
A Novel Centrality Measure for Network-wide
Cyber Vulnerability Assessment
Arun V. Sathanur

Pacific Northwest National Labs
902, Batelle Blvd. Richland, WA 99352

Email: arun.sathanur@pnnl.gov
Phone: (509) 372-6578, FAX: (509) 375-6899

David J. Haglin
Pacific Northwest National Labs

1100 Dexter Ave N, Ste 400, Seattle WA 98109
Email: david.haglin@pnnl.gov

Phone: (206) 528-3263

Abstract—In this work we propose a novel formulation that
models the attack and compromise on a cyber network as a
combination of two parts - direct compromise of a host and
the compromise occurring through the spread of the attack on
the network from a compromised host. The model parameters
for the nodes are a concise representation of the host profiles
that can include the risky behaviors of the associated human
users while the model parameters for the edges are based on
the existence of vulnerabilities between each pair of connected
hosts. The edge models relate to the summary representations of
the corresponding attack-graphs. This results in a formulation
based on Random Walk with Restart (RWR) and the resulting
centrality metric can be solved for in an efficient manner through
the use of sparse linear solvers. Thus the formulation goes beyond
mere topological considerations in centrality computations by
summarizing the host profiles and the attack graphs into the
model parameters. The computational efficiency of the method
also allows us to also quantify the uncertainty in the centrality
measure through Monte Carlo analysis.

Index Terms—Cyber Security, Risk Assessment, Vulnerability,
Centrality, Random Walk Restart, Linear Solver, Graph Analyt-
ics

I. INTRODUCTION

Cyber-security is a complex socio-technical problem requir-
ing comprehension of multiple facets that include network
protocol engineering, data mining and big graph-analytics,
software engineering, network resilience, game theory and
intent modeling. The increasing frequency, size and sophis-
tication of cyber attacks have spurred a lot of research along
the various constituents outlined above. Specifically, models
and metrics that are designed to obtain an understanding of
the vulnerability of enterprise networks have recently received
a lot of attention.

In this work, we develop and implement novel metrics
based on a probabilistic formulation to assess the host-to-
host and network-wide risk proliferation emerging from the
attack and spread of compromise on large cyber graphs by
through multiple mechanisms. The formulation captures the
mechanics of an attack/compromise scenario and its spread
on the network by a probabilistic model and is versatile to
allow for the incorporation of both the machine features and
the behavior of the associated human users.

Our approach is distinct from existing vulnerability model-
ing approaches and can address the following:

Analyst Scenario
What is the risk potential of an enterprise laptop used by
an employee who regularly clicks web-links in personal
emails and downloads trial software from the Internet,
on three specific high-asset enterprise workstations in
particular and the enterprise as a whole?

Fig. 1. A potential analyst scenario involving risk assessment of a cyber
network

• It captures in a very clear manner, the specific mecha-
nisms that lead to cyber attack and compromise and the
resulting risk propagation. Specifically, it allows for the
incorporation of the roles of human behavior as well as
the network structure in modeling the risk to the networks
of interest as a whole. Therefore it can answer questions
like the one presented in figure I in terms of probabilities.

• Allow for the incorporation of multiple factors, such as
the host configuration profile, machine vulnerabilities,
host network position and features involving the risky
behaviors of the human users associated with the hosts

• Provide an analyst with a ranked list of hosts that have
the highest potential for spreading the risk that can then
inform the remedial strategies.

• The scalable nature of the formulation allows processing
of massive graphs using the modern HPC resources

• The efficiency of the approach allows for the application
of uncertainty quantification (UQ) techniques such as the
Monte Carlo analysis in quantifying the spread in the
vulnerability metrics resulting from the model parameter
uncertainties.

We proceed to give a brief overview of the existing vul-
nerability / risk modeling approaches and describe our novel
formulation based on random walk with restart for character-
izing vulnerability and overall risk in an enterprise network.

II. RELATED WORK

Previous works on vulnerability modeling of enterprise
networks have focused their attention along three main themes



namely direct modeling of cyber graphs, modeling with attack
graphs and finally Bayesian methods.

Pure graph-based approaches are normally grounded in ap-
plying concepts and metrics such as reachability, shortest paths
and numerous modes of centrality computations to analyze
vulnerabilities in a given network. Specifically the authors in
Ref. [1] consider reachability concepts and propose a metric
based on those to quantify exposure to vulnerability for attacks
such as Pass-The-Hash. As a follow-up, the same authors
examine a graph-coarsening approach in order to reduce the
computational complexity of path-counting. In another recent
work [2] , the authors consider metrics such as PageRank
[3] and other centrality concepts to measure the badness of
infrastructure elements in a network. The work also leverages
graph pattern-mining concepts to study the evolution of cyber-
threats. A number of pure graph-based approaches suffer from
high computational complexity issues because of the presence
of a large perimeter in the form of the Internet connected
hosts and servers. Furthermore, pure graph-based approaches
work based on topology without considering the underlying
mechanics and the associated probabilities, that when included
presents a more realistic picture.

Graph-theoretic concepts have been extended and exten-
sively exploited and many metrics proposed in a slightly
different context from those of the actual network graphs.
Such approaches are based on the concept of attack graphs.
Attack graphs not only consider the connectivity between the
nodes but also model the states along which an attacker can
move through by exploiting the local vulnerability between
the machines. References [4]–[7] address a number of issues
involving construction and traversal of attack graphs while also
proposing various metrics in the process to quantify the vulner-
ability assessment. While attack graphs are exhaustive in their
interpretation, they do not consider the probabilities of specific
attacks i.e a relatively simple attack might be preferred over
a complex attack. To address these shortcomings and to move
beyond mere counting of the vulnerabilities, probabilistic and
Bayesian versions of attack graphs have been proposed and
analyzed [8]. While the work presented in Ref. [9] was one of
the first to bring Bayesian Network concepts to attack graphs,
the authors in ref. [10] build on those concepts and relax
the independence assumption between various attack paths in
Bayesian attack graphs.

Attack graphs, even though they are exhaustive in their
enumeration of vulnerability paths suffer from high computa-
tional complexity because of explosion in the state space. As
a result many approaches have been proposed to reduce the
complexity of the method. While reference [11] explores using
influence metrics such as the PageRank for pruning the attack
graph size, the works in [12] explore improving attack graph
visualization by pruning out portions that are not relevant and
by aggregating steps that are related.

Beyond attack graphs, other probabilistic methods that have
received attention to quantify vulnerability in a cyber-attack
scenario include the usage of Hidden Markov Models (HMM)
[13] and derivation of metrics similar to Mean Time To

Failure by using Markovian models [14]. Additionally game-
theoretic methods [15], [16] have been recently investigated
to understand the payoffs involved in the case of a cyber-
attack scenario. With this background, we now present our
probabilistic formulation for quantifying network-wide cyber-
vulnerability and risk.

III. FORMULATION

We first develop a probabilistic local model of vulnerability
around a specific node in the cyber-graph and then scale the
same to a large network [17]. For that we specifically identify
a set of two main mechanisms that can lead to a host being
compromised, as illustrated in figure 2.

Direct : The host under consideration (large orange node)
can be infected with malware via an email attachment or by
visiting a malicious website or via an infected USB stick or
through stolen credentials.

Network : A host that is in the neighborhood of the host
under scrutiny is first compromised (one of the small blue
nodes) through any of the two mechanisms and then the
host under consideration is compromised through a network
service.

Fig. 2. A concise representation of direct and indirect modes of vulnerability
along with the local model parameters.

Within the network of interest, consider an arbitrary host
abstracted by node i along with the set of connected nodes
from which the node i is reachable in one hop. Let pTcmp(i)
denote the total probability of the host i being compromised.
Now the total probability of compromise pTcmp(i) can be
broken into two parts namely the probabilities of compromise
via the direct and the network modes as discussed above. Thus
we can write:

pTcmp(i) = α(i)pDcmp(i) + β(i)pNcmp(i) (1)

pDcmp(i) denotes the probability of compromise for node i
through a direct attack and pNcmp(i) denotes the probability of
compromise for node i via attack from within the network. The
parameters α(i) and β(i) denote the susceptibilities to direct
attacks and to attacks from within the network respectively.
Therefore we have α(i) ≥ 0, β(i) ≥ 0 and α(i) + β(i) ≤ 1.
By assuming that the hosts are always susceptible to either of
the two mechanisms of compromise, we set β(i) = (1− α(i)).



This assumption is being relaxed in the ongoing work. Now
for the network contribution itself we can write:

pNcmp(i) =
∑

j,(j,i)∈E

wijp
T
cmp(j) (2)

Therefore we have:

pTcmp(i) = α(i)pDcmp(i) + (1− α(i))
∑

j,(j,i)∈E

wijp
T
cmp(j) (3)

Here E denotes the set of directed edges on the cyber-
graph under consideration. The coefficient wij denotes the
probability that the attack on node i comes from its immediate
neighbor node j once j has been compromised. If we look
back from the point of view of node i, we can see that∑

j,(j,i)∈E wij = 1. Further details about the model parameter
estimation are outlined in section IV.

Finally scaling the formulation given by equation 3 to
the entire network with N nodes, we obtain a matrix-vector
equation as follows.

pTcmp = αpDcmp + ((I −αW ))pTcmp (4)

Here pTcmp and pDcmp are vectors of size N × 1 denoting
respectively the total probability of compromise and probabil-
ity of compromise through direct attack for all the nodes on
the network. I denotes the identity matrix of size N × N .
α denotes the diagonal matrix with entries corresponding to
the susceptibility to direct attack for each of the hosts on
the network. Note that the modeling of direct compromise
on each of the nodes through the quantity pDcmp allows us
to model only the enterprise network and not consider the
large perimeter (in the form of internet nodes) outside of
the network. Finally W denotes the sparse, stochastic weight
matrix with entires given by the wijs discussed earlier.

This allows us to express the total probabilities of compro-
mise as a transfer matrix times the vector of probability of
compromise through a direct attack.

pTcmp = V pDcmp;V = (I − (I −α)W ))
−1
α (5)

If we think of the vector of probabilities denoting com-
promise via direct attack, pDcmp as some sort of a source
signal eq. 5 lets us predict the impact of such a source signal
on the entire network in terms of compromisability [17].
Note that all possible paths between source and destination
nodes are automatically taken care of in the formulation.
Following the work of Chung and Yao [18], matrix V is
identified as a form of discrete Green’s function which is
grounded in the RWR paradigm as opposed to the usage of
the random-walk Laplacian in the original work [17]. Thus
Vij is a measure of directed proximity or relevance between
the nodes j and i along all possible paths and not just the
shortest path. Such a random walk based approach is more
suited in this scenario where the malicious actor doesn’t have
the knowledge of the complete network and proceeds from
node to node via exploration of vulnerability. The same is
reflected in the assignment of the weights which is grounded
in the vulnerability attributes of the connected hosts that define

the edges. We further note that because the matrix W is a
stochastic matrix, the matrix (I − (I −α)W )) is diagonally
dominant and has all the non-diagonal entries negative. Thus it
is an M-Matrix guaranteed to have an all-positive inverse [19].
To quantify the impact of the compromise through a direct
attack on a given node say node i on the network we set
pDcmp(j) = 0; j 6= i. Thus the quantity

(∑N
j=1 Vji

)
pDcmp(i)

represents the expected number of hosts compromised by
the attack on node i. We term this amplification factor as
vulnerability centrality.

CV (i) =

 N∑
j=1

Vji

 (6)

It can be easily seen that the vulnerability centrality metric
CV can be directly computed as a linear solve without the
need for the matrix inversion.

IV. MODEL PARAMETERS

The coefficient α(i) depends primarily on attributes such as
the position of the node on the network, the extent of exposure
to the internet, the kind of programs and services that run on
the host that the node abstracts and even the behavior of the
associated human users. Thus if we have two scores sd(i) and
sn(i) that represent the extent to which a host associated with
node i is vulnerable to compromise via direct attack versus that
of an attack from a compromised host within the network, we
can write α(i) = (sd(i)/(sd(i) + sn(i))). Qualitatively it follows
that a laptop host computer used by a human user within and
outside an enterprise has a greater α than a desktop within an
enterprise. Similarly a router within an enterprise network can
potentially have α(i)→ 0.

The wijs on the other hand denote in some sense how
the services and ports line up in a way so as to be able to
compromise i while attacking from j. Illustrations of these
mechanisms in the context of attack graphs is provided in an
earlier work by Jajodia and others [6]. We could formalize the
computation of the w

′

ij (un-normalized version of wij) as a
cosine similarity between a “service vector” sjw on the host
associated with node j and a “vulnerability vector” viw for the
target host associated with node i. For example if the malicious
actor can potentially use an ftp program to connect from j to i
which has an open ftp port we get a match thereby contributing
to the w

′

ij . Multiple attributes can then be included as part of
the computation by defining w

′

ij = s
j
w ·viw. The final wijs are

then computed by normalizing the sum of the w
′

ijs to unity.
To summarize, the model parameters corresponding to the

α vector are dependent on the host profiles, the host position
on the cyber-graph and the risky behavior associated with
the human users. The model parameters corresponding to the
matrix W depends on the existence of local vulnerabilities
between a pair of connected hosts either at the application-
level or through the network connectivity.

The Common Vulnerability Scoring System (CVSS) [20],
[21], now in its third version, is an open industry standard



that assigns vulnerability scores to systems based on the ag-
gregation of several metrics that quantify the construction and
impact of exploits. CVSS scores can adequately characterize
the vulnerabilities and tools such as k-core decomposition
can characterize the position on the graph itself. However
modeling the risky nature of the human behavior is not
that straightforward. Some aspects of the user-behavior data
might be inferred from the NetFlow data. Alternatively, in
the absence of concrete information, the contribution of the
risky human behavior to the coefficient α can be modeled
in a fuzzy manner through the use of distributions over an
interval. This provides the motivation for the computation of
the spreads in the centrality metrics through UQ techniques
such as Monte Carlo analysis. These discussions allow us to
propose a workflow for the risk assessment and mitigation in
an enterprise scenario as depicted by figure 3.

Fig. 3. Proposed flow depicting the how the vulnerability assessment can be
employed in an enterprise scenario

V. EXPERIMENTS

In this section we consider two examples. The first is a
toy example with seven nodes as shown in fig. 4 while the
second is a random graph with 1000 nodes. With respect to
the toy network in fig. 4, based on their roles in the network
and the potential similarities between the machines, values are
assigned to the α vector and W matrix entries as depicted
below.

α =
[
0.05 0.08 0.12 0.18 0.55 0.8 0.2

]

W =



0 0.6 0.1 0.2 0.1 0 0
0.8 0 0 0 0 0.1 0.1
0.3 0 0 0.7 0 0 0
0.6 0 0.2 0 0.2 0 0
0.2 0 0 0.8 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0


The bar chart in Fig. 5 shows the various vulnerability cen-

tralities. We found that nodes that have a high probability of
direct attack namely H2 and H3 have the highest vulnerability

Fig. 4. A toy cyber network with two routers (R1 and R2), a server (S1) and
four hosts (H1 . . . H4). The communication paths between them are shown
as well. Hosts H2 and H3 are laptops routinely used outside the enterprise
while H1 and H4 are desktops with in the enterprise.

centrality. Node S1 also figures high on the list despite having
a low α because of the higher weighted out-degree. These
observations are compatible with the first order approximation
for the vulnerability centrality from eqs. 5 and 6. Note that the
topologically central nodes R1 and R2 figure low on the list
because of low probabilities of direct compromise (very low
α values).

Fig. 5. A bar chart showing the influence of each of the nodes on the network
in terms of vulnerability centrality. The error bars represent the effect of
uncertainty as estimated from a 1000 run Monte Carlo analysis. Some of the
α values are made uncertain and they are modeled as following an uniform
distribution within a given interval.

Figure 6 shows the effect of model parameter uncertainty on
the top−k rankings of nodes on a cyber-graph in terms of the
vulnerability centrality metric. We applied variations to the α
values of each of the nodes in an Erdős Rényi random graph
of 1000 nodes and edge probability of 0.03. Each αi is drawn
from its own independent uniform distribution with 10% and
20% perturbations from the baseline case. We compute and
plot the histogram of the Spearman Rank Correlation Coef-
ficient (ρ) between the top− 100 nodes in the unperturbed
case with the same nodes in each of the 1000 Monte Carlo
runs. Clearly the fact that correlations are not all close to 1,
implies that even the rankings are significantly affected by the
model parameter variations. Further, as expected, for larger
variations, the deviation of ρ from 1 is larger and the spread
itself becomes larger. Intuitively, this means that even though
a host is reasonably secured in terms of its position on the
cyber graph and possessing a low vulnerability profile, a larger
than expected α value by virtue of the risky behavior on the



part of the associated human user (such as access through
mobile devices via non-secure networks or visiting malicious
websites) could potentially increase the vulnerability centrality
of the associated machine. Thus the characterization of the
spread in the centrality measures is a very important step in
the flow depicted in fig. 3.

Fig. 6. PDF of ρ computed with respect to the rankings of the top-100 nodes
of the unperturbed case and the same nodes for each of the MC runs. Top:
A 10% variation in the model parameter α and Bot: A 20% variation in the
model parameter α

VI. CONCLUDING REMARKS AND FUTURE WORK

IT analysts are often overwhelmed with large amounts of
information related to threats and vulnerabilities spread across
many different metrics and tools. This task is a step towards
integrating the various mechanisms of vulnerability including
the crucial human-user aspect. The result is a set of easily
understandable metrics that probabilistically quantify the risk
either to a specific set of machines or to the network as a
whole that can be utilized by analysts and the management in
decision-making. By capturing the mechanisms probabilisti-
cally, stronger paths of compromise spread and more risky use-
behaviors are automatically highlighted thereby reducing the
information overload to the analysts. The presented metrics,
together with the associated asset information, allow for the
identification of the regions of the network that require greatest
effort in terms of risk mitigation. This includes targeted
education of human users on enforcing the best practices of
cyber-defense.

Ongoing work involves completing the model parameter
estimation, applying the concepts to real-world cyber-graphs
and development of computationally efficient methods for
uncertainty quantification.
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