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US Census data collection
Enumeration of the total population living the US
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US Census data collection
Accurate count is important

• Used to apportion multiple federal funding streams.

• $665 billions allocated to 132 economic security  
programs (2022) other than health insurance or  
social security benefits.
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Highway Planning and Construction

Determine the number of seats that states get in 
the US House of Representatives.
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US Census data collection
Privacy is required by law
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Because of the importance to have accuracy count 
congress makes the data collection mandatory.

Title 13: Census is required to retain data confidentiality.
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Reconstruction Attacks

Linkage Attacks — Results from UC Census:
• Census blocks correctly reconstructed in all 6,207,027, inhabited blocks.
• Block, sex, age, race, ethnicity reconstructed:

• Exactly: 46% of population (142M).
• Allowing age +/- 1 year : 71% of population (219M).

• Name, block sex, age, race, ethnicity:
• Confirmed re-identification: 38% of population.
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 308,745,548 people in 2010 release which 
implements some “protection” Commercial databases 

McKenna et al. 2018Ramachandran et al. 2012
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Differential Privacy
Definition

Pr[A(D1) = O]

A randomized algorithm  is ε-differentially private if, for all pairs of inputs , , differing in 
one entry, and for any output O:

𝒜  D1 D2

7Dwork et al. 2006

D1 D2
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Differential Privacy
Definition

Pr[A(D1) = O]
Pr[A(D2) = O]

Intuition: An adversary should not be able to use output O to distinguish between any D1 and D2

A randomized algorithm  is ε-differentially private if, for all pairs of inputs , , differing in 
one entry, and for any output O:

𝒜  D1 D2
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Differential Privacy
Notable properties
• Immune to linkage attack: Adversary knows arbitrary auxiliary information.

• Composability: If  enjoys -differential privacy and  enjoys -differential privacy, 
then, their composition ,  enjoys -differential privacy.

• Post-processing immunity: If  enjoys -differential privacy and  is an arbitrary data-
independent mapping, then  s -differential private.

A1 ε1 A2 ε2
A1(D) A2(D) (ε1 + ε2)

A ε g
g ∘ A ε

8



Ferdinando Fioretto | UVA

Differential Privacy
Notable properties
• Immune to linkage attack: Adversary knows arbitrary auxiliary information.

• Composability: If  enjoys -differential privacy and  enjoys -differential privacy, 
then, their composition ,  enjoys -differential privacy.

• Post-processing immunity: If  enjoys -differential privacy and  is an arbitrary data-
independent mapping, then  s -differential private.

A1 ε1 A2 ε2
A1(D) A2(D) (ε1 + ε2)

A ε g
g ∘ A ε

8

DP algorithms rely on randomization

x+η
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Definition ( -Fairness). A data-release mechanism M is said -fair w.r.t. a problem P if,  
for all datasets  and all 

𝜶 𝛼
𝑥 ∈ 𝒳 𝑖 ∈ [𝑛]

Fairness in downstream decisions
Setting

9

Bias: Bi
P (M,x) = Ex̃⇠M(x)[Pi(x̃)]� Pi(x)

<latexit sha1_base64="MZrr7pU6tApXIXT2EnSlsc99JrQ="></latexit>

<latexit sha1_base64="jHx/L9Lvw/dXp68eFTQPH/Pu3UQ="></latexit>

⇠iB(P,M,x) = max
j2[n]

���Bi
P (M,x)�Bj

P (M,x)
���  ↵

Fioretto al. IJCAI:2021
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Disproportionate impacts in decision making
Title 1 allotment

• Title 1 of the Elementary and Secondary Education Act is one of the largest U.S. program 
offering educational assistance to disadvantaged children.

• In the fiscal year 2021 alone, it distributed about $11.7 billion through  
several types of grants.

• Allotment:

10

count of children 5 to 17 in district i

student expenditures in district i

Fioretto et al. IJCAI:2021
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Disproportionate impacts in decision making
Title 1 allotment

• Title 1 of the Elementary and Secondary Education Act is one of the largest U.S. program 
offering educational assistance to disadvantaged children.

• In the fiscal year 2021 alone, it distributed about $11.7 billion through  
several types of grants.

• Allotment:

10

count of children 5 to 17 in district i

student expenditures in district i

Districts receiving up 
to 42K less  

than warranted

Fioretto et al. IJCAI:2021
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Shape of the decision problem
First key result

• Theorem (informal): It is the “shape” of the decision problem that characterizes the 
unfairness of the outcomes, even using an unbiased DP mechanism.

• The problem bias can be approximated as (when  is at least twice differentiable):Pi

11

minθ L(θ;x) = E(x,a,y)[ℓ(Mθ(x), y)].Methods reviewed in
this survey analyze the disparate impact of privacy on dif-
ferent groups of individuals either by measuring the devia-
tion from a model to satisfy a notion of group fairness ex-
actly or using the notion of excessive risk [Zhang et al., 2017;
Wang et al., 2019]. The latter defines the difference between
the private and non private risk functions:

R(θ,xa) = Eθ̃

[
L(θ̃;xa)

]
− L(θ∗;xa), (4)

where the expectation is defined over the randomness of the
private mechanism, xa denotes the subset of x containing
exclusively samples whose group attribute is a, θ̃ denotes the
private model parameters, and θ∗ = argminθ L(θ;x). In this
context, (pure) fairness is achieved when there is no differ-
ence in excessive risk across all protected groups.

4 Privacy and Fairness: Friends or Foes?
While DP aims at rendering the participation of individuals
indistinguishable to an observer who accesses the outputs of
a computation, fairness attempts at equalizing properties of
these outputs across different individuals. Thus, simultane-
ously achieving these two goals has received two contrasting
views. The first sees privacy and fairness as aligned objec-
tives while the second sees them as contrasting ones.

Contributions in the ”aligned space” focus on studying
conditions for which privacy and fairness can be achieved si-
multaneously. Notably, Dwork et al. [2012] shows that in-
dividual fairness is a generalization of differential privacy.
To see why privacy and fairness may be achieved simulta-
neously, notice that a mechanism M : X → Y satisfies ϵ-
differential privacy when it is (dX , dY)-Lipschitz with

dX (x,x′) = ϵ|x∆x′|

dY(M(x),M(x′)) = sup
y∈Y

log

(
Pr(M(x) = y)

Pr(M(x′) = y)

)
,

where x∆x′ represents the set difference between two inputs
x and x′ of X . Thus, DP mechanisms also ensure individual
fairness, as long as dX and dY are defined as above. Simi-
larly, Mahdi et al. [2021] shows that, in candidate selection
problems, the use of a DP exponential mechanism [McSh-
erry and Talwar, 2007] produces fair selections when the data
satisfies some restrictions concerning key properties (average
and variance of the qualification scores) of each group.

The second line of works views privacy and fairness as
contrasting goals. Notably, it has been observed that the out-
puts of DP classifiers may create or exacerbate disparate im-
pacts among groups of individuals [Bagdasaryan et al., 2019].
A similar phenomenon was also reported in important de-
cision tasks that use DP census statistics as inputs [Pujol et
al., 2020]. These works typically adopt the notion of group
fairness and impose no restrictions on the properties of the
privacy-preserving mechanisms studied. The rest of the sur-
vey focuses on analyzing why these important observations
arise and how can they be mitigated.

5 Why Privacy Impacts Fairness?
This section reviews the current understanding about why dis-
parate impacts arise in two common privacy-preserving pro-
cesses: decision tasks and learning tasks.

5.1 Decision Tasks
Consider first a data-release mechanism M, which typically
consists of two steps: First, noise drawn from a calibrated
distribution is injected into the original data x to obtain a DP
counterpart x̃. This process, however, may fundamentally
affect some important properties of the original data. For ex-
ample, if x is a vector of counts enumerating individuals liv-
ing in different regions, its privacy-preserving version x̃ may
not satisfy non-negativity conditions. Thus, a post-processing
step πK is applied to x̃ to redistribute the noisy values in a
way that the resulting outputs πK(x̃) satisfy the desired data-
independent constraints K. Second, the released data x̃ is
used as input to a decision problem P . This pipeline is shown
in Figure 2 (top). The goal of this section is to characterize
the disparity in errors induced by mechanism M on the final
decisions P (x̃).

The negative impacts of privacy towards fairness in deci-
sion tasks were first observed by Pujol et al. [2020]. The
authors noticed that the use of privacy-preserving census data
to allocate funds to school district produces unbalanced al-
location errors, with some school districts systematically re-
ceiving more (or less) than what warranted, as illustrated in
Figure 1 (right). A similar behavior was also observed in
other census-motivated decision tasks, including determining
whether a jurisdiction qualifies for providing minority lan-
guage assistance during an election, and apportionment of
legislative representatives.

These empirical observations were later attributed to two
main factors: (1) the “shape” of the decision problem P
[Tran et al., 2021d] and (2) the presence of non-negativity
constraints in post-processing steps [Zhu et al., 2021]. The
survey reviews next these two factors in details.
Shape of the Decision Problem. Note that private data is
often calibrated with unbiased noise, such as Laplacian noise
in the Laplace mechanism, for privacy protection. In such
contexts Tran et al. [2021d] showed that a decision problem
that applies a linear transform of its input yields an unbiased
outcome with respect to the true outcome. However, non-
linearities in the decision problem are likely to generate non-
zero biases with discrepancies among entities, which results
in fairness issues. In more details, when Pi is at least twice
differentiable, the problem bias can be approximated as

Bi
P (M,x) = E[Pi(x̃ = x+ η)]− Pi(x)

≈ 1

2
HPi(x)×Var[η] (5)

where HPi(·) denotes the Hessian of problem Pi. The ap-
proximation above uses a Taylor expansion of the private
problem Pi(x+η) and the linearity of expectations, with η a
random variable following some symmetric distribution. The
bias Bi

P can thus be approximated by an expression involv-
ing the local curvature of the problem Pi and the variance
of the noisy input (which depends on the privacy loss ϵ). In

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5472

Local curvature of  
problem Pi

Variance of the  
noisy input 
(depends on )ϵ

entities with  
low errors

entities with  
high errors

Tran al. NeurIPS:2021Fioretto al. IJCAI:2021
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Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5472

Local curvature of  
problem Pi

Variance of the  
noisy input 
(depends on )ϵ

• Fairness can be bounded whenever the problem local curvature is constant 
across entities, since the variance is also constant and bounded. 

entities with  
low errors

entities with  
high errors

Tran al. NeurIPS:2021Fioretto al. IJCAI:2021
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• Corollary: (Perfect)-fairness cannot be achieved if P is any non-linear function, as in 
the case of the allocations considered.
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Local curvature of  
problem Pi

Variance of the  
noisy input 
(depends on )ϵ

A data release mechanism M is -fair w.r.t. P, 
for some finite , if for all datasets , exists 
constants 

α
α x

ci
jl ∈ ℝ, (i ∈ [n], j, l ∈ [k])

Tran al. NeurIPS:2021Fioretto al. IJCAI:2021
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Disproportionate impacts in downstream decisions
Minority language voting rights

• The Voting Rights Act of 1965 provides a body of protections for racial and language minorities. 

• Section 203 describes the conditions under which local  jurisdictions must provide minority language voting 
assistance during an election.

• Jurisdiction i must provide language assistance (including voter registration, ballots, and instructions) iff 
decision rule returns true with:PM

i (x)

13

sorted xs

no. of ppl in i speaking  
minority language s

+ < 5th grade education

+ limited English proficiency

Fioretto al. IJCAI:2021
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sorted xs

Misclassification implies 
potentially 

disenfranchising 

no. of ppl in i speaking  
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Fioretto al. IJCAI:2021
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Fair Decision Rules

Ratio Functions

• Loving county, TX, where xsp/xs =  0.05

• Terrell county, TX, where xsp/xs =  0.05 

• Union county, NM, where xsp/xs = 0.049

14

Minority Language Voting Rights

Fioretto al. IJCAI:2021
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= 
160

3305

= 
30

600

= 
4

80

• Theorem (informal): The perturbation induced by the DP mechanism affects 
more the county with lower numerator / denominator.

Fioretto al. IJCAI:2021
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Fairness composition
Second key result 

15

• Small bias when considered individually
• However, when they are combined using 

logical connector , the resulting absolute 
bias increases substantially, as illustrated by 
the associated green circles. 

∧

Minority Language Voting Rights

∧

Fioretto al. IJCAI:2021
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Fairness composition
Second key result 

15

• Small bias when considered individually
• However, when they are combined using 

logical connector , the resulting absolute 
bias increases substantially, as illustrated by 
the associated green circles. 

∧

Minority Language Voting Rights

• Theorem (informal): The logical composition of two - and -fair mechanisms is -fair 
with .

• The unfairness induced by “composing” predicates is no smaller than that of their individual 
components.

𝛼1 𝛼2 𝛼
𝛼 ≥ 𝑚𝑎𝑥(𝛼1, 𝛼2)

∧

Fioretto al. IJCAI:2021
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Using DP to generate private inputs of decision 
problems commonly adopted to make policy 

determination will necessarily introduce fairness 
issues, despite the noise being unbiased.

Shape of the decision problem
Important conclusion



DP Post-processing
Fairness impact
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1. Apply noise with appropriate parameter

DP data release with post-processing

18
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1. Apply noise with appropriate parameter
2. Post-process output  to enforce consistencyx̃

<latexit sha1_base64="rYJSfc9lnlZStQnuKHKly9B/dGI="></latexit>

⇡K(x̃) : argmin
v2K

kv � x̃k2

<latexit sha1_base64="LS5f/8nK+xIsaUw8fzqhxMnyAes="></latexit>

K =

(
v |

nX

i=1

vi = C,v � 0
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1. Apply noise with appropriate parameter
2. Post-process output  to enforce consistencyx̃
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Satisfies DP due to post-processing immunity
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1. Apply noise with appropriate parameter
2. Post-process output  to enforce consistencyx̃
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DP post-processing
Error and bias
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Laplace  
mechanism

4 2 1 3 2 6 2 1
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DP post-processing
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Error and bias

Observe that post-processing reduces the errors.

Laplace  
mechanism

Zhu et al.  AAAI:2021 Zhu et al. IJCAI:2022
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DP post-processing

24

Error and bias

Observe that post-processing reduces the errors.

However, it increases unfairness!
Laplace  
mechanism

Zhu et al.  AAAI:2021 Zhu et al. IJCAI:2022
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Bias of post-processing

25

Key result

• Thm (informal): The bias is caused by the presence of non-negativity constraints!

Zhu et al.  AAAI:2021 Zhu et al. IJCAI:2022
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Shifting increases the value of  and 
the bias progressively disappear.

rm

There is an -ball of radius   
and centered in x which is a feasible  
subspace where there is no bias.

ℓ1 rm = min
i

xi

Quantifying bias in post-processing

26

:

Zhu et al.  AAAI:2021 Zhu et al. IJCAI:2022
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Practical considerations 
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Aggregating the counts for  
 
Arizona (pop: 2.37ML in15 counties)
 
Texas (pop: 8.89ML in 254 counties)

• Post-processing reduces the variance of the noise differently in different “regions”.  
Regions with many subregions (e.g., counties, census blocks, etc.) will have more variance  
than regions with few subregions. 

• It creates situations where counties will be treated fundamentally differently in  
decision processes.

Variance

186.67

200.01

~6.5% difference 
which may affect allocations!

Zhu et al.  AAAI:2021 Zhu et al. IJCAI:2022
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Although post-processing reduces errors, 
its application to policy determinations 

should take into account fairness issues.

DP post-processing
Important conclusion



Ferdinando Fioretto | UVA

Agenda
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Fairness impacts of DP  
in decision making

Fairness impacts  
of DP in learning What’s next?Preliminaries
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DP Stochastic Gradient Descent

30

Loss

1. Clip g in  ball of size C
2. Add noise from  to the 

aggregated gradients in a mini-batch
3. Update parameters 

ℓ2

𝒩(0,𝐼𝐶2𝜎2)

𝜃

C

g

clipped g

̂Y ℓ( ̂Y, Y)

g = ∇θ ℓ( ̂Y, Y)

fθ̃
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Fairness issues in DP-SGD
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Algorithm 1: DP-SGD
input :Disjoint dataset D ; Sample prob. q; Iterations T ; Noise

variance �2; Clipping bound C; learning rate ⌘
✓0  0T

for iteration t = 1, 2, . . .T do

B random sub-sample of D with Pr q
foreach (Xi, Ai,Yi) 2 B do

gi = r`
�
f✓t (Xi),Yi

�

ḡB  1
|B|
⇣P

i ⇡C(gi) +N(0, IC2�2)
⌘

✓t+1  ✓t � ⌘ḡB

In a nutshell, DP-SGD computes the gra-
dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
noise to ensure privacy, and computes the
average. Two key characteristics of DP-
SGD are: (1) Clipping the gradients whose
L2 norm exceeds a given bound C, and (2)

Perturbing the averaged clipped gradients
with 0-mean Gaussian noise with variance
�2C2. The procedure is described in Algo-
rithm 1. Therein, gi represents the gradient
of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:

E [L(✓t+1; Da)] = L(✓t; Da) � ⌘ ⌦gDa , gD
↵
+
⌘2

2
E
h
gT

BHa
` gB
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|                                                 {z                                                 }
non-private term

(4)

+ ⌘
�⌦

gDa , gD
↵ � ⌦gDa , ḡD

↵�
+
⌘2

2

⇣
E
h
ḡT

BHa
` ḡB
i
� E
h
gT

BHa
` gB
i⌘

|                                                                            {z                                                                            }
private term due to clipping

(Rclip
a )

+
⌘2

2
Tr(Ha

` )C
2�2

|              {z              }
private term due to noise

(Rnoise
a )

+ O(k✓t+1 � ✓tk3),

where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.

5

Tran al. NeurIPS:2021

Theorem: Consider an ERM problem with twice differentiable loss w.r.t. the      
model parameters. The expected loss of a group a at iteration t+1 is:     
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Shameless plug
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Shameless plug 2
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New open-access book on DP in the era of AI

Chapter 1 already on ArXiv
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Algorithm 1: DP-SGD
input :Disjoint dataset D ; Sample prob. q; Iterations T ; Noise

variance �2; Clipping bound C; learning rate ⌘
✓0  0T

for iteration t = 1, 2, . . .T do

B random sub-sample of D with Pr q
foreach (Xi, Ai,Yi) 2 B do

gi = r`
�
f✓t (Xi),Yi

�

ḡB  1
|B|
⇣P

i ⇡C(gi) +N(0, IC2�2)
⌘

✓t+1  ✓t � ⌘ḡB

In a nutshell, DP-SGD computes the gra-
dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
noise to ensure privacy, and computes the
average. Two key characteristics of DP-
SGD are: (1) Clipping the gradients whose
L2 norm exceeds a given bound C, and (2)

Perturbing the averaged clipped gradients
with 0-mean Gaussian noise with variance
�2C2. The procedure is described in Algo-
rithm 1. Therein, gi represents the gradient
of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:
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where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.

5

Why clipping causes unfairness?
Gradient norms and excessive risk

Tran al. NeurIPS:2021
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dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
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of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:
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where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.

5

Why clipping causes unfairness?
Gradient norms and excessive risk

Tran al. NeurIPS:2021
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with the model parameters update and it is not a↵ected by the private training. The other two relate
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where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.
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Why clipping causes unfairness?
Gradient norms and excessive risk

Tran al. NeurIPS:2021
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In a nutshell, DP-SGD computes the gra-
dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
noise to ensure privacy, and computes the
average. Two key characteristics of DP-
SGD are: (1) Clipping the gradients whose
L2 norm exceeds a given bound C, and (2)

Perturbing the averaged clipped gradients
with 0-mean Gaussian noise with variance
�2C2. The procedure is described in Algo-
rithm 1. Therein, gi represents the gradient
of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:
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where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.
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can be decomposed as:
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. This quantity clearly depends on the Hessian loss
Ha

` . However, under the assumptions in Theorem 3: convexity and smoothness of the loss
function and the magnitude of the learning rate (i.e., that is small enough), the term  a will
be a negligible component in Rclip

a .
While this is evident under those assumption, our empirical analysis has reported a similar
behavior for loss function for which those conditions do not generally apply. In the following
experiment we run DP-SGD on a neural network with single hidden layer and tracked the
values of Rclip

a and  a for each group a 2 A during private training. These values are reported
in Figure 11 for different datasets. It can be seen that the components  a (dotted lines)
constitute a negligible amount to the excessive risk under gradient clipping Rclip

a .

Figure 11: Values of Rclip
a and  a during private training for a neural network classifier.

Relative group data size is a minor impact factor to the excessive risk. Section
7 also observed that the relative group data size, pb/pa for two groups a, b 2 A had a minor
impact on unfairness. Figure 12 provides empirical evidence to support this observation. It
shows the effects of varying the relative group data pb/pa to the gradient norms (top rows) and
excessive risk (bottom rows) in three datasets: Abalone, Bank, and Income. The different
relative group data ratios were obtained through subsampling. Notice that changing the
relative group sizes does not result in a noticeable effect in the group gradient norms and
excessive risk. These experiments demonstrate that the relative group data size might play
a minor role in affecting unfairness.
These observation are also in alignment with the those raised by Farrand et al. [16], who
showed that the disparate impact of DP on model accuracy is not limited to highly imbalanced
data and can occur in situations where the groups are slightly imbalanced.

C.3 More on “Why noise addition causes unfairness?”

Figure 13 illustrates the connection between the trace of the Hessian of the loss function
at some sample X 2 D and its distance to the decision boundary. The figure clearly show
that the closest (father) is a sample X to the decision boundary, the larger (smaller) is the
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Gradient norms and excessive risk

Theorem (informal): Gradient flow affects 
the excessive risk (unfairness) of the 
individuals and groups.

Crucial Proxy to Unfairness (due to clipping)

Why clipping causes unfairness?

Algorithm 1: DP-SGD
input :Disjoint dataset D ; Sample prob. q; Iterations T ; Noise

variance �2; Clipping bound C; learning rate ⌘
✓0  0T

for iteration t = 1, 2, . . .T do

B random sub-sample of D with Pr q
foreach (Xi, Ai,Yi) 2 B do

gi = r`
�
f✓t (Xi),Yi

�

ḡB  1
|B|
⇣P

i ⇡C(gi) +N(0, IC2�2)
⌘

✓t+1  ✓t � ⌘ḡB

In a nutshell, DP-SGD computes the gra-
dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
noise to ensure privacy, and computes the
average. Two key characteristics of DP-
SGD are: (1) Clipping the gradients whose
L2 norm exceeds a given bound C, and (2)

Perturbing the averaged clipped gradients
with 0-mean Gaussian noise with variance
�2C2. The procedure is described in Algo-
rithm 1. Therein, gi represents the gradient
of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:
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+ O(k✓t+1 � ✓tk3),

where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.
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norms have also larger excessive risk. Similar results were achieved for other datasets as well
(not reported to avoid redundancy).

(a) Abalone dataset

(b) Churn dataset

(c) Churn dataset

Figure 10: Impact of gradient clipping with different clipping bound values C to the excessive
risk.

The Hessian loss is a minor impact factor to the excessive risk. As showed in the
main text, the excessive risk associated to the gradient clipping for a particular group a 2 A
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The Hessian loss is a minor impact factor to the excessive risk. As showed in the
main text, the excessive risk associated to the gradient clipping for a particular group a 2 A
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can be decomposed as:
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. This quantity clearly depends on the Hessian loss
Ha

` . However, under the assumptions in Theorem 3: convexity and smoothness of the loss
function and the magnitude of the learning rate (i.e., that is small enough), the term  a will
be a negligible component in Rclip

a .
While this is evident under those assumption, our empirical analysis has reported a similar
behavior for loss function for which those conditions do not generally apply. In the following
experiment we run DP-SGD on a neural network with single hidden layer and tracked the
values of Rclip

a and  a for each group a 2 A during private training. These values are reported
in Figure 11 for different datasets. It can be seen that the components  a (dotted lines)
constitute a negligible amount to the excessive risk under gradient clipping Rclip

a .

Figure 11: Values of Rclip
a and  a during private training for a neural network classifier.

Relative group data size is a minor impact factor to the excessive risk. Section
7 also observed that the relative group data size, pb/pa for two groups a, b 2 A had a minor
impact on unfairness. Figure 12 provides empirical evidence to support this observation. It
shows the effects of varying the relative group data pb/pa to the gradient norms (top rows) and
excessive risk (bottom rows) in three datasets: Abalone, Bank, and Income. The different
relative group data ratios were obtained through subsampling. Notice that changing the
relative group sizes does not result in a noticeable effect in the group gradient norms and
excessive risk. These experiments demonstrate that the relative group data size might play
a minor role in affecting unfairness.
These observation are also in alignment with the those raised by Farrand et al. [16], who
showed that the disparate impact of DP on model accuracy is not limited to highly imbalanced
data and can occur in situations where the groups are slightly imbalanced.

C.3 More on “Why noise addition causes unfairness?”

Figure 13 illustrates the connection between the trace of the Hessian of the loss function
at some sample X 2 D and its distance to the decision boundary. The figure clearly show
that the closest (father) is a sample X to the decision boundary, the larger (smaller) is the
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• When clipping, the smaller C, the higher is the information 
loss of the average gradients that are backpropagated.
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Algorithm 1: DP-SGD
input :Disjoint dataset D ; Sample prob. q; Iterations T ; Noise

variance �2; Clipping bound C; learning rate ⌘
✓0  0T

for iteration t = 1, 2, . . .T do

B random sub-sample of D with Pr q
foreach (Xi, Ai,Yi) 2 B do

gi = r`
�
f✓t (Xi),Yi

�

ḡB  1
|B|
⇣P

i ⇡C(gi) +N(0, IC2�2)
⌘

✓t+1  ✓t � ⌘ḡB

In a nutshell, DP-SGD computes the gra-
dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
noise to ensure privacy, and computes the
average. Two key characteristics of DP-
SGD are: (1) Clipping the gradients whose
L2 norm exceeds a given bound C, and (2)

Perturbing the averaged clipped gradients
with 0-mean Gaussian noise with variance
�2C2. The procedure is described in Algo-
rithm 1. Therein, gi represents the gradient
of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:

E [L(✓t+1; Da)] = L(✓t; Da) � ⌘ ⌦gDa , gD
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+ O(k✓t+1 � ✓tk3),

where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.
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Algorithm 1: DP-SGD
input :Disjoint dataset D ; Sample prob. q; Iterations T ; Noise

variance �2; Clipping bound C; learning rate ⌘
✓0  0T

for iteration t = 1, 2, . . .T do

B random sub-sample of D with Pr q
foreach (Xi, Ai,Yi) 2 B do

gi = r`
�
f✓t (Xi),Yi

�

ḡB  1
|B|
⇣P

i ⇡C(gi) +N(0, IC2�2)
⌘

✓t+1  ✓t � ⌘ḡB

In a nutshell, DP-SGD computes the gra-
dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
noise to ensure privacy, and computes the
average. Two key characteristics of DP-
SGD are: (1) Clipping the gradients whose
L2 norm exceeds a given bound C, and (2)

Perturbing the averaged clipped gradients
with 0-mean Gaussian noise with variance
�2C2. The procedure is described in Algo-
rithm 1. Therein, gi represents the gradient
of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:

E [L(✓t+1; Da)] = L(✓t; Da) � ⌘ ⌦gDa , gD
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where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.
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Algorithm 1: DP-SGD
input :Disjoint dataset D ; Sample prob. q; Iterations T ; Noise

variance �2; Clipping bound C; learning rate ⌘
✓0  0T

for iteration t = 1, 2, . . .T do

B random sub-sample of D with Pr q
foreach (Xi, Ai,Yi) 2 B do

gi = r`
�
f✓t (Xi),Yi

�

ḡB  1
|B|
⇣P

i ⇡C(gi) +N(0, IC2�2)
⌘

✓t+1  ✓t � ⌘ḡB

In a nutshell, DP-SGD computes the gra-
dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
noise to ensure privacy, and computes the
average. Two key characteristics of DP-
SGD are: (1) Clipping the gradients whose
L2 norm exceeds a given bound C, and (2)

Perturbing the averaged clipped gradients
with 0-mean Gaussian noise with variance
�2C2. The procedure is described in Algo-
rithm 1. Therein, gi represents the gradient
of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:
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where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.
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Algorithm 1: DP-SGD
input :Disjoint dataset D ; Sample prob. q; Iterations T ; Noise

variance �2; Clipping bound C; learning rate ⌘
✓0  0T
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⌘

✓t+1  ✓t � ⌘ḡB

In a nutshell, DP-SGD computes the gra-
dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
noise to ensure privacy, and computes the
average. Two key characteristics of DP-
SGD are: (1) Clipping the gradients whose
L2 norm exceeds a given bound C, and (2)

Perturbing the averaged clipped gradients
with 0-mean Gaussian noise with variance
�2C2. The procedure is described in Algo-
rithm 1. Therein, gi represents the gradient
of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:
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where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.
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Crucial Proxy to Unfairness (due to noise)

Algorithm 1: DP-SGD
input :Disjoint dataset D ; Sample prob. q; Iterations T ; Noise

variance �2; Clipping bound C; learning rate ⌘
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for iteration t = 1, 2, . . .T do

B random sub-sample of D with Pr q
foreach (Xi, Ai,Yi) 2 B do

gi = r`
�
f✓t (Xi),Yi

�
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In a nutshell, DP-SGD computes the gra-
dients for each data sample in a random
mini-batch B, clips their L2-norm, adds
noise to ensure privacy, and computes the
average. Two key characteristics of DP-
SGD are: (1) Clipping the gradients whose
L2 norm exceeds a given bound C, and (2)

Perturbing the averaged clipped gradients
with 0-mean Gaussian noise with variance
�2C2. The procedure is described in Algo-
rithm 1. Therein, gi represents the gradient
of a data sample (Xi, Ai,Yi), ḡB the average
clipped noisy gradient of the samples in mini-batch B, and the function ⇡C(x) = x ·min(1, C

kxk ).

The following theorem is an important result of this section. It connects the expected loss E[L(✓; Da)]
of a group a 2 A with its excessive risk Ra(✓), which is, in turn, used in our fairness analysis. It
decomposes the expected loss during private training into three key components: The first relates
with the model parameters update and it is not a↵ected by the private training. The other two relate
with gradient clipping and noise addition, and, combined, capture the notion of excessive risk.

Theorem 2. Consider the ERM problem (L) with loss ` twice di↵erentiable w.r.t. the model parame-
ters. The expected loss E[L(✓t+1; Da)] of group a2A at iteration t+1, is approximated as:
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where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 2 follows from a second order Taylor expansion of the non-private and private
ERM functions L(✓t � ⌘gB; Da) and L(✓t � ⌘(ḡB +N(0, IC2�2); Da), respectively, around ✓t and by
comparing their di↵erences. Once again, proofs are reported in Appendix A.

The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-private)
SGD loss. Terms (Rclip

a ) and (Rnoise
a ) quantify, together, the excessive risk for group a. The last term

O(k✓t+1 � ✓tk3) captures for negligible higher order components. Therein, (Rclip
a ) quantifies the e↵ect

of clipping to the excessive risk, and (Rnoise
a ) quantifies the e↵ect of perturbing the average gradients

to the excessive risk. Therefore, Theorem 2 shows that there are two main sources of disparate impact
in DP-SGD training:
1. Gradient clipping (Rclip

a ): which, in turn, depends of three factors: (i) The values of the Hessian
matrix Ha

` of the loss function associated with group a; (ii) The gradients values gDa associated
with the samples of group a; and (iii) The clipping bound C, which appears in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace of

the) Hessian matrix Ha
` of the loss function associated with group a; and (ii) The privacy loss

parameters (✏, �,�`) (which, in turn, are characterized by the noise variance C2�2).
A schematic representation of these factors is shown in Figure 2. Therein, XDa denotes the features
values X 2 X of the subset Da of D. Theorem 2 entails that unfairness occurs whenever di↵erent
groups have di↵erent values for any of the gradient clipping and noise addition excessive risk terms.
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Theorem (informal): Individuals whose outputs 
are close to the decision boundary will have 
higher Hessian traces (high local curvatures of the 
loss). 

Intuitively, the model decisions for samples which are 
close to the decision boundary are less robust to the 
presence of noise w.r.t. samples which are farther away 
from the boundary.
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Modify training so to equalize the factors affecting the excessive risk due to 
clipping and to noise addition

Minority group
Majority group
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Figure 1: Accuracy of each demographic group in the UTK-Face dataset using Resnet18 [18], at the
increasing of the pruning rate.

pruned models: (1) disparity in gradient norms across groups, and (2) disparity in Hessian matrices
associated with the loss function computed using a group’s data. Informally, the former carries
information about the groups’ local optimality, while the latter relates to model separability. We
analyze these factors in detail, providing both theoretical and empirical support on a variety of
settings, networks, and datasets. By recognizing these factors, we also develop a simple yet e↵ective
training technique that largely mitigates the disparate impacts caused by pruning. The method is
based on an alteration of the loss function to include components that penalize disparity of the average
gradient norms and distance to decision boundary across groups.

These findings are significant: Pruning is a key enabler for neural network models in embedded
systems with deployments in security cameras and sensors for autonomous devices for applications
where fairness is an essential need. Without careful consideration of the fairness impact of these
techniques, the resulting models can have profound e↵ects on our society and economy.

Related work

Fairness and network pruning have been long studied in isolation. The reader is referred to the related
papers and surveys on fairness [4, 8, 11, 17, 24] and pruning [1, 5, 7, 30, 31, 32, 33, 41] for a review
on these areas.

The recent interest in assessing societal values of machine learning models has seen an increase of
studies at the intersection of di↵erent properties of a learning model and their e↵ects on fairness. For
example, Xu et al. [39] studies the setting of adversarial robustness and show that adversarial training
introduces unfair outcomes in term of accuracy parity [42]. Zhu et al. [44] show that semisupervised
settings can introduce unfair outcomes in the resulting accuracy of the learned models. Finally,
several authors have also shown that private training can have unintended disparate impacts to the
resulting models’ outputs [3, 13, 34, 36, 43] and downstream decisions [29, 35].

Network compression has also been shown to have a profound impact towards the model fairness.
For example, several works observed empirically that network compression may amplify unfairness
in di↵erent learning tasks [27, 19, 20, 22]. Most of the focus has been on vision tasks and in
identifying the set of Pruning Identified Exemplars (PIEs), the samples that are impacted most under
the compression scheme and conclude that PIEs belongs to low frequency groups (those observed at
the tail of the data distribution). Blakeney et al. [6] further investigate how bias could be evaluated
and mitigated in pruned neural networks using knowledge distillation while Hosseini et al. [21]
observed empirically that knowledge distillation processes may produce unfair student models. The
impact of network compression towards fairness has also been assessed in natural language tasks.
For example, Du et al. [10] and Xu et al. [37] empirically measure the robustness of compressed
large language models, while Ahia et al. [2] look into how compression schemes a↵ects data-limited
regimes. Finally, Xu and Hu [38] investigate ways to improve fairness in generative language models
by compressing them. We also note that, concurrently to this work, Good et al. [14] studied the e↵ect
of pruning to the relative distortion in recall for various classes and propose an algorithm to attenuate
such an e↵ect.

This paper builds on this body of work and their important empirical observations and provides a
step towards a deeper theoretical understanding of the fairness issues arising as a result of pruning.
It derives conditions and studies the causes of unfairness in the context of pruning as well as it
introduces mitigating guidelines.

2

@NeurIPS:2022



Ferdinando Fioretto | UVA

Constraining ML models’ size

45

Figure 1: Accuracy of each demographic group in the UTK-Face dataset using Resnet18 [18], at the
increasing of the pruning rate.

pruned models: (1) disparity in gradient norms across groups, and (2) disparity in Hessian matrices
associated with the loss function computed using a group’s data. Informally, the former carries
information about the groups’ local optimality, while the latter relates to model separability. We
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based on an alteration of the loss function to include components that penalize disparity of the average
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introduces unfair outcomes in term of accuracy parity [42]. Zhu et al. [44] show that semisupervised
settings can introduce unfair outcomes in the resulting accuracy of the learned models. Finally,
several authors have also shown that private training can have unintended disparate impacts to the
resulting models’ outputs [3, 13, 34, 36, 43] and downstream decisions [29, 35].

Network compression has also been shown to have a profound impact towards the model fairness.
For example, several works observed empirically that network compression may amplify unfairness
in di↵erent learning tasks [27, 19, 20, 22]. Most of the focus has been on vision tasks and in
identifying the set of Pruning Identified Exemplars (PIEs), the samples that are impacted most under
the compression scheme and conclude that PIEs belongs to low frequency groups (those observed at
the tail of the data distribution). Blakeney et al. [6] further investigate how bias could be evaluated
and mitigated in pruned neural networks using knowledge distillation while Hosseini et al. [21]
observed empirically that knowledge distillation processes may produce unfair student models. The
impact of network compression towards fairness has also been assessed in natural language tasks.
For example, Du et al. [10] and Xu et al. [37] empirically measure the robustness of compressed
large language models, while Ahia et al. [2] look into how compression schemes a↵ects data-limited
regimes. Finally, Xu and Hu [38] investigate ways to improve fairness in generative language models
by compressing them. We also note that, concurrently to this work, Good et al. [14] studied the e↵ect
of pruning to the relative distortion in recall for various classes and propose an algorithm to attenuate
such an e↵ect.
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step towards a deeper theoretical understanding of the fairness issues arising as a result of pruning.
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How LoRA affect fairness in LLMs

Figure 1: LogitLens analysis of the generation process using the prompt “she should work as a” for the baseline model
(OPT 1.3B ), several LoRA fine-tuned models with different ranks, and the fully fine-tuned model. The higher the rank, the more
LoRA models “diverge” from the toxic behaviour of the baseline, capturing the fine-tuning datasets’ traits used for mitigation.

LoRA retain much of the original toxic outputs. Furthermore,
and even more importantly, the model with the lowest rank
(r = 2) consistently predicts the same tokens as the original
model with similar confidence levels. These confidence levels
gradually shift as the rank increases with distribution becom-
ing more and more aligned with that of the fully fine-tuned
model, but these behaviors are preserved even when the ranks
are increased up to r = 16, which is well beyond what used
in practice (Hu et al. 2021). This suggests that while low-
rank methods offer computational efficiencies, they may still
preserve much of the original model’s characteristics, even
when the fine-tuning dataset is specifically curated to promote
significant deviations from the original model’s behaviors.

This observation raises two key questions: (1) When fine-
tuning is specifically intended to reduce biases or unfair
decisions, what is the impact of the rank chosen for the LoRA
fine-tuned models? (2) Are these models, with their various
ranks, more prone to retaining any biases or toxicicy from
the original model than a fully fine-tuned model?

Contributions. This paper aims to answer these questions
and makes the following key contributions:
1. It investigates the implication of LoRA fine-tuning on the

toxicity of the models’ completions and their fairness in
downstream decision tasks:
• When fine-tuning is performed to mitigate a pre-trained

baseline model’s toxicity, the paper observes that lower
ranks are prone to produce models that retain the toxic-
ity of the baseline model;

• In downstream classification, lower ranks exacerbate the
performance disparity between majority and minority
groups within the datasets, attaining lower accuracy for
underrepresented groups.

2. It further analyzes the difference between LoRA models
and fully fine-tuned models from the standpoint of the
token posterior distribution over the vocabulary, connect-
ing the observed phenomenon to the statistical divergence
from the pre-trained original model. The paper shows that,

while computationally efficient, LoRA models with small
ranks (with values typically adopted in practice), may
not capture as much of the critical information from the
fine-tuning dataset as the fully fine-tuned models do.

3. Finally, it conducts a comprehensive evaluation with sev-
eral models, various LoRA ranks, and different datasets,
supporting these observations and emphasizing the need
for careful evaluation of LoRA fine-tuning techniques.

2 Preliminaries

Consider a pre-trained autoregressive large language model
P�(y|x) parametrized by a weight vector �. We aim to fine-
tune this model for a specific downstream conditional text
generation task. To do so, we consider a dataset of context-
target pairs D = {(xi, [ai], yi)}Ni=1, with xi and yi being
sequence of tokens, and ai being an optional group informa-
tion, denoting the membership of the example to a protected
group set G. For example, in a text synthesis task, xi denotes
the content of an article and yi its summary, in a loan approval
classification task, xi is a natural language description of the
characteristics of individual i, ai may denote their gender or
race, and yi is a natural language description of whether the
individual qualifies for a loan or not.

During full fine-tuning, the model is initialized to pre-
trained weights �0 and updated to �0 = �0 +�� by iter-
atively following the gradient to maximize the conditional
language model objective:

max
�

X

(x,[a],y)2D

|y|X

t=1

log (P�(yt |x, y<t)) . (1)

While this technique allows to adapt the pre-trained model
P� to the new task, it also requires to optimize the whole set
of parameters of the original model, i.e., |��| = |�0|.
LoRA finetuning. Low-Rank Adaptation (LoRA) (Hu et al.
2021) addresses this limitation by updating only a small sub-
set of the parameters, with the goal of preserving the original

⚠ Content warning: This slide contains examples of harmful language generation.
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Figure 1: A model (ResNet34) with the same parameters (random seeds, epochs, batch-size) on
different hardware can have vastly different performance results, especially for minority groups
(dark colors). The reference hardware is T4. Left: UTK-Face, Right: CIFAR-10.

they are stuck with. It raises the important question: how does varying the type of hardware impact
fairness? Importantly, recent studies have indicated that models trained on different hardware
can exhibit varying levels of accuracy due to inherent differences in stochasticity (Zhuang et al.,
2022). One possible explanation is that hardware-induced nuances, such as precision discrepancies
and threading behaviours, may lead iterative optimizers to different local minima during training
(Hooker, 2020).

This paper further shows that these hardware-induced variations can disproportionately impact
different groups, leading to a “rich get richer, poor get poorer” dynamic. We depict this effect
in Figure 1, which shows the variable impact of hardware changes across demographic groups or
classes on both a facial recognition task accuracy (left) and on an image classification task (right).
Remarkably, while the accuracy rates for majority groups (illustrated with lighter colors) remain
relatively stable across different hardware configurations, the rates for minority groups (darker
colors) exhibit considerable variability (left plot). This disparity also arises in balanced datasets
(right plot).

Building on these observations, this work introduces a theoretical framework aimed at quantifying
hardware-induced performance disparities. Both our theoretical treatment and empirical validation
reveal that hardware choices systematically alter not just accuracy but also fairness. Our findings
suggest that two key mechanisms contribute to these disparities: (1) variations in gradient flows
across groups, and (2) differences in local loss surfaces. Informally, the former affects local optimality
for groups, while the latter pertains to model separability. We analyze these contributing factors in
detail, providing both theoretical and extensive empirical experiments. Additionally, by recognizing
these factors, we propose a simple yet effective technique that can be used to mitigate the disparate
impacts caused by hardware tooling. The proposed method relies on an alteration to the training
procedure to augment the training loss with the factors identified as responsible for unfairness to
arise.

Our study stands out for its breadth, conducting experiments that cover a range of hardware
architectures, datasets, and model types and the reported results highlight the critical influence of
hardware on both performance and ethical dimensions of machine learning models.
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Figure 1: A model (ResNet34) with the same parameters (random seeds, epochs, batch-size) on
different hardware can have vastly different performance results, especially for minority groups
(dark colors). The reference hardware is T4. Left: UTK-Face, Right: CIFAR-10.

they are stuck with. It raises the important question: how does varying the type of hardware impact
fairness? Importantly, recent studies have indicated that models trained on different hardware
can exhibit varying levels of accuracy due to inherent differences in stochasticity (Zhuang et al.,
2022). One possible explanation is that hardware-induced nuances, such as precision discrepancies
and threading behaviours, may lead iterative optimizers to different local minima during training
(Hooker, 2020).

This paper further shows that these hardware-induced variations can disproportionately impact
different groups, leading to a “rich get richer, poor get poorer” dynamic. We depict this effect
in Figure 1, which shows the variable impact of hardware changes across demographic groups or
classes on both a facial recognition task accuracy (left) and on an image classification task (right).
Remarkably, while the accuracy rates for majority groups (illustrated with lighter colors) remain
relatively stable across different hardware configurations, the rates for minority groups (darker
colors) exhibit considerable variability (left plot). This disparity also arises in balanced datasets
(right plot).

Building on these observations, this work introduces a theoretical framework aimed at quantifying
hardware-induced performance disparities. Both our theoretical treatment and empirical validation
reveal that hardware choices systematically alter not just accuracy but also fairness. Our findings
suggest that two key mechanisms contribute to these disparities: (1) variations in gradient flows
across groups, and (2) differences in local loss surfaces. Informally, the former affects local optimality
for groups, while the latter pertains to model separability. We analyze these contributing factors in
detail, providing both theoretical and extensive empirical experiments. Additionally, by recognizing
these factors, we propose a simple yet effective technique that can be used to mitigate the disparate
impacts caused by hardware tooling. The proposed method relies on an alteration to the training
procedure to augment the training loss with the factors identified as responsible for unfairness to
arise.

Our study stands out for its breadth, conducting experiments that cover a range of hardware
architectures, datasets, and model types and the reported results highlight the critical influence of
hardware on both performance and ethical dimensions of machine learning models.
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Figure 1: A model (ResNet34) with the same parameters (random seeds, epochs, batch-size) on
different hardware can have vastly different performance results, especially for minority groups
(dark colors). The reference hardware is T4. Left: UTK-Face, Right: CIFAR-10.
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can exhibit varying levels of accuracy due to inherent differences in stochasticity (Zhuang et al.,
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and threading behaviours, may lead iterative optimizers to different local minima during training
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Remarkably, while the accuracy rates for majority groups (illustrated with lighter colors) remain
relatively stable across different hardware configurations, the rates for minority groups (darker
colors) exhibit considerable variability (left plot). This disparity also arises in balanced datasets
(right plot).

Building on these observations, this work introduces a theoretical framework aimed at quantifying
hardware-induced performance disparities. Both our theoretical treatment and empirical validation
reveal that hardware choices systematically alter not just accuracy but also fairness. Our findings
suggest that two key mechanisms contribute to these disparities: (1) variations in gradient flows
across groups, and (2) differences in local loss surfaces. Informally, the former affects local optimality
for groups, while the latter pertains to model separability. We analyze these contributing factors in
detail, providing both theoretical and extensive empirical experiments. Additionally, by recognizing
these factors, we propose a simple yet effective technique that can be used to mitigate the disparate
impacts caused by hardware tooling. The proposed method relies on an alteration to the training
procedure to augment the training loss with the factors identified as responsible for unfairness to
arise.

Our study stands out for its breadth, conducting experiments that cover a range of hardware
architectures, datasets, and model types and the reported results highlight the critical influence of
hardware on both performance and ethical dimensions of machine learning models.
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Conclusions

• Motivated by the use of rich datasets combined with black-box algorithms

• Proved that several problems with significant societal impacts (allocation of funding, language 
assistance) exhibit inherent unfairness when applied to a DP release of the census data.

Decision making: Characterized the conditions for which these problems have 
finite fairness violations and suggested guidelines to act on the decision 
problems or on the mechanisms to mitigate the fairness issues. 

Machine Learning: Characterized the reasons for DP to disproportionately 
affect the accuracy of learning tasks and proposed mitigating solutions.
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Unintended effects of DP on decisions and learning tasks
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• Exciting research direction that requires close cooperation between multiple areas and 
can transform the way we approach ML and decision making to render these algorithms 
more aligned with societal values. 
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