Exceptional service in the national interest

Photos placed in horizontal position with even amount of white space between photos and header

Structural Simulation Toolkit (SST)

Modsim2017 SST Team

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-4701C

Why SST?

- Problem: Simulation is slow
 - Tradeoff between accuracy and time to simulate
 - Many simulators are serial, unable to simulate very large systems
- Problem: Lack of simulator flexibility
 - Tightly-coupled simulations: Difficult to modify
 - Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit: A parallel, discrete-event simulation framework for scalability and flexibility

What is SST?

G	oals		Statu	S	
Become the star	ndard architectural	Par	allel Core, basic	components	
simulation framework for HPC		• Cu	rrent Release (7.	1)	
Be able to evaluate future systems on		· ·	Improved comp	ponents	
DOE/DOD workloads		•	Modular core/e	elements	
Use supercomputers to design		· ·	More Internal d	locumentation	
supercomputers					
Technic	al Approach		Consort	ium	
Parallel		• "Be	est of Breed" simu	ulation suite	
 Parallel Dis 	crete Event core with	• Co	mbine Lab, Acade	emic & Industr	
conservativ	e optimization over				
MPI/Thread	ds	TUTT TO A			ELAWARE,
Multiscale					STATERSTY A
Detailed an	nd simple models for	PTTSBURGH			4 ARYLN P
processor	network & memory	AV		NM	
 Interoperability 			S RIDO National Lab	GE Noratory STATE	
DRAMSim	memory models	Ī			tal
routers NI(s schedulers		Mellanox		iter
 Open 		' 🦰 📭		(m)	
	non viral modular		UNIVERSITY		KM

Key Capabilities

Parallel

- Built from the ground up to be scalable
- Demonstrated scaling to 512+ host processors
- Conservative, Distance-based Optimization
- MPI + Threads

Flexible

- Enables "mix and match" of simulation components
- Custom architectures
- Multiscale tradeoff between accuracy and simulation time
 - E.g., cycle-accurate network with trace-driven endpoints

Open API

- Easily extensible with new models
- Modular framework
- Open-source core

Existing SST Element Libraries

- memHierarchy Cache and Memory
 - cassini
 - DRAMSim2
- NVDIMMSim
- Goblin
- ariel
 - MacSim
- m5C

High-level Program Communication Models

Detailed Memory

Models

Dynamic Trace-based

Processor Model

Cycle-based Processor

Model

Cycle-based Network Model

High-level System Workflow Model

- ember
- firefly
- hermes
- merlin
- scheduler

- Cache prefetchers
- DDR
 - Emerging Memories
 - HMC
 - PIN-based Tracing
 - GPGPU
 - Gem5 integration layer
 - State-machine Message generation
 - Communication Protocols
 - MPI-like interface
 - Network router model and NIC
 - Job-scheduler simulation models

New Additions to SST: Core

- Overhaul of the SST element information description system
- Improved external component support (much easier to support than external development community)
- HDF5 & JSON support for statistics output
- Improved thread scaling
- Easier Builds (removed Boost Dependency)
- Early support for running SST on IBM POWER
- Implementation of a "stop at" wall time feature for working within scheduled cluster environments
- Support for describing co-ordinates of components in Python configuration (for visualizations)

• Report: SAND2017-1830

Rank NVM Chip Rank NVM Chip Write Outstanding Wear Buffer Requests Tracke Leveler **NVM Internal** Controller Request Power Scheduler Buffer Manager Rank Rank ready_trans 1) If (size > threshold and writes are less than max) Outstanding flush one write entry 3 Add the dispatched transaction to outstanding read request and execute it Write Buffer (2) find a transaction ready to execute transactions write request

Memory Controller Backend

Bank

- New Additions : Messier
- Messier: NV Memory model
- Focus on NV-DIMMs e.g.:
 - # Banks, Latencies
 - Row buffers, write buffers
 - policies, outstanding requests, ordering
 - Address mapping

New Additions : Memory

- Improvements to IBM CramSim for enable threaded simulations
- Improved multi-level memory models
- Performance and scaling improvements (event-driven (clock-less) memory models)
- Scratchpad support
- New TLB model

New Additions to SST

- Support for memory modeling in large-scale network analysis
- Early support for some SHMEM based communication models (in progress)
- Juno Processor Model
 - Simplified processor model
 - Designed for extensibility
 - Uses: Tutorial, Correctness checking

New Additions SST/Macro

- Macro / Merlin Integration
- Beta release of OTF2 trace replay skeleton
- Beta release of Clang-based auto-skeletonization source-to-source tools
- Integrated job launcher components for simulating PBS or SLURM-like batch systems

Use Cases

- Processing-in-memory
- Multi-Level Memory
 - HW Tradeoffs: capacity ratios,
 - SW Tradeoffs: application, runtime, OS, HW control
- Scalable Network Studies
 - Network on Chip
 - Coherent system interconnect NIC
- Scheduling

OCCAM & SST

- Occam
 - Provides a framework for SST
- Configuration
- Experiment Organization
- Output Visualization
- Curation
- Sharing Results
- SST
 - Provides a simulator for Occam

Future Directions

RISC-V

DRAN

1/0

RIDGE

Data

Contro

- HDL Simulation via Verilator & Chisel
 - Low-level hardware design
 - Path to tape-out (Chisel)
- New Processor Models
 - **RISC V**
 - Juno
- Improved NoC Models
 - **Faster Performance**
 - NoC QoS
 - **Optical Circuit Routing**

Future Directions: Neural Inspired

CrossSim

set matrix()

run xbar()

etc...

Buffers

Network Interface

Network

Conv.

Proc

CPU

Control

Unit

State machine?

CrossSim SST

Component

.py PYNN

Confia

nest::

Neural

Core

Xvce

Neuron

Model

Dedicated

►I Activation

HW

Memory

Dedicated | Activation |

HW

.py

SST Config

Mem

Net

- Custom processors / accelerators
- Generic models (e.g. NEST, N2A)
- Explore
 - System Integration Issues
 - Architectural Bottlenecks
 - Programmability
- Allows...
 - Exploration of conventional / Neural interface (e.g. different message routing protocols)
 - Allows Neural "cores" to connect to conventional processors, network, memory, etc... (explore 'speeds and feeds')
 - Scalability: SST can utilize thread- and MPI-level parallelism

Future Directions: More Framework Integration

- Beyond Moore Computing
 - New Architectures (e.g. Neuromorphic)
 - New Devices (e.g. Memristor)
 - New Programming Models / Algorithms
- Requires Cross-Stack Optimization
 - Device to System Level
 - Use of Dakota / INDRA to automate design space exploration
 - Requires Inter-disciplinary approach
 - SST Simulator as "Clearinghouse of Ideas"
 - Common language of exploration

Conclusion

- SST is a Parallel, Flexible, Open architectural simulator
- Large library of Memory, Processor, Network, and other models
- 7.1 Release
 - Usability enhancements in the Core
 - New Memory, Network, Processor models
- Future SST
 - More & better components (RISC-V, Network, etc...)
 - Chisel, Occam integration
 - Beyond Moore Framework
 - <Your Use Case Here>

HOW CAN SST WORK FOR YOU?

SST Discrete Event Algorithm

- SST Simulation are comprised of components connected by links
- Components interact by ending events over links
- Each link has a <u>minimum</u> latency (specified in SI time units)

SST in parallel

- SST was designed from the ground up to enable scalable, parallel simulations
- Components are distributed among MPI ranks & threads
- Links allow parallelism
 - Hence, components should communicate via links only
 - Transparently handle any MPI & Inter-thread communication
 - Specified link-latency determines MPI synchronization rate

