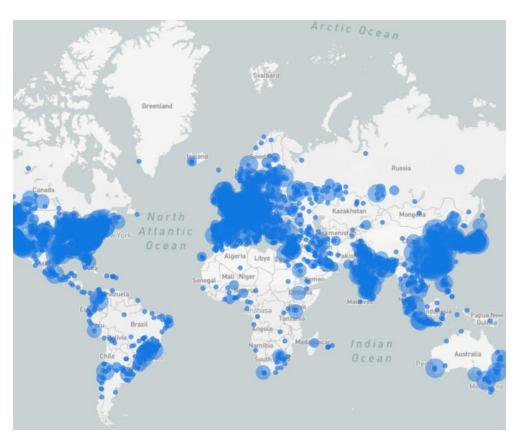
CASSE: Targeted Threat Modeling for Data Management Libraries


Keegan I. H. Sanchez¹, Suren Byna¹, Zhiqiang Lin¹, David Mattson²

¹The Ohio State University

² Amazon Web Services

Data Management Libraries (DML) used heavily

- Self-describing high-level data management libraries are used heavily
 - Portability
 - Metadata management
 - Performance
- Examples: HDF5, NetCDF, ADIOS, Zarr
- Numerous areas of science use them

HDF5 downloads from around the world

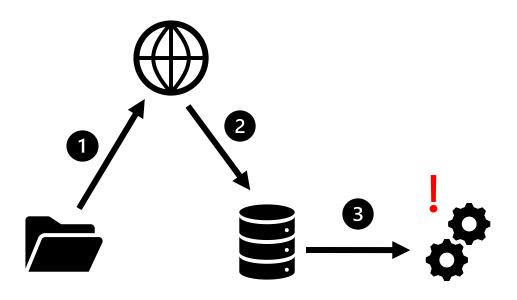
Data Management Libraries (DML) used heavily

- Self-describing high-level data management libraries are used heavily
 - Portability
 - Metadata management
 - Performance
- Examples: HDF5, NetCDF, ADIOS, Zarr
- Numerous areas of science use them

Who Uses HDF®?

Industries

Cojontifia Fields



DMLs Developed Before Cybersecurity Concerns

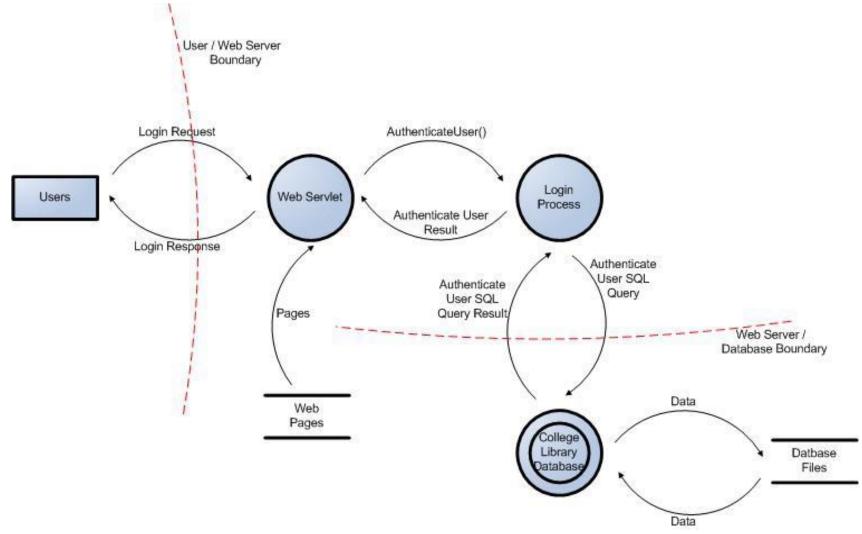
- Numerous vulnerability and attack targets
 - Code
 - Data
 - Metadata
 - External plugins
 - Other data management systems and wrappers
- Lack of a systematic assessment of threats and their impacts
 - How do we increase security?
 - How do we find vulnerabilities?
 - How do we define potential impacts?

Some Attack Examples

Scenario 1: Poisoned ML Training Data

Scenario 2: Altered Compression Plugin

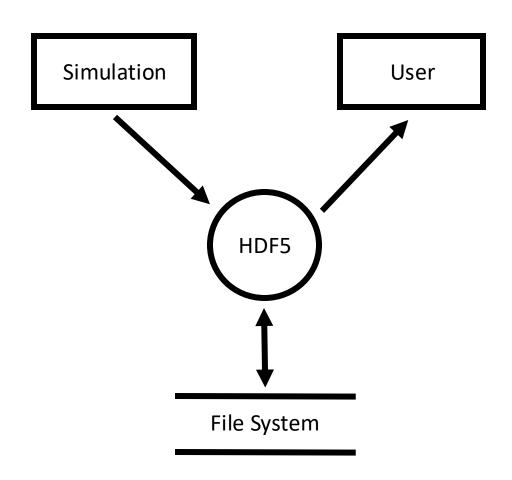
Current Security Approaches


- Libraries
 - Vulnerability Libraries
 - Attack libraries
- Threat Modeling
 - STRIDE
 - PASTA
 - LINDDUN
- Can we apply pre-existing approaches?

STRIDE in Depth

- Combines data flow diagram with attack taxonomy
- Spoofing
 - Masking identity
- Tampering
 - Modifying data
- Repudiation
 - Denying responsibility

- Information Disclosure
 - Leaking data
- Denial of Service
 - Preventing resource usage
- Elevation of Privilege
 - Obtaining restricted privileges


What are Dataflow Diagrams?

Data Flow Diagrams highlight how data passes through a system.

Applying STRIDE to a DML – An Example

- Spoofing
 - Spoof the user?
- Tampering
 - Alter during pass through?
- Repudiation
- Information Disclosure
 - Leak stored information?
- Denial of Service
 - Crash HDF5?
- Elevation of Privilege

STRIDE and the example attacks

- Scenario 1: Poisoned ML training files
 - Elevation of privilege? Spoofing?
- Scenario 2:
 - Information Disclosure

- Shortcomings
 - Doesn't fully cover examples
 - Categories don't aid in discovering cause
 - Categories don't aid in finding similar attacks

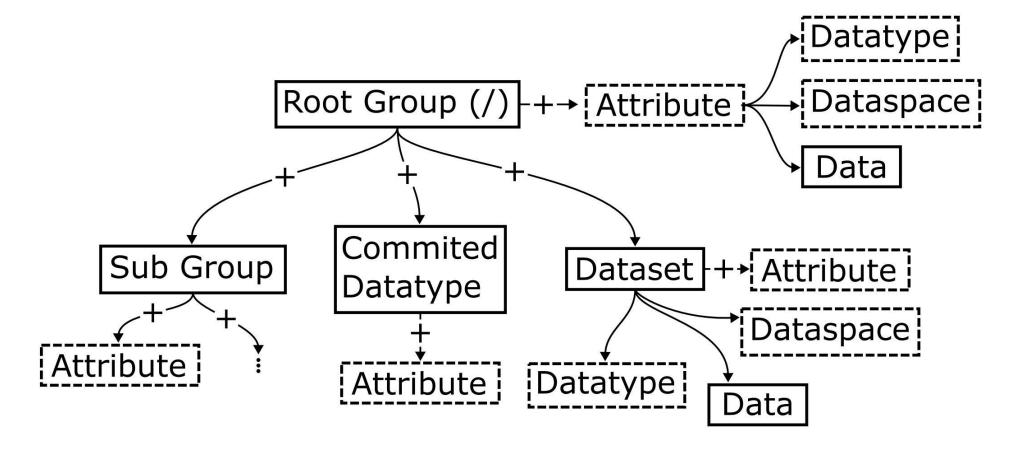
Shortcomings of Existing Threat Models

- Categories provide little context
 - Want to highlight how attacks are performed
- Categories are not specific to DMLs
 - Some categories are over-represented, some are under-represented
- Lack data modeling component
 - DMLs include complex data
 - Can cause vulnerabilities

Requirements of DML Threat Model

- Add data modeling and taxonomy in addition to data flow diagrams
- Taxonomy Cover attack surfaces
 - Sources to be attacked
 - Methods of an attack
 - Targets of an attack
- Data Modeling
 - Aid developers in understanding sometimes complex structures
 - Highlight vulnerabilities

CASSE – A Threat Model focused on DMLs


Three parts highlight the origin of the attack, source, method and target.

- Sources
 - Data
 - Library
- Methods
 - Modification
 - Poisoning

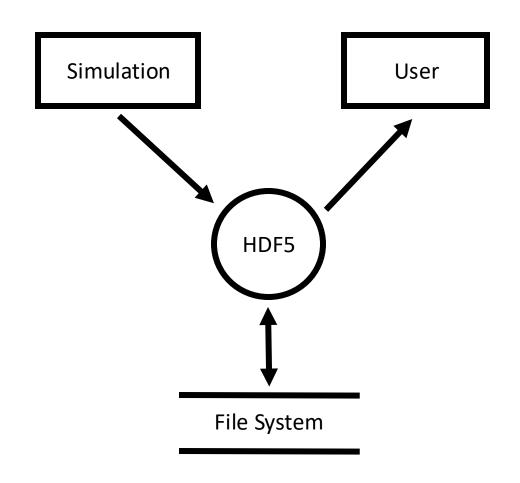
- Targets
 - <u>C</u>ore Library
 - Application
 - <u>S</u>torage
 - <u>S</u>ystem
 - **E**xternal Library

Modeling Data

HDF5 abstract data model

Developers should be aware of offsets, sizes, and pointers.

On Relevant Vulnerabilities


Name	CWE ID	Impact
Out-Of-Bounds Write	CWE-787	
Out-Of-Bounds Read	CWE-125	0
Use After Free	CWE-416	
Null Pointer Dereference	CWE-476	0
Integer Overflow or Wraparound	CWE-190	•
Specified Quantity	CWE-1284	
Specified Index Position	CWE-1285	•
Syntactic Correctness	CWE-1286	•
Specified Type	CWE-1287	•
De-serialization of Untrusted Data	CWE-502	

Though there is less research into DML based systems, we believe these are common in practice.

Applying CASSE to an Example

 Develop data models for relevant DMLs

 Iterate attack taxonomy and organize by likelihood and impact.

CASSE on attack scenarios

- Scenario 1: Poisoned ML dataset
 - Data Poisoning attack targeting the Core Library
- Scenario 2: Altered compression plugin
 - Library Poisoning attack targeting External Library
- Benefits
 - More detail about where attacks are
 - Provide clear routes for mitigations
 - Highlights similar attacks

Conclusion

While previous threat modeling techniques are general, CASSE directly targets threats surrounding DMLs.

Data Models

- Aid in understanding DMLs
- Highlight vulnerabilities in data structures

CASSE Taxonomy

- Applies directly to DMLs and surrounding systems
- Highlights how attacks are performed

Future work

- Developing a quantification method for outlining severity
- Apply CASSE across more libraries and systems

Thanks to:

NSF CICI program

Project: S2-D2: Securing Selfdescribing Data, Formats, and Libraries

Contact: Suren Byna byna.1@osu.edu