(e.g.	Memristor)
§ New	Programming	Models	/	Algorithms

§ Requires	Cross-Stack	Optimization
§ Device	to	System	Level
§ Use	of	Dakota	/	INDRA	to	automate	
design	space	exploration

§ Requires	Inter-disciplinary	approach
§ SST	Simulator	as	“Clearinghouse	of	Ideas”
§ Common	language	of	exploration

16

SST

Optimization Framework

Component
Register File

Cache
Bus

System Network Topology
File I/O

Node/Board CPU
GPU

Circuit Logic Gate
Memory Cell

Device Transistor

Chip /
Package

SoC
Stacked Memory

Dakota

Conclusion
§ SST	is	a	Parallel,	Flexible,	Open	architectural	
simulator

§ Large	library	of	Memory,	Processor,	Network,	and	
other	models

§ 7.1	Release
§ Usability	enhancements	in	the	Core
§ New	Memory,	Network,	Processor	models

§ Future	SST
§ More	&	better	components	(RISC-V,	Network,	etc…)
§ Chisel,	Occam	integration
§ Beyond	Moore	Framework

§ <Your	Use	Case	Here>
17

HOW	CAN	SST	WORK	FOR	YOU?

18

SST	Discrete	Event	Algorithm

§ SST	Simulation	are	comprised	of	components connected	by	
links

§ Components	interact	by	ending	events	over	links
§ Each	link has	a	minimum latency	(specified	in	SI	time	units)

SST	in	parallel

§ SST	was	designed	from	the	
ground	up	to	enable	scalable,	
parallel	simulations

§ Components	are	distributed	
among	MPI	ranks	&	threads

§ Links	allow	parallelism
§ Hence,	components	should	

communicate	via	links	only
§ Transparently	handle	any	MPI	&	

Inter-thread	communication
§ Specified	link-latency	determines	

MPI	synchronization	rate

20

ISCA	Tutorial	2017

MPI Rank 0

MPI Rank 0 MPI Rank 1 MPI Rank 2 MPI Rank 3

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Same	configuration	file

ISCA	Tutorial	2017

21

User
BinaryEngine

Communication

NIC

Merlin Network

Application SM

MemHierarchy

