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Why	SST?

§ Problem:	Simulation	is	slow
§ Tradeoff	between	accuracy	and	time	to	simulate
§ Many	simulators	are	serial,	unable	to	simulate	very	large	systems

§ Problem:	Lack	of	simulator	flexibility
§ Tightly-coupled	simulations:	Difficult	to	modify
§ Difficult	to	simulate	at	different	levels	of	accuracy

The	Structural	Simulation	Toolkit:	
A	parallel,	discrete-event	simulation	framework	

for	scalability	and	flexibility
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What	is	SST?
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Goals
• Become the standard architectural 

simulation framework for HPC
• Be able to evaluate future systems on 

DOE/DOD workloads
• Use supercomputers to design 

supercomputers

Status
• Parallel Core, basic components
• Current Release (7.1)

• Improved components
• Modular core/elements 
• More Internal documentation

Technical Approach
• Parallel

• Parallel Discrete Event core with 
conservative optimization over 
MPI/Threads

• Multiscale
• Detailed and simple models for 

processor, network, & memory
• Interoperability

• DRAMSim, ,memory models
• routers, NICs, schedulers

• Open
• Open Core, non-viral, modular

Consortium
• “Best of Breed” simulation suite
• Combine Lab, Academic & Industry



Key	Capabilities

§ Parallel
§ Built	from	the	ground	up	to	be	scalable
§ Demonstrated	scaling	to	512+	host	processors
§ Conservative,	Distance-based	Optimization
§ MPI	+	Threads

§ Flexible
§ Enables	“mix	and	match”	of	simulation	components
§ Custom	architectures
§ Multiscale	tradeoff	between	accuracy	and	simulation	time

§ E.g.,	cycle-accurate	network	with	trace-driven	endpoints

§ Open	API
§ Easily	extensible	with	new	models
§ Modular	framework
§ Open-source	core
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Existing	SST	Element	Libraries
§ memHierarchy - Cache	and	Memory	
§ cassini - Cache	prefetchers
§ DRAMSim2 - DDR
§ NVDIMMSim - Emerging	Memories
§ Goblin - HMC

§ ariel - PIN-based	Tracing
§ MacSim - GPGPU

§ m5C - Gem5	integration	layer

§ ember - State-machine	Message	generation
§ firefly - Communication	Protocols
§ hermes - MPI-like	interface

§ merlin - Network	router	model	and	NIC

§ scheduler - Job-scheduler	simulation	models

5

Detailed Memory 
Models

Dynamic Trace-based 
Processor Model

Cycle-based Processor 
Model

High-level Program 
Communication 

Models

Cycle-based Network 
Model

High-level System 
Workflow Model



New	Additions	to	SST:	Core
§ Overhaul	of	the	SST	element	information	description	

system	
§ Improved	external	component	support	(much	easier	to	

support	than	external	development	community)
§ HDF5	&	JSON	support	for	statistics	output
§ Improved	thread	scaling
§ Easier	Builds	(removed	Boost	Dependency)
§ Early	support	for	running	SST	on	IBM	POWER	
§ Implementation	of	a	“stop	at”	wall	time	feature	for	

working	within	scheduled	cluster	environments
§ Support	for	describing	co-ordinates	of	components	in	

Python	configuration	(for	visualizations)
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New	Additions	:	Messier

§ Messier:	NV	Memory	
model

§ Focus	on	NV-DIMMs	e.g.:
§ #	Banks,	Latencies
§ Row	buffers,	write	buffers
§ policies,	outstanding	
requests,	ordering

§ Address	mapping

§ Report:	SAND2017-1830	
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New	Additions	:	Memory
§ Improvements	to	IBM	CramSim
for	enable	threaded	simulations

§ Improved	multi-level	memory	
models

§ Performance	and	scaling	
improvements	(event-driven	
(clock-less)	memory	models)

§ Scratchpad	support
§ New	TLB	model
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New	Additions	to	SST
§ Support	for	memory	modeling	in	
large-scale	network	analysis

§ Early	support	for	some	SHMEM	
based	communication	models	(in	
progress)

§ Juno	Processor	Model
§ Simplified	processor	model
§ Designed	for	extensibility
§ Uses:	Tutorial,	Correctness	checking
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New	Additions	SST/Macro

§ Macro	/	Merlin	Integration
§ Beta	release	of	OTF2	trace	replay	skeleton
§ Beta	release	of	Clang-based	auto-skeletonization
source-to-source	tools

§ Integrated	job	launcher	components	for	simulating	
PBS	or	SLURM-like	batch	systems
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Use	Cases
§ Processing-in-memory
§ Multi-Level	Memory

§ HW	Tradeoffs:	capacity	ratios,	
§ SW	Tradeoffs:	application,	runtime,	OS,	

HW	control

§ Scalable	Network	Studies
§ Network	on	Chip
§ Coherent	system	interconnect	NIC

§ Scheduling

1 1 1 1 1

0.67

0.84

0.99

0.50 0.54

0.69

0.84

1.07

0.50 0.54

0

0.275

0.55

0.825

1.1

1.375

GUPS Stream PF MiniFE Lulesh

PIM Normalized Execution Time



More	SST	Use	Cases
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OCCAM	&	SST

§ Occam
§ Provides	a	framework	for	SST

§ Configuration
§ Experiment	Organization
§ Output	Visualization	
§ Curation
§ Sharing	Results

§ SST
§ Provides	a simulator	for	Occam
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Agenda – Tuesday, July 18 

1 

09:00-09:15  Welcome 
09:15-10:45  Introduction to SST 
10:45-11:00  Break 
11:00-12:15  Introduction to OCCAM  

  Exercise 1: Creating and running simulations 
12:15-13:15  Lunch 
13:15-14:15  Using OCCAM 

  Exercise 2: Adding and using simulations 
14:15-15:15  Sharing with OCCAM 

  Exercise 3: Deriving and sharing results 
15:15-15:30  Break & OCCAM survey 

15:30-16:15  Coming Attractions of OCCAM 
16:15-17:00  Lab: A hands-on challenge of design exploration! 



Future	Directions
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§ HDL	Simulation	via	Verilator &	
Chisel
§ Low-level	hardware	design
§ Path	to	tape-out	(Chisel)

§ New	Processor	Models
§ RISC	V
§ Juno

§ Improved	NoC Models
§ Faster	Performance
§ NoC QoS
§ Optical	Circuit	Routing



Future	Directions:	Neural	Inspired
§ Custom	processors	/	accelerators
§ Generic	models	(e.g.	NEST,	N2A)
§ Explore

§ System	Integration	Issues
§ Architectural	Bottlenecks
§ Programmability

§ Allows…
§ Exploration	of	conventional	/	Neural	

interface	(e.g.	different	message	
routing	protocols)

§ Allows	Neural	“cores”	to	connect	to	
conventional	processors,	network,	
memory,	etc… (explore	’speeds	and	
feeds’)

§ Scalability:	SST	can	utilize	thread- and	
MPI-level	parallelism
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Future	Directions:	More	
Framework	Integration

§ Beyond	Moore	Computing	
§ New	Architectures	(e.g.	Neuromorphic)
§ New	Devices	(e.g.	Memristor)
§ New	Programming	Models	/	Algorithms

§ Requires	Cross-Stack	Optimization
§ Device	to	System	Level
§ Use	of	Dakota	/	INDRA	to	automate	
design	space	exploration

§ Requires	Inter-disciplinary	approach
§ SST	Simulator	as	“Clearinghouse	of	Ideas”
§ Common	language	of	exploration

16

SST

Optimization Framework

Component
Register File

Cache
Bus

System Network Topology
File I/O

Node/Board CPU
GPU

Circuit Logic Gate
Memory Cell

Device Transistor

Chip / 
Package 

SoC
Stacked Memory

Dakota



Conclusion
§ SST	is	a	Parallel,	Flexible,	Open	architectural	
simulator

§ Large	library	of	Memory,	Processor,	Network,	and	
other	models

§ 7.1	Release
§ Usability	enhancements	in	the	Core
§ New	Memory,	Network,	Processor	models

§ Future	SST
§ More	&	better	components	(RISC-V,	Network,	etc…)
§ Chisel,	Occam	integration
§ Beyond	Moore	Framework

§ <Your	Use	Case	Here>
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HOW	CAN	SST	WORK	FOR	YOU?
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SST	Discrete	Event	Algorithm

§ SST	Simulation	are	comprised	of	components connected	by	
links

§ Components	interact	by	ending	events	over	links
§ Each	link has	a	minimum latency	(specified	in	SI	time	units)



SST	in	parallel

§ SST	was	designed	from	the	
ground	up	to	enable	scalable,	
parallel	simulations

§ Components	are	distributed	
among	MPI	ranks	&	threads

§ Links	allow	parallelism
§ Hence,	components	should	

communicate	via	links	only
§ Transparently	handle	any	MPI	&	

Inter-thread	communication
§ Specified	link-latency	determines	

MPI	synchronization	rate
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ISCA	Tutorial	2017
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ISCA	Tutorial	2017
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