
Operating System Mechanism for
Continuation-based Fine-grained Threads
 on Dedicated & Commodity Processors

Shigeru Kusakabe†, Satoshi Yamada†, Mitsuhiro Aono†,
 Masaaki Izumi†, Satoshi Amamiya†,

Yoshinari Nomura‡, Hideo Taniguchi‡, and Makoto Amamiya †

 † Kyushu University ‡ Okayama University

MTAAP / Mar. 30, 2007 2

Outline
• Introduction
• Thread Model
• OS Issues on FUCE
• OS Issues on Commodity Processor
• Concluding remarks

MTAAP / Mar. 30, 2007 3

Introduction
Multithreading: available on commodity platforms,

derived from sequential model

Our approach
Model: dataflow

– natural to asynchronous/concurrent execution

Focus: architectures, languages, operating systems

Platform: dedicated & commodity processor

MTAAP / Mar. 30, 2007 4

Introduction - on dedicated platform

Fuce: dedicated to fine-grained multithreading

Benchmarks were user applications,
How about operating systems?

System calls with I/O request
- Multithreading with continuation,
- Handling external events without "interrupt"
- Delivered without controller such as APIC

MTAAP / Mar. 30, 2007 5

Introduction - on commodity platform

Dataflow concept useful on commodity
platforms?

 flexible scheduling to reduce overhead

Wrapped System Call
- buffer split-phase system call requests
- reduce context (mode) changes
- enhance locality of reference

MTAAP / Mar. 30, 2007 6

Outline
• Introduction
• Thread Model
• OS Issues on FUCE
• OS Issues on Commodity Processor
• Concluding Remarks

MTAAP / Mar. 30, 2007 7

Zero-Wait Thread
● Program graph: nodes / threads, edges / continuation relations.
● Thread: synch. counter & instruction sequence (incl. continuation)
● A continuation instruction specifies its succeeding thread code and

context, and decrements the synchronization counter of the target.
● If the counter becomes to zero, the thread becomes ready to run, and runs

to completion without suspension once started.

Thread A

Thread B

Thread C

Thread D
continue Thread B

continue Thread C
Thread Econtinue Thread E

continue Thread D

continue Thread E

Sync. Counter : 2

MTAAP / Mar. 30, 2007 8

Function instance
thread

Instance frame memory

Execution
unit

Execution
unit

Execution
unit

Function instance
thread

Instance frame memory

Instruction memory

Thread and Instance

MTAAP / Mar. 30, 2007 9

wait();

Thread with wait

zero-wait thread

zero-wait thread

Split-phase style

thread long-latency
operation

result

long-latency
operation

request

request

result

Split-phase

MTAAP / Mar. 30, 2007 10

Outline
• Introduction
• Thread Model
• OS Issues on FUCE
• OS Issues on Commodity Processor
• Concluding Remarks

MTAAP / Mar. 30, 2007 11

Registe
r file

０

１

２

３

４

５

６

７

Pre-load
Unit

Ｄ-Cache
Ｄ-Cache

Ｄ-Cache
Ｄ-Cache

０

１

２

３

４

５

６

７

Thread Execution Unit

Main memory

Thread
Execution
Unit

I-Cache

Load/Store
 Unit

Thread
Activation
Controller

I/O
 controller

Interrupt lines
Fuce Processor

CMT (Chip multithreading) being developed at Kyushu University

MTAAP / Mar. 30, 2007 12

Activation Control Memory

Ready Thread Queue

fan-inlock-bit code-entrysync-count

Thread
 entries

Instances

Instance ID Thread entry
Thread ID

Select ACM entry

ready thread

Base-address: pointer to data area
lock bit : semaphore
sync-count: # waiting continuations
fan-in: value of fan-in to the thread
code-entry: pointer to thread code

Thread Activation Controller

Base Address

MTAAP / Mar. 30, 2007 13

interrupt

Interrupt-based
sequential approach

Continuation-based
zero-wait thread approach

suspend & resume
(save & restore)

device

handler
trigger

current thread

executable in parallel

device

handler

current thread

(no interference)

Handling External Event

MTAAP / Mar. 30, 2007 14

User thread

Kernel interface thread

Kernel thread

Not allowed

Supervisor
mode

User mode

Thread Mode

MTAAP / Mar. 30, 2007 15

Thread A
try to lock thread D

Thread B
try to lock thread D

Thread C
try to lock thread D

Thread D
unlock myself

: continuation to another thread
: continuation to itself

retry retry

succeed

Critical Thread

16

1-1: try to lock
 gate_thread
if (lock)
1-2:continue to the
 gate_thread
else
1-3:self-continuation

3-1: execute the body of
 system call
3-2: continue to the
 semaphore_thread

sender_threads

syscall_thread

4-1:try to lock the
 device_thread
If（lock）
 4-2: continue to the
 device_thread
else
 4-3: buffer data for I/O

semaphore_thread

5-1:receive data
5-2:issue I/O request
5-3:pass the receiver ID
 to handler_thread

device_thread

6-1:receive data
6-2:continue to the receiver
 thread with the result
if(queue is not empty）
6-3:extract data from queue and
 continue to device_thread
else
6-4 unlock device_thread

queue

7-1:receive data

receiver_threads

Device

handler_thread

User Kernel

：thread :continuation : data

2-1:identify the requested
　 system call ID
2-2:continue to the thread
 of the system call ID

gate_thread

Handling System calls with I/O Request

MTAAP / Mar. 30, 2007 17

User

sender_thread

gate_thread

syscall_thread
semaphore_thread

device_thread

semaphore_thread
device_thread

semaphore_thread
device_thread

Kernel Device

:executable in parallel

Thread Activation

MTAAP / Mar. 30, 2007 18

 Id
eal

Load

Th
ro

ug
hp

ut Acceptable
(requests
 are buffered)

Livelock
 (requests
 are lost)

Measurement

measured value

Fuce in VHDL on ModelSim

Measured the number of
system calls with I/O request
ideally completed within
a fixed period.

The number of
 TEUs:1..4, devices: 1..3

Expectation: scalability --
activation of hander thread due
to continuation mechanism

MTAAP / Mar. 30, 2007 19
1234 1

2
3

0

20

40

60

80

100

T
h
ro

u
p
u
t

TEUs

devices

RTT: micro seconds2

Evaluation Result

Scalability
with # TEUs

Scalability with
 # devices

period：100micro seconds

Th
ro

ug
hp

ut

MTAAP / Mar. 30, 2007 20

Outline
• Introduction
• Thread Model
• OS Issues on FUCE
• OS Issues on Commodity Processor
• Concluding Remarks

MTAAP / Mar. 30, 2007 21

CEFOS: Process / Threads

address space

file

 unit of resource
 management

Process

1 or
more

threads unit of processor
 allocation

Thread

Thread

Thread processor

Unix-like process, and dataflow-like thread
- dependence graph (partially ordered threads)
- process as thread context (color / tag)

MTAAP / Mar. 30, 2007 22

CEFOS: Process / Threads
Process Controls between threads:

 in a dataflow-like fashion

• synchronization counter
• serial code
• continuation

Thread Thread

Thread

Thread scheduler

Dataflow concept useful?

MTAAP / Mar. 30, 2007 23

Preliminary experiment

15214328201327464Intel Core Duo

1131131373413698306PowerPC G5

1271042167788200PowerPC G4

261182579832981090pentium4

1648350441576378pentium III

M. MemoryL2L12p/16K2p/0Knull callprocessor

Memory
Latency

System Call
Overhead

LMbench result for Linux 2.6.14 - Latency benchmark (in clocks)

Process
Switch

MTAAP / Mar. 30, 2007 24

CEFOS - wrapped system-call

Partially ordered fine-grain threads
split-phase style system calls

… various choices in scheduling threads/processes

Wrapped System-Call (WSC)
– aggregates multiple system-call requests
– handles them as a single system-call

to reduce overhead of system calls and enhance locality

MTAAP / Mar. 30, 2007 25

CEFOS and WSC mechanism
process

thread
thread

・・・

thread
thread

external kernel

internal kernel

process

thread
thread

・・・

thread
thread

external kernel

process

thread
thread

・・・

thread
thread

external kernel

・・・

user
mode

supervisor
 mode

Display Requests and Data

MTAAP / Mar. 30, 2007 26

DRD
DRD (Display Request & Data)

Intermediate communications between Internal
/ External Kernel.
– Each process & kernel share common memory area (CA)
– Each process & kernel display requests and necessary

information on CA
– At appropriate occasions, each process & kernel check

requests and information displayed on CA, and change
the control of execution if necessary.

MTAAP / Mar. 30, 2007 27

split-phase
 system-call

buffer system-call request

system call request

thread
scheduler

perform each system-call

return results &
activate waiting
threads

thread

requests >=
 threshold ?

no

yes

Control flows in WSC

Internal kernelInternal kernel

Process

user mode
supervisor mode

thread thread

thread

External kernelExternal kernel

system call request

MTAAP / Mar. 30, 2007 28

Impact on System Call Overhead
Implemented by modifying Linux.
Issuing system calls with thin body: getpid()

cl
oc

k
cy

cl
e

ra
tio

MTAAP / Mar. 30, 2007 29

Locality of reference
– chatroom benchmark

• simulate chat rooms (server and clients)
• four threads per client (2 message handler (send /receive)

in client & server)
• parameters: number of clients = 20

0.920.470.80ratio: WSC/normal

2.550.4748436WSC

2.781.0160217normal

D-TLB miss (%)L2$ miss (%)clocks

Detailed memory events with performance monitoring
counter - hardmeter (limited to focused part only)

MTAAP / Mar. 30, 2007 30

Concluding remarks
Multithreading based on dataflow model

On Fuce
• event handling without “interrupt”

On commodity platforms
• Wrapped System-Call: aggregates split-phase style

system call requests

Evaluation
– scalability of throughput in handling I/O request
– system call overhead and locality of reference

