
Andrew Prout
MIT Lincoln Laboratory Supercomputing Center

S-HPC @ SC24, Atlanta, GA

17 Nov 2024

HPC with Enhanced User Separation

This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-05-C-0002.

Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United

States Government

DISTRIBUTION STATEMENT A. Approved for public release.

Distribution is unlimited.

This material is based upon work supported by the Department of the

Air Force under Air Force Contract No. FA8702-15-D-0001. Any

opinions, findings, conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the

views of the Department of the Air Force.

© 2024 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in

DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any

copyright notice, U.S. Government rights in this work are defined by

DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above.

Use of this work other than as specifically authorized by the U.S.

Government may violate any copyrights that exist in this work.

HPC UserSep - 2

AJP 17Nov2024

Who We Are – a Little History

MIT Building 20

Mission: Development of radar systems and technology

Main projects: Surveillance radar

Fire control radar

Navigation systems

SCR-584

4000 employees

Designed half of all US WWII radars

Est. 1951: Air defense and technology development

Main projects: Semi-Automatic Ground Environment (SAGE)

Major Innovations:

Real-Time

Computing Magnetic-core

Memory
Light-pen CRT

Interface

https://www.ll.mit.edu/sites/default/files/other/doc/2018-04/MIT_Lincoln_Laboratory_history_book.pdf

HPC UserSep - 3

AJP 17Nov2024

MIT Lincoln Laboratory
Department of Defense Federally Funded Research and Development Center

Massachusetts Institute of Technology MIT Lincoln Laboratory

Mission: Technology in Support of National Security

Key Roles: System architecture engineering

Long-term technology development

System prototyping and demonstration

Mission

Areas:

FY23 Funding: $1.39B

FY23 Employees: 4419

Facilities: 2.1M sq-ft

Air and Missile

Defense

Homeland

Protection

Air Traffic

Control

Communication

Systems

Advanced

Technology

Space

Control

ISR Systems

and Technology Tactical Systems

Cyber

Security

Engineering
Biotechnology &

Human Systems

HPC UserSep - 4

AJP 17Nov2024

History of Supercomputing at Lincoln Laboratory

1950 1960 1970 1980 1990 2000 2010

1951 Whirlwind

1953 Magnetic-Core

Memory Array

1956 TX-0

1958

• AN/FSQ-7 (Whirlwind II)

• Average Response Computer (ARC)

• CG-24

• TX-2

1962 Lincoln Instrument

Computer (LINC)

1963 Sketchpad

1970 Fast Digital

Processor (FDP)

Early 1990s

• APT processor

• RAPTOR processor

• Space-Time Adaptive

Processing Library

(STAPL)

1999 Parallel

Vector Library

(PVL)

2002

• ISR Processing and

Array Technology

(IPAT) processor

• MatlabMPI

2003 pMatlab

2004

• pMapper

gridMatlab

• LLGrid TX-2500

2007

• Parallel Vector

Tile Optimizing

Library (PVTOL)

• Real-Time

Communication

Layer (RTCL)

2004 Knowledge-Aided Sensor

Signal Processing and expert

Reasoning (KASSPER) processor

2014 LLGrid

TX-Green

Late 1970s High-speed

FFT pipelined processor

1974 Lincoln Digital

Voice Terminal (LDVT)

1977 : Lincoln

Digital Signal

Processor (LDSP)

1978 Micro-Processor

Based LPC Vocoder

(LPCM)

1982 Compact

LPC Vocoder
2016 Lincoln Laboratory

Supercomputing Center (LLSC)

1992 Radar Surveillance

Technology Experimental

Radar (RSTER) processor1970 GENESYS

2012 D4M

2015

BigDAWG

https://www.ll.mit.edu/r-d/cyber-security-and-information-sciences/lincoln-laboratory-supercomputing-center

HPC UserSep - 5

AJP 17Nov2024

1Interactive Grid Computing at Lincoln Laboratory, Bliss et al., LL Journal, 2006
2Scalability! But at what COST?, McSherry et al., HotOS XV, 2015

Lincoln Laboratory Supercomputing Center
(LLSC) Role

Mission

Areas

LLSC develops & deploys unique, energy-efficient supercomputing that provides cross-mission

– Data centers, hardware, software, user support, and pioneering research

– 100x more productive than standard supercomputing1

– 100x more performance than standard cloud2

OSINT

<html>

C2 Ground Space CyberMaritime AirHUMINTWeather

Vast Data

&

Computation

Air and Missile

Defense

Homeland

Protection

Air Traffic

Control

Communication

Systems

Advanced

Technology

Space

Control

ISR Systems

and Technology Tactical Systems

Cyber

Security

Engineering
Biotechnology &

Human Systems

http://www.triquint.com/images/photos/satellite.jpg

HPC UserSep - 6

AJP 17Nov2024

Service Nodes Compute Nodes

Scheduler

Network Storage

LAN Switch

Cluster Switch

Monitoring System

• LLSC provides a software platform that allows users to

– Launch interactive compute jobs from their desktop

– Share large volumes of project data

• The LLSC experience provides

– Reference datasets pre-positioned in databases

– Software modules and training to reduce user ramp up time

Broaden the Definition: Interactive HPC

Interactive

Compute

Jobs

Interactive

Database

Jobs

• Rapid Prototyping
– Algorithm development

– Data analysis

– Machine learning training

• Application Steering
– Real-time / streaming data analytics

– Debugging/validation

• Visualization

N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive Grid Computing at Lincoln Laboratory,” Lincoln Lab.

J., vol. 16, no. 1, p. 165, 2006.

HPC UserSep - 7

AJP 17Nov2024

• What’s different about HPC?

• Path Forward

• Implementation

• Results & Conclusion

Outline

HPC UserSep - 8

AJP 17Nov2024

• Every HPC user is a software developer

– … but software development is not most users’ primary domain of expertise!

– Very few HPC users have workflows that don’t require them to write code

– This can present in many different ways: writing algorithms in Python/Julia/Matlab/Octave,

setting up processing pipelines, performing analysis, creating multi-workflow orchestration

via shell scripts, developing a complex distributed simulation using C and MPI …

• Some of the code is early prototype “version 0”

– It’s going to have bugs

– It’s not going to have any security built in (yet)

• Even venerable HPC libraries have little security built-in

– MPI frameworks do not encrypt data or authenticate peer ranks

– Efforts to extend them with security have seen little adoption1,2

What’s different about HPC?

1. An Empirical Study of Cryptographic Libraries for MPI Communications, Naser et al., IEEE CLUSTER 2019

2. Scalable Cryptographic Authentication for High Performance Computing, Prout et al, IEEE HPEC 2012

HPC UserSep - 9

AJP 17Nov2024

• Users are often required to run both software from large open source frameworks and

proprietary closed-source programs

– Neither are typically designed with a HPC environment in mind

– Both have unique challenges making them difficult or impossible to modify to better suit this

environment

What’s different about HPC?

• Software is not the product

– In many cases the primary goal of running the

program is to generate data that will appear in a plot

• Obvious security concerns running this code:

– It’s interacting with sensitive data

– It’s distributed using the HPC network

– It’s on a shared use system

HPC UserSep - 10

AJP 17Nov2024

• What’s different about HPC?

• Path Forward

• Implementation

• Results & Conclusion

Outline

HPC UserSep - 11

AJP 17Nov2024

• How do we manage this risk?

• Option 1: Make the code better

– Focus on improving the most commonly-used software and

development libraries and frameworks, providing easy to

use security primitives

– Training users to be better, security-focused programmers

• Challenges:

– Doesn’t solve issue of where to run “version 0” of code

– Doesn’t address large open source frameworks or closed-source commercial software

– There is a daunting variety of software run on our system, we can’t fork everything

– Still requires users to prioritize writing secure code, and use any primitives provided

– We get new users all the time

Path Forward

HPC UserSep - 12

AJP 17Nov2024

• How do we manage this risk?

• Option 2: Make the HPC system itself better

– Every software developer needs a coding sandbox, a safe

testbed for the initial development of new code

• For when you know the code still has bugs, including

security-relevant bugs

• Enabling fast exploration of capability

• Not all coding efforts will turn into successful projects, some

are intentional one-offs

• Even for much more mature code, software designed with HPC in mind rarely fully considers security

– Core security responsibility cannot be delegated to unprivileged users

• If everyone is responsible for something, no one is

Path Forward

Can we make a system where all core security concerns are addressed at the system level?

HPC UserSep - 13

AJP 17Nov2024

• What’s different about HPC?

• Path Forward

• Implementation

• Results & Conclusion

Outline

HPC UserSep - 14

AJP 17Nov2024

• Enhanced separation: Enforcing the separation between users, isolating them so they

can’t observe or interact with each other

• Several categories of cross-talk that need to be considered:

– Processes / jobs (local / global)

– Filesystem (local / shared)

– Network & web forwarding

– Accelerators (GPUs, etc)

Implementation

HPC UserSep - 15

AJP 17Nov2024

Restrict locally visible Linux process information: hidepid=2 on /proc/ mount

• Hides processes and command lines belonging to other users or system daemons

• Solves entire class of information leakage issues

– Mitigated SLURM CVE-2020-27746 in advance: x11 authentication key exposed on command

line

• Critical on shared nodes (login, data transfer)

Implementation: Local Processes

Better user experience: users only see things they should care about

HPC UserSep - 16

AJP 17Nov2024

• Restrict globally visible scheduler information: SLURM privatedata configuration

– Hides other users jobs, usage, scheduling and accounting information, etc.

– Shares many of the same information leakage concerns as local processes

– Many job properties could contain private information: name, command, working directory

Implementation: Scheduler Jobs (global processes)

Better user experience: users only see things they should care about

HPC UserSep - 17

AJP 17Nov2024

• Goal: Users should be unable to share data with any other user

– Except through intentional use of an approved project group

• User private groups: the default UNIX group for every user contains only themselves

• HPC File Permission Handler1: Linux kernel patches to restrict filesystem permissions

– Security mask (smask): Block the use of world bits for unprivileged users

▪ Similar to “umask 007”, but immutable and enforced (even on chmod)

Implementation: Filesystem

1. Source code available at: https://github.com/mit-llsc

– Restrict file access control lists to group members only

▪ Cannot grant permission to a group unless you’re a member of said group

https://github.com/mit-llsc

HPC UserSep - 18

AJP 17Nov2024

• Goal: only permit network connections between processes where client & server are
running as the same user

– With ability to extend to project groups on an opt-in basis

• No modification of end-user code

– We’d tried providing cryptographic primitives before1, very little adoption

▪ Would require a mandate, and a never-ending “policing it” effort

▪ Not a solution for closed source code

– No ability for user to turn it off

• User-Based Firewall2 (UBF) for TCP & UDP traffic

– IPTables NetFilter Queue module (nfqueue) used to send new connections to userspace
daemon for decision

– Only “new” connections are sent, IPTables conntrack handles existing connections

– ident3-like query sent to far system to get user information, same query run locally

– Connection allowed if same user, or connector is a member of listener process primary group

– Implicitly controls most IB/RDMA traffic: most frameworks use TCP connection for setup

Implementation: Network – internal

1. Scalable Cryptographic Authentication for High Performance Computing, Prout et al, IEEE HPEC 2012

2. Enhancing HPC Security with a User-Based Firewall, Prout et al, IEEE HPEC 2016. Source code available at: https://github.com/mit-llsc

3. Identification Protocol, US Department of Defense, RFC1413 Feb 1993

https://github.com/mit-llsc

HPC UserSep - 19

AJP 17Nov2024

• Goal: Enable easy access to web-services running as jobs on the HPC cluster from
end-user web browsers

– With always-on enforced authentication provided by the system

– Without TLS certificate warnings

• Point solutions existed, but require integration effort, increased attack surface, and
often used incompatible authentication schemes

– Multi-user solutions: JupyterHub, RStudio, …

– One-offs: TensorBoard, VisualStudio Code Server, …

• Web application forwarding via HPC portal1

– Allows users to forward access to web applications running as part of jobs

– Avoids ad-hoc port forwarding through SSH, TLS certificate warnings, user
misconfigurations

– Authentication required to HPC Portal and UBF connection rules applied

▪ Supports password-less smartcard-only systems

Implementation: Network – external

1. Enhancing HPC Security with a User-Based Firewall, Prout et al, IEEE HPEC 2016. Source code available at: https://github.com/mit-llsc

https://github.com/mit-llsc

HPC UserSep - 20

AJP 17Nov2024

• GPUs do not use a traditional security model for data resident in memory

– No concept of data ownership, data segmenting within the GPU1,2

• Assign GPUs as a single-user resource

– Not relevant when whole node scheduling when pam_slurm restrictions are in place

– Modify permissions on relevant character special files in /dev/ to allow only the user private

group of the user allocated that GPU via SLURM

– GPUs not assigned to the user are not visible at all

• Clear GPU memory before reassignment

– GPU has no implicit way to know when it’s being reassigned

– Previous user’s data will remain in GPU memory, registers

– Vendor-provided steps taken to clean GPU performed in SLURM epilog

Implementation: Accelerators

1. CUDA Leaks: Information Leakage in GPU Architectures, Di Pietro et al, ACM TECS 2013

2. Confidentiality Issues on a GPU in a Virtualized Environment, Maurice et al, FC 2014

HPC UserSep - 21

AJP 17Nov2024

• What’s different about HPC?

• Path Forward

• Implementation

• Results & Conclusion

Outline

HPC UserSep - 22

AJP 17Nov2024

• Opportunities for accidental data leakage between users are greatly reduced

– A few paths still exist: file names in world-writable directories (e.g. /tmp, /var/tmp), abstract

namespace unix domain sockets, direct IB verbs communication

• Enhances reliability as well

– Even if users chose same port number for a network service, they can’t crosstalk and corrupt

each others’ data

• Limits the damage of misbehaving code

– Contains the “blast radius” of any issues to just that user’s account

• The user experience is enhanced because they don’t need to sort through irrelevant

information about other users processes/jobs

• Compliance people are happier

– No more blurring the line between who is responsible for security: it’s a system service

Results

HPC UserSep - 23

AJP 17Nov2024

• Every HPC user is a software developer

• Software development is not their primary domain of expertise, and never will be

• By enabling strong user separation at every point in the system, you protect the

confidentiality and integrity of the data

• By reducing the burden on the user to worry about these things, the usability of the

system is enhanced as well

• By making security a system-provided service, data owners can have increased

confidence about having their data on a multi-tenant system

Conclusion

HPC UserSep - 24

AJP 17Nov2024

Acknowledgements

• LaToya Anderson

• William Arcand

• William Bergeron

• David Bestor

• Alex Bonn

• Daniel Burrill

• Chansup Byun

• Vijay Gadepally

• Michael Houle

• Matthew Hubbell

• Hayden Jananthan

• Michael Jones

• Jeremy Kepner

• Piotr Luszczek

• Peter Michaleas

• Lauren Milechin

• Guillermo Morales

• Julie Mullen

• Albert Reuther

• Antonio Rosa

• Siddharth Samsi

• Jason Williams

• Charles Yee

HPC UserSep - 25

AJP 17Nov2024

Contact

aprout@ll.mit.edu

Source Code: https://github.com/mit-llsc

https://github.com/mit-llsc

