
Using Malware Detection Techniques
for HPC Application Classification

Thomas Jakobsche, Florina M. Ciorba
University of Basel, Switzerland

hpc.dmi.unibas.ch | dmi-hpc@unibas.ch | dmi-hpc.bsky.social | hpc-dmi-unibas

since 08/2015

17 November 2024 - SC24 - Workshop on Cyber Security in High Performance Computing (S-HPC’24) - Atlanta, Georgia, US

Thomas
Jakobsche

Florina M.
Ciorba

Why are we here today?

Problem
Statement

ØHPC admins and
researchers do not
actually know what
users are executing

• Deviation from allocation
purpose and/or terms-of-
use

• Security and compliance
issues, waste and misuse
of HPC resources

Motivation

ØHPC admins and
researchers would
benefit from workload
identifiers

• Admins: Ensure the
efficient and secure use
of resources

• Researchers: Focus
optimization efforts and
future system design

Current
Limitations

ØNo retention of reliable
information about
workload identity &
characteristics

• Group accounting and
allocation purpose are
insufficient

• Job names and user-
compiled executable
names are unreliable
(e.g., my_job and a.out)

Our Proposed
Solution

ØProvide access to
application labels for
HPC admins and
researchers

• Classifying application
executables through
supervised ML

• Using fuzzy hash
features inspired by
malware detection
techniques

2Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

Context and Proposed Workflow

HPC application executables

• Application executables are the core of HPC jobs

• Different versions of the same application in circulation

• Executables can be accessed through Slurm’s prolog

Guiding Questions

Is an application similar to a set of applications that

• A user or their group usually execute?

• Are normally used for a specific allocation?

• Are not allowed on the system at all?

3Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

Methodology
Dataset of Application Executables

Ground Truth Labels
• Evaluate classification of application executables

through a dataset with ground truth labels

Scanning the Software Stack
• Bash script to collect ELF files from the

pre-installed software stack on sciCORE*

The Dataset
• 92 application classes and 5’333 samples (executables)
• Splitting 2’688 for the training set and 2’645 for the test set
• The test includes 852 samples from completely unseen classes

4

Class Label Version Sample

/OpenMalaria /46.0-iomkl-2019.01 /bin/openMalaria

/OpenMalaria /43.1-foss-2021a /bin/openMalaria

/Velvet /1.2.10-goolf-1.4.10 /bin/velveth

...

*sciCORE, computing center at the University of Basel
https://scicore.unibas.ch

Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

OpenMalaria: A simulator of
malaria epidemiology and control

Methodology
Using Features inspired by Malware Detection Techniques

Hashing in Malware Detection
• Quickly classify malware with malware databases

Cryptographic hashes (e.g., SHA) for exact file matching
• “Avalanche effect” small changes à extreme differences

Fuzzy hashes (e.g., SSDeep) to match partial file similarities
• Detect variants of files with minor changes
• Can cover differences in compilation and code
• In this work: raw file, strings (characters), nm (symbols)

5

F

I

L

E

Hash 1

Hash 2

Hash 3

Hash 4

Fuzzy Hash

We use SSDeep to generate and
combine hashes for file segments

Application Version sha256sum of symbols SSDeep hash of symbols (in our work)

OpenMalaria

46.0-iomkl-2019.01 b33e2f1af03dedcb1e7bd2046d8c046e
9a56a0970ec0775126ef98a9fc3a7f52

1536:z5ujB2ipprvzwzK8l8lPRCuN0L830XmR8c/dGS
pTWK5f5Kuy1azM/M3rw83rwLa6Ftljyx:C5ujBfQzr

43.1-foss-2021a 96b5640230e0079367091258be34968
1f14867c5ff91ee747ea915ee339854f6

1536:3bn92zprvzwze8lPRCuN0L830XmR8c/dGS
pTWK5f5Kuy1aOMP83rFLa6FtlDJIzu:3bn9uQzY

Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

Methodology
New Fuzzy Hash Classifier for Application Executables

Fuzzy Hash Classifier: based on multiple Decision Trees
(aka Random Forest RF) of Scikit-Learn

• Non-linearity: RF capture non-linear similarity of fuzzy
hashes (which are not explicit Euclidean distances)

• Confidence Threshold: We enable the classifier to
predict “unknown” if the class prediction probability is
below a threshold (tuned on the training set)

For example, if the model predicts "OpenMalaria" with
a 65% probability, but the confidence threshold is set at
70%, the prediction will be labeled as "unknown."

6Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

Adapted from: https://de.wikipedia.org/wiki/Random_Forest

Results
Evaluation and the Classification Report

!1 #$%&' = 2 * +&'$,#,%- * .'$/00
+&'$,#,%- + .'$/00

89% micro f1-score
treating all samples equally

90% macro f1-score
averaging results per class

90% weighted f1-score
class-weighted averaging

7

Class Precision Recall f1-Score Support

“unknown” 0.92 0.75 0.83 852

Cell-Ranger 0.39 0.89 0.54 28

CellRanger 0.79 0.95 0.86 20

CapnProto 1.00 1.00 1.00 1

FSL 1.00 1.00 1.00 351

JAGS 1.00 1.00 1.00 1

kentUtils 1.00 0.99 0.99 352

...

micro avg 0.89 0.89 0.89 2645

macro avg 0.92 0.92 0.90 2645

weighted avg 0.92 0.89 0.90 2645

Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

Results
A Closer Look at the Classification Report

Predicting the “unknown” class
• Confidently predicting a sample as “unknown”

but not catching all ”unknown” samples

Label noise in the dataset
• Some noise in the labels of the pre-installed

applications (versions in different directories)

High application class imbalance
• Balanced weights assigned to classes,

inversely proportional to sample counts

8

Class Precision Recall f1-Score Support

“unknown” 0.92 0.75 0.83 852

Cell-Ranger 0.39 0.89 0.54 28

CellRanger 0.79 0.95 0.86 20

CapnProto 1.00 1.00 1.00 1

FSL 1.00 1.00 1.00 351

JAGS 1.00 1.00 1.00 1

kentUtils 1.00 0.99 0.99 352

...

micro avg 0.89 0.89 0.89 2645

macro avg 0.92 0.92 0.90 2645

weighted avg 0.92 0.89 0.90 2645

Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

Results
Confidence Threshold for “unknown” Prediction

No configuration achieving more than ~90%
• Limitations of the current features + model
• Noise and inaccurate labels in the dataset

9

Class Precision Recall f1-Score Support

“unknown” 0.92 0.75 0.83 852

Cell-Ranger 0.39 0.89 0.54 28

CellRanger 0.79 0.95 0.86 20

CapnProto 1.00 1.00 1.00 1

FSL 1.00 1.00 1.00 351

JAGS 1.00 1.00 1.00 1

kentUtils 1.00 0.99 0.99 352

...

micro avg 0.89 0.89 0.89 2645

macro avg 0.92 0.92 0.90 2645

weighted avg 0.92 0.89 0.90 2645

Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

Discussion
Implications of Feature Importance

Comparing raw file content, strings, and symbols

• Raw file content and printable characters almost always
change with compiler version and code modifications

• Symbol table information is much more robust, function and
variable names tend to be consistent even across versions

10

symbols: function and variable
names in the executable

• _end
• _fini
• _init
• main
• _start
• _Z11print_errnov
• _Z14print_progressiRi

strings: readable printable strings
in the executable

• /lib64/ld-linux-x86-64.so.2
• GLIBC_2.2.5
• libc.so.6
• perror
• _ZNKSt7__cxx1112basic_stringI

cSt11char_traitsIcESaIcEE7com
pareEPKc

raw file: information as a mix of
gibberish and sometimes
readable characters

ELF>??P@?I<@8 @!
@@@@@?88@8@@@P?-P?-`?-
`?m`?m ?`??-??m??mpTT@T@
P?td\?,\?l\?l????Q?tdR?td`?-
`?m`?m?? /lib64/ld-linux-x86-64.so.2
GNU)0??I????Zs??!<}y?s??D ?

Hash Feature Importance

raw file 0.0718

strings 0.1404

symbols 0.7879

Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

Discussion
Limitations of Our Fuzzy Hash Classifier Solution

Symbol table information can be removed “binary stripping”
• Save storage space (between 10%-50% of the executable)
• Prevent reverse engineering (e.g., proprietary software)

Wrapper scripts and our proposed Slurm prolog approach
• Python executions will be classified as the Python interpreter itself

Reverse engineering potentially overcoming limitations
• Control Flow Graph (all possible execution paths)
• Dynamic Call Tree (actual function calls during execution)

11

Hash Feature Importance

raw file 0.0718

strings 0.1404

symbols 0.7879

Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

a

b c

d e

f

a

b c

d e

f

Outlook in the Future

Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel 12

Next steps
Adding additional features of application
executables (e.g., ldd shared libraries)

Deployment on Tier-0 systems and
classification of user-compiled executables

Future work
Compare different machine learning approaches
(e.g., SVM, KNN)

Combine static (executables) and dynamic
(resource usage) classification

Test more ”invasive” analysis techniques
(e.g., reverse engineering approaches)

Key Points and Take Aways

Contribution: New Fuzzy Hash Classifier for HPC applications

• Features based on fuzzy hashing,
inspired by malware detection techniques

• Evaluation on pre-installed HPC applications
~90% micro, macro, and weighted f1-score

• Step forward toward ensuring the efficient and
secure use of shared computational HPC resources

Take aways: Our Fuzzy Hash Classifier provides application labels for HPC jobs

• HPC administrators Can detect deviation from allocation purpose or terms-of-use

• HPC researchers Receive more reliable information and statistics about software usage

13Using Malware Detection Techniques for HPC Application Classification Jakobsche, Ciorba | HPC | DMI | University of Basel

Using Malware Detection Techniques
for HPC Application Classification

Thomas Jakobsche, Florina M. Ciorba
University of Basel, Switzerland

hpc.dmi.unibas.ch | dmi-hpc@unibas.ch | dmi-hpc.bsky.social | hpc-dmi-unibas

since 08/2015

17 November 2024 - SC24 - Workshop on Cyber Security in High Performance Computing (S-HPC’24) - Atlanta, Georgia, US

Thomas
Jakobsche

Florina M.
Ciorba

