

Dynamic Factor Graphs for Attack Preemption

Phuong Cao, Zbigniew Kalbarczyk, Ravishankar lyer

NCSA | National Center for Supercomputing Applications

U.S. National Science Foundation CICI, CC*, FMiTF, RoRS, SaTC

Secure-HPC Workshop Supercomputing' 25 Nov 16th, St. Louis, MO

Cloud

HPC

Low trust, built-in isolation

- Virtual Private Cloud
- Security Groups
- Encrypted FS in transit/at rest

Least privilege by default

Resource isolation

Target

- Service disruption
- Account takeover

Distributed monitoring

Host-based agents

High Trust

- Federated authentication
- Shared file systems, GPU drivers
- Message passing

High Privilege

- Custom code modification is norm.
- More sensitive and proprietary data

Target

- Data exfiltration and IP theft
- Resource hijacking

Centralized monitoring

- Bastion host, optical tap

Photos: Adobe Stock Photo, NCSA Radiant

Cloud

High Trust

- Federated authentication
- Shared file systems, GPU drivers
- Message passing

Low trust, built-in isolation

- Virtual Private Cloud
- Security Groups
- Encrypted FS in transit/at rest

Least privilege by default

- Resource isolation

High Privilege

- Custom code modification is norm
- More sensitive and proprietary data

Target

- Service disruption
- Account takeover

Distributed monitoring

- Host-based agents

Target

- Data exfiltration and IP theft
- Resource hijacking

Centralized monitoring

- Bastion host, optical tap

Photos: Adobe Stock Photo, NCSA Radiant

HPC

Cloud

Low trust, built-in isolation

- Virtual Private Cloud
- Security Groups
- Encrypted FS in transit/at rest

Least privilege by default

Resource isolation

Target

- Service disruption
- Account takeover

Distributed monitoring

Host-based agents

HPC

High Trust

- Federated authentication
- Shared file systems, GPU drivers
- Message passing

High Privilege

- Custom code modification is norm
- More sensitive and proprietary data

Target

- Data exfiltration and IP theft
- Resource hijacking

Centralized monitoring

- Bastion host, optical tap

Secure-HPC at Supercomputing

Cloud

Low trust, built-in isolation

- Virtual Private Cloud
- Security Groups
- Encrypted FS in transit/at rest

Least privilege by default

Resource isolation

Target

- Service disruption
- Account takeover

Distributed monitoring

Host-based agents

HPC

High Trust

- Federated authentication
- Shared file systems, GPU drivers
- Message passing

High Privilege

- Custom code modification is norm
- More sensitive and proprietary data

Target

- Data exfiltration and IP theft
- Resource hijacking

Centralized monitoring

- Bastion host, optical tap

Summary of Dynamic Factor Graphs for Attack Preemption (1)

Challenges

- Overwhelming noise and alert volumes
- Relying on late-state critical alerts
- Necessity of alert sequence detection

State of the Art

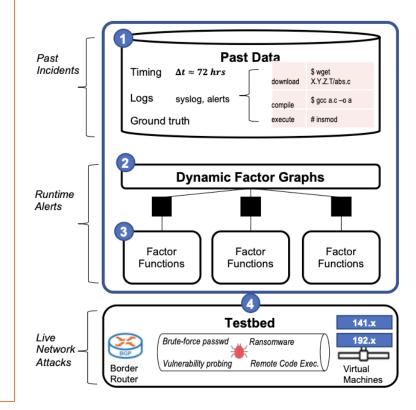
- Atomic alert-based system
- Black Hole Routing
- Deep generative models

Dynamic Factor Graphs for Attack Preemption

Summary of Dynamic Factor Graphs for Attack Preemption (1)

Challenges

- Overwhelming noise and alert volumes
- Relying on late-state critical alerts
- Necessity of alert sequence detection


State of the Art

- Atomic alert-based system
- Black Hole Routing
- Deep generative models

Our Contributions

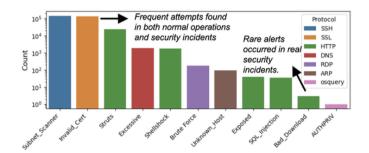
- Characterization of alert sequences in real-world, national scale HPC providing GPU resources
- Insights:
- (1) Critical alerts arriving late
- (2) Alert sequences length from two to four for detection
- (3) Similarity of attacks (95% show 33% similar sequences)
- (4) Timings of recurrent alerts matter.
- Dynamic Factor Graphs:

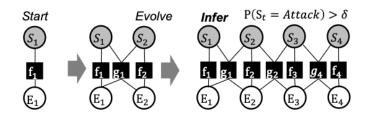
Uncertainty, conditional probabilities, and evolution of alerts

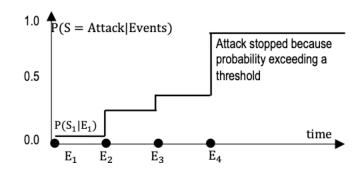
Summary of Dynamic Factor Graphs for Attack Preemption (2)

Challenges

- Overwhelming noise and alert volumes
- Relying on late-state critical alerts
- Necessity of alert sequence detection


State of the Art


- Atomic alert-based system
- Black Hole Routing
- Deep generative models


Our Contributions

- Characterization of alert sequences in real-world, national scale HPC providing GPU resources
- Insights:
- (1) Critical alerts arriving late
- (2) Alert sequences length from two to four for detection
- (3) Similarity of attacks (95% show 33% similar sequences)
- (4) Timings of recurrent alerts matter.
- **Dynamic Factor Graphs:**

Uncertainty, conditional probabilities, and evolution of alerts

8

Summary of Dynamic Factor Graphs for Attack Preemption (3)

Challenges

- Overwhelming noise and alert volumes
- Relying on late-state critical alerts
- Necessity of alert sequence detection

State of the Art

- Atomic alert-based system
- Black Hole Routing
- Deep generative models

Our Contributions

- Characterization of alert sequences in real-world, national scale HPC providing GPU resources
- Insights:
- (1) Critical alerts arriving late
- (2) Alert sequences length from two to four for detection
- (3) Similarity of attacks (95% show 33% similar sequences)
- (4) Timings of recurrent alerts matter.
- Dynamic Factor Graphs:

Uncertainty, conditional probabilities, and evolution of alerts

Future Work

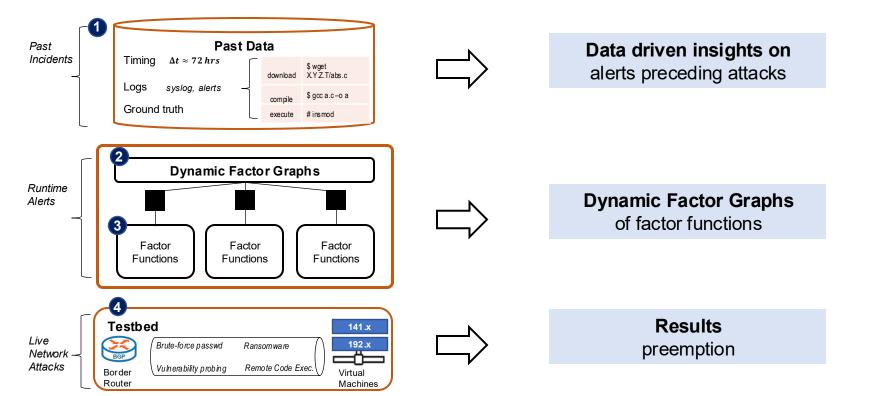
Providing data on emerging vulnerabilities

0-day in drivers of accelerators (GPU, QPU)

Provenance of Al models (data, code)

Quantum-resistant cryptography pef. overhead

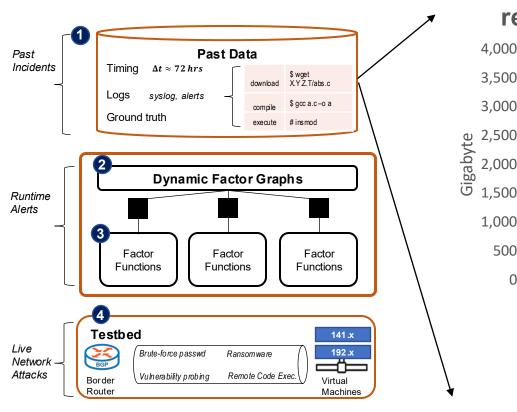
MCP honeypot

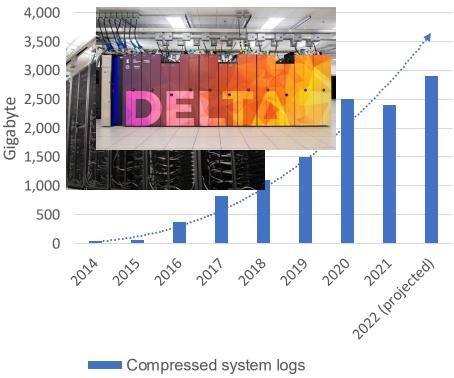

Focus on attack recovery

Automated integration with Black Hole Router

Minimize workload disruptions via checkpointing

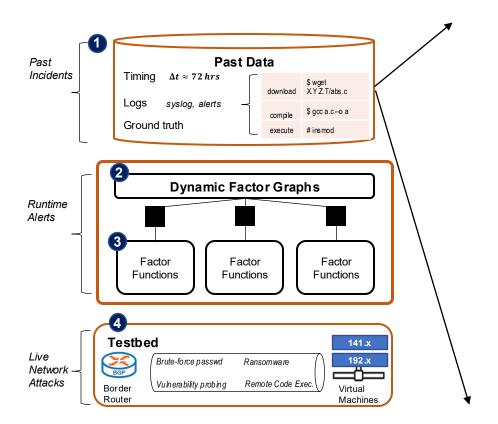
New research security policies on AI/HPC


Part I. Data-Driven Insights


Dynamic Factor Graphs for Attack Preemption

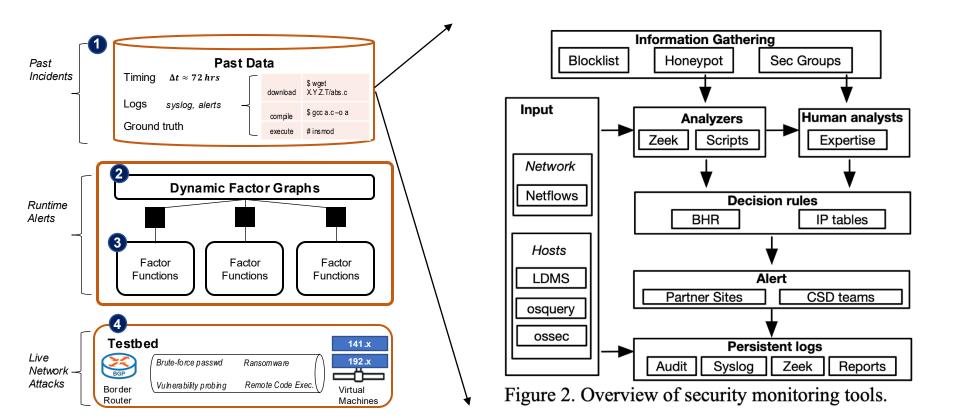
10

Motivation for Data Curation

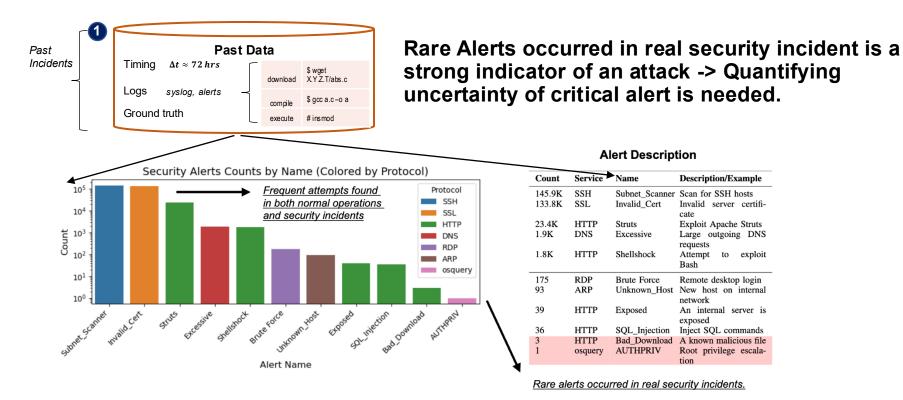


Longitudinal, growing resiliency and security dataset

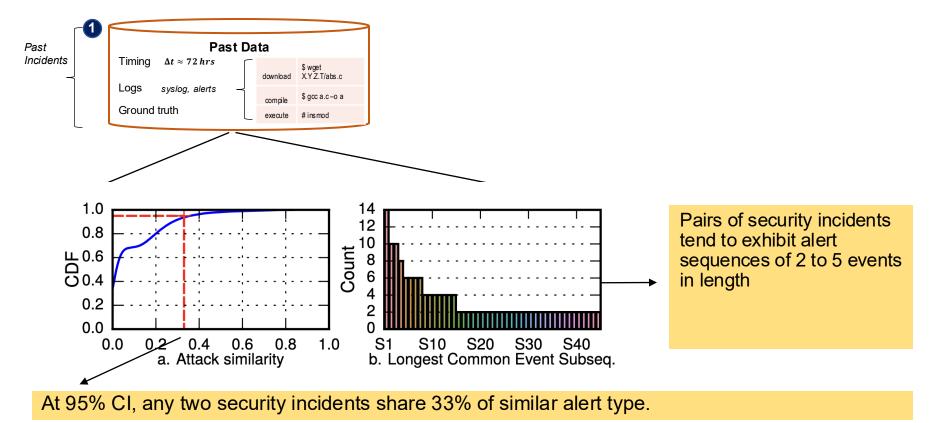
····· Power (Compressed system logs)


Data Collection Statistics

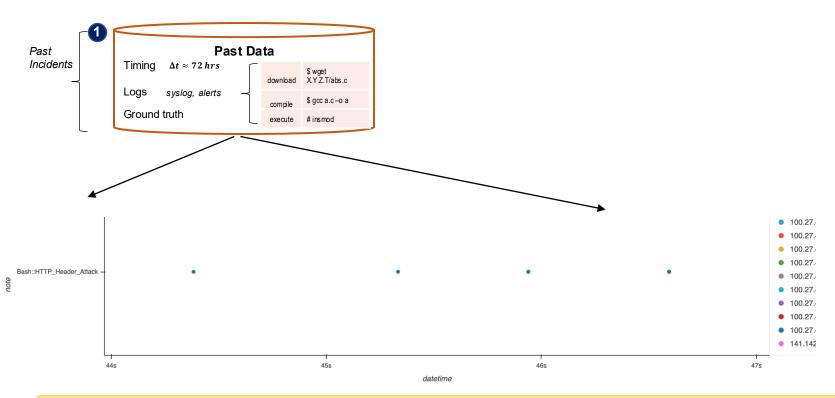
Data type	Summary statistics
Number of hosts	5,000+ (clusters,
	workstations, laptops)
Number of active users	6,000+
Network	Class B (/16) up to 65,535 IP addresses
Network link	4.5 Tbps
Monitoring data	Zeek (4.5 GB daily)
	Central syslog (1.5 GB
	daily)
	Persistent logs (20 TB total)
OS types	Linux, Windows, macOS

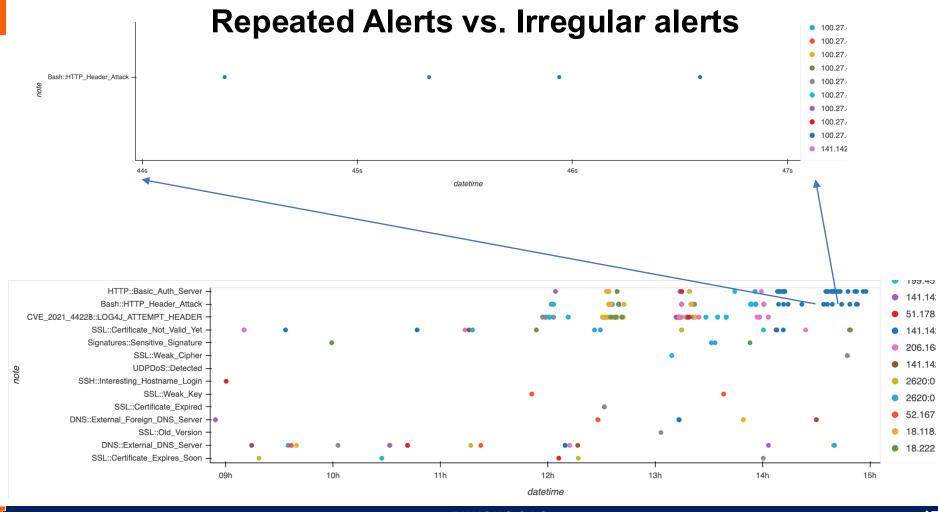

Table 1. Summary of security log data.

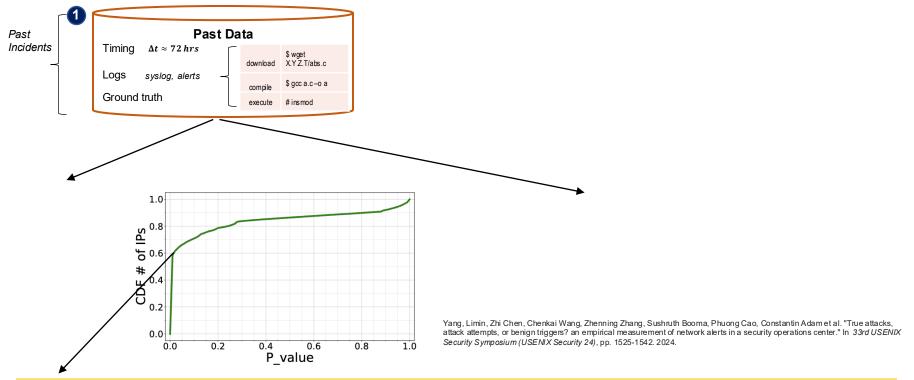
Data Collection System



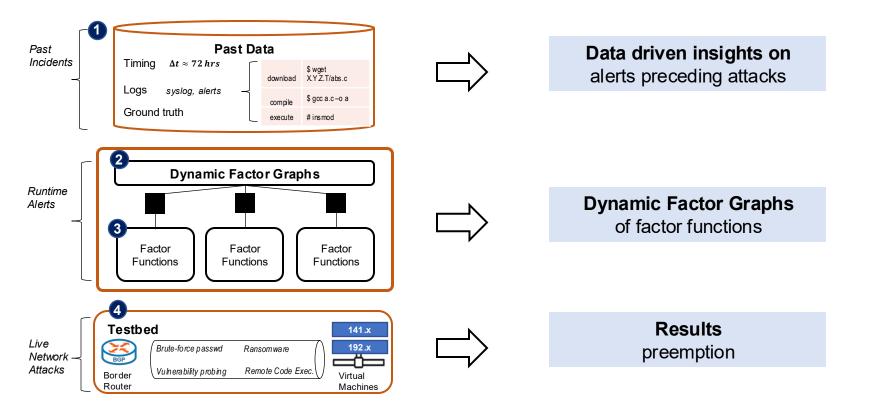
13

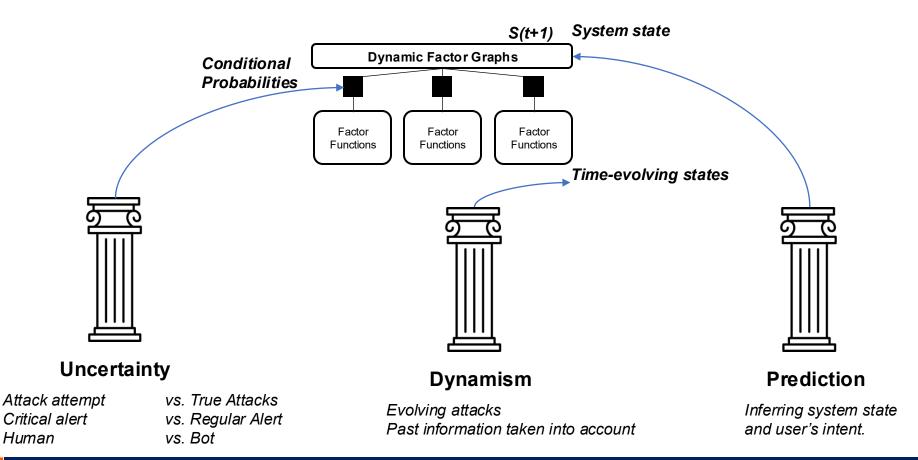

Alert Distribution: Common vs. Rare Alert


Alert Similarities among Attacks


Alert Interval Between Attack Attempts

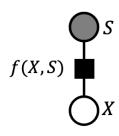
Timing and interval of alerts indicate the degree of automation (human or bot)

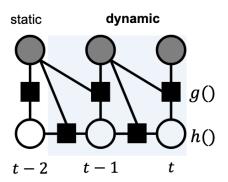

Statistical test for precisely repeated alerts


Testing for precise interval of alerts help filter bots vs. human-based attacks

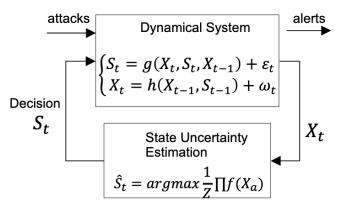
18

Part II. Dynamic Factor Graphs


Why Dynamic Factor Graphs?


Why Dynamic Factor Graphs?

Common Features	Bayesian Networks	Markov Random Fields	Factor Graphs
Typical Applications	Medical diagnosis, causal modeling	Image processing, natural language processing	Coding theory, error correction, security
Graph Structure	Directed Acyclic Graph (DAG)	Undirected graphs	Bipartite (two types of nodes)
Nodes	Random variables	Random variables	Variables and factors
Edges	Directed $X \to Y$	Undirected $X - Y$	Undirected, e.g., $f(X,Y)$ as $X - f - Y$
Representation	Conditional probabilities	Potential functions	Factors (any multivariate function)
Inference	Variable elimination, junction tree	Mean-field, Gibbs sampling	Belief propagation, sum-product, max-product
Unique Features	Bayesian Networks	Markov Random Fields	Factor Graphs
Complex dependencies	Conditional dependency between immediate	First order Markov property depending only on	✓ Model higher-order and multiple complex
	variables such as a parent and a child.	immediate previous state (e.g., memoryless)	dependencies, e.g., alert sequences in attacks.
Explicit structure	A BN typically shows conditional probabilities	A MRF shows potential functions of a clique	\checkmark Explicitly specify a prior probability $P(X)$,
	P(Y X) but does not explicitly specify prior	of variables, e.g., $P(X,Y,\ldots,Z,T)$, but does not	a conditional probability $P(Y X)$ or a potential
	P(X) or $P(Y)$ in a BN.	specify pairwise variable relationships.	function $P(X,Y)$ using factor functions.
Unified Representation	Only directed dependencies	Undirected dependencies	✓ Unify representation of directed (BN) and
-		•	undirected (MRF) using bipartite graph.
Efficient inference	Exact inference on small BN models	Approximate inference using Gibbs sampling	✓ Fast inference using Belief Propagation or
			approximation using Gibbs sampling.


Dynamic Factor Graphs

a) A static Factor Graph of a single state variable

b) A dynamic Factor Graph (DFG) evolved from a static FG

c) Dynamic Equations of inference in a DFG

Factor Functions

$$\underbrace{P(S_{1..n}, E_{1..n})}_{joint \ distribution} = \frac{1}{Z} \prod_{i=1}^{n} \left[\underbrace{f(S_i, E_i)}_{severity} \times \underbrace{g(S_i, E_1, ..., E_t)}_{similarity} \right]$$

$$\times \underbrace{h(S_i, E_t)}_{sophistication}$$

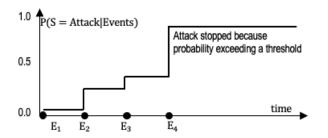
$$S = \{benign, suspicious, preemptive, malicious\}$$

$$\textbf{Safe state} \quad \textbf{Preemptive} \quad \textbf{Unsafe state}$$

Factor Functions

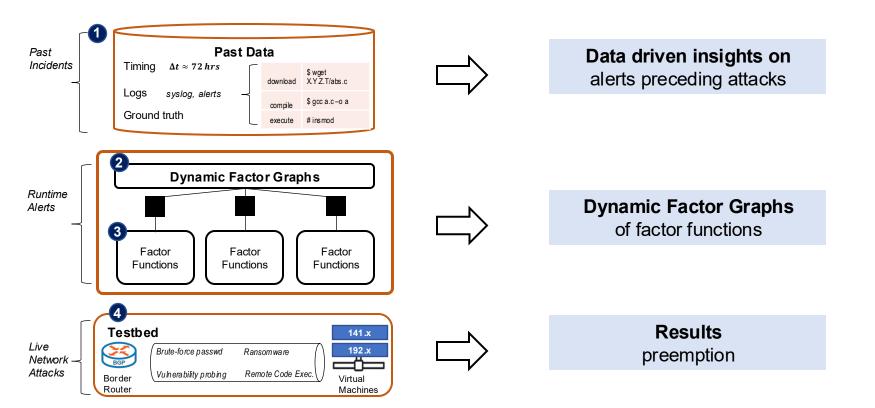
	Factor Function	Relation to attack state	Definition	Notations
Severity	$f(S_t,\Phi(E_t))$	Measures the severity indicated by a single alert to assess attack state	$e^{-\lambda_{i,f}\delta(S_t,\Phi(E_t))^2}$	$\Phi: \mathcal{E} \mapsto \mathcal{S}$ maps an alert to an attack state based on the occurrence of the alert in the past (real) attacks and in normal (benign) operations λ_f : rate of severity
Similarity	$g(S_t,\Phi(S_t,E_i,E_j,\ldots,E_t))$	Measures the similarity of an alert sequence for resemblance to past attacks	$e^{-\lambda_{i,f}\delta(S_t,\Phi(E_i,E_j,,E_t))^2}$	$\Phi_n: \mathcal{E}^n \mapsto \mathbb{S}$ maps an alert sequence $(n \ge 2)$ to an attack state based on presence of the sequence in the past (real) attacks and in normal (benign) operations. λ_g : rate of similarity
Sophistication	$h(S_t,\Phi(E_t))$	Measures the attack complexity by analyzing repetitiveness, distinguishing predictable bot patterns from sophisticated human tactics.	$e^{-\lambda_h \delta(S_t, \Phi(E_t))^2}$	$\Phi: \mathcal{E} \mapsto \mathcal{S}$ maps an alert E to an attack state based on autocorrelation to detect periodic patterns and randomness in alert triggers. λ_h : rate of sophistication

The likelihood of alerts in relation to attacks


Identify sequences of alerts*

Hypothesis Testing:

- Null Hypothesis (H₀): The alert sequence is not indicative of an attack.
- Alternative Hypothesis (H₁): The alert sequence is indicative of an attack.


Test Statistic:

- Prior probability: Probability that an individual alert is an indicator of an attack
- Posterior Probability: The posterior probability of an attack given progressively more alerts
 - P(Attack | A1) P(Attack | A2) P(Attack | A3)

^{*}using Longest common subsequence (LCS) algorithm

Part III. Results

Alert Patterns

Alert 1	Alert 2	Alert 3
ALERT_SENSITIVE_HTTP_URI	ALERT_SENSITIVE_HTTP_URI	
ALERT_INTERNAL_ADDRESS_SCAN	ALERT_INTERNAL_ADDRESS_SCAN	
ALERT_MULTIPLE_LOGIN	ALERT_SENSITIVE_HTTP_URI	
ALERT_MULTIPLE_LOGIN	ALERT_WEAK_PASSWORD_LOGIN	
ALERT_ANOMALOUS_HOST	ALERT_SENSITIVE_HTTP_URI	ALERT_INSTALL_BOT
ALERT_SENSITIVE_HTTP_URI	compile	
ALERT_ANOMALOUS_HOST	ALERT_WEAK_PASSWORD_LOGIN	
ALERT_HIGH_NETWORKFLOWS	ALERT_NEW_SENSITIVE_CONNECTION	
ALERT_SENSITIVE_HTTP_URI	ALERT_MALWARE_HASH_REGISTRY_MATCH	
ALERT_MALWARE_HASH_REGISTRY_MATCH	ALERT_SENSITIVE_FTP_URI	
ALERT_MULTIPLE_LOGIN	ALERT_INTERNAL_ADDRESS_SCAN	
ALERT_MULTIPLE_LOGIN	ALERT_MALWARE_HASH_REGISTRY_MATCH	ALERT_SENSITIVE_FTP_URI
ALERT_SSH_BRUTEFORCE	ALERT_MULTIPLE_LOGIN	ALERT_WEAK_PASSWORD_LOGIN
ALERT_MULTIPLE_LOGIN	read_host_configuration	
ALERT_HIGH_NETWORKFLOWS	ALERT_NEW_SENSITIVE_CONNECTION	
ALERT_NEW_IRC_CONNECTION	ALERT_SENSITIVE_HTTP_URI	
ALERT_ANOMALOUS_HOST	ALERT_SENSITIVE_HTTP_URI	ALERT_INSTALL_BOT
ALERT_WATCHED_COUNTRY_LOGIN	ALERT_SENSITIVE_HTTP_URI	
ALERT_SENSITIVE_HTTP_URI	ALERT_MALWARE_HASH_REGISTRY_MATCH	
ALERT_SENSITIVE_HTTP_URI	ALERT_INVALID_MIME_EXT	
ALERT_MALWARE_HASH_REGISTRY_MATCH	ALERT_MALICIOUS_URL	
ALERT_FAILED_PASSWORD	ALERT_CLEAR_HISTORY	
login	ALERT_ANOMALOUS_HOST	
ALERT_ILLEGAL_USER_ACTIVITY	ALERT_MULTIPLE_LOGIN	ALERT_WATCHED_COUNTRY_LOGIN

Comparison of DFG vs. baseline

Past attacks				
Method	TP	TN	FP	FN
Critical alert (KNOWN MALWARE)	8.95	1	0	91.05
Anomalous Alert (ANOMALOUS_HOST)	9.8	96.0	4.0	90.2
Dynamic Factor Graph	74.2	98.5	1.5	25.8
Replayed attacks				
Method	TP	TN	FP	FN
Critical alert (CVE-2017-5638)	8.4	99.55	0.45	91.3
Anomalous alert (RDP bad cookie)	0	99.96	0.037	1
Dynamic Factor Graph	91.6	99.11	0.9	8.4
Live traffic				
Method	TP	TN	FP	FN
Critical alert (Root Privilege)	N/A	93.1	6.9	N/A
Anomalous alert (SSH Bad client)	N/A	98.77	1.23	N/A
Dynamic Factor Graph	N/A	0.993	0.007	N/A

Table IV: Summary of results on critical and anomalous alerts observed in past, replayed, and live traffic attacks. TP: True Positive. TN: True Negative. FP: False Positive FN: False Negative

28

Summary of Dynamic Factor Graphs for Attack Preemption

Challenges

- Overwhelming noise and alert volumes
- Relying on late-state critical alerts
- Necessity of alert sequence detection

State of the Art

- Atomic alert-based system
- Black Hole Routing
- Deep generative models

Our Contributions

- Characterization of alert sequences in real-world, national scale HPC providing GPU resources
- Insights:
- (1) Critical alerts arriving late
- (2) Alert sequences length from two to four for detection
- (3) Similarity of attacks (95% show 33% similar sequences)
- (4) Timings of recurrent alerts matter.
- Dynamic Factor Graphs:

Uncertainty, conditional probabilities, and evolution of alerts

Future Work

Providing data on emerging vulnerabilities

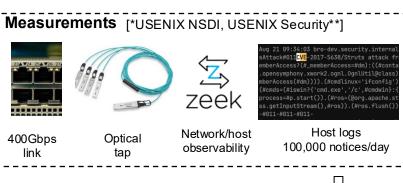
Accelerator drivers (0-day)

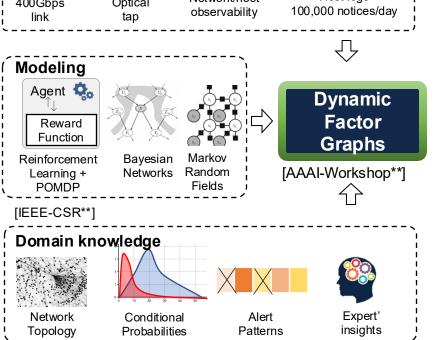
Provenance of Al models (data, code)

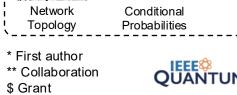
Quantum-resistant cryptography

MCP honeypot

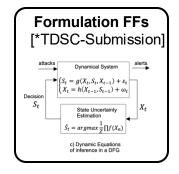
Focus on attack recovery

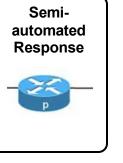

Automated integration with Black Hole Router


Minimize workload disruptions via checkpointing

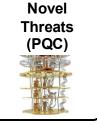

New research security policies on AI/HPC

Acknowledgements





Data-driven Attacks



Dependable HPC systems

[*Secure HPC @ Supercomputing]

[NSF CC* \$]