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PAKCK Overview 

•  Set of DoD applications surveyed 
•  Set of key kernels identified/implemented 

–  Dense kernels 
–  Sparse kernels 

•  Specific target architectures chosen 
–  ASIC 
–  FPGA 
–  Multicore: CPU and GPU 

•  Methodologies for power/performance characterization on 
architectures identified 

•  Initial power/performance characterization for some kernels/
applications 

•  Simulation framework LLMORE extended 
–  Support for dynamic power models and additional architectures 
–  Methodology for power simulations defined 
–  Initial experiments of “possible” 
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Kernel Selection: Three Key DoD Domains 

Signal & Image 
Processing Encryption 

Databases, Big Data, 
Graph Analytics 

Key kernel: AES Key kernels: GEMV, FFT,  
matrix element-wise multiply 

Key kernels: SpGEMM, SpGEMV,  
BFS 

GEMV = dense matrix-vector multiplication, SpGEMM = sparse matrix-matrix multiplication,  
SpGEMV= sparse matrix-vector multiplication, BFS = breadth first search  

•  Surveyed three application domains – key power 
kernels identified 

•  Implementations of key kernels gathered/written 

Additional info 
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Cyber 

•  Graphs represent 
 communication patterns of 
computers on a network 

•  1,000,000s – 1,000,000,000s 
network events 

•  GOAL: Detect cyber attacks 
or malicious software 

Social 

•  Graphs represent 
 relationships between 
 individuals or documents 

•  10,000s – 10,000,000s 
individual and interactions 

•  GOAL: Identify hidden 
social networks 

•  Graphs represent entities 
 and relationships detected 
 through multi-INT sources 

•  1,000s – 1,000,000s tracks 
and locations 

•  GOAL: Identify anomalous 
patterns of life 

ISR 

Databases, Big Data, Graph Analysis  

Cross-Mission Challenge: 
Detection of subtle patterns in massive multi-source noisy datasets 

Source: Ben Miller, MITLL 
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Key Kernels in Graph Analytics 

Breadth first search (BFS) Sparse matrix-dense vector 
multiplication (SpMV) 

Sparse matrix-matrix 
multiplication (SpGEMM) 

•  Fundamental graph 
search algorithm 

•  Graph 500 benchmark 
•  Simple algorithm that 

stresses traditional 
architectures 

•  Workhorse of sparse 
iterative methods 
(eigensolvers, CG, 
GMRES, etc.) 

•  Signal processing for 
graphs 

•  Formation of 
correlation matrices 

•  DNA sequence 
matching 

•  Graph clustering 

Computational challenges  
–  Sparsity of data 
–  Irregular data  
–  Lack of data locality (spatial and temporal) 
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Performance Challenges in Graph Computations 
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Dense Linear Algebra 
~100% Efficient. 
What COTS is designed to do. 

Sparse Linear Algebra 
~0.1% Efficient. 
What network analysis requires. 

Sparse String Correlation 
~0.001% Efficient. 
What semantic analysis requires. 
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Source: Jeremy Kepner, MITLL 

Performance for sparse linear algebra/graph operations significantly 
worse than dense linear algebra operations on COTS processors 
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Computational Architecture Choices 

•  Four specific architectures chosen 
•  Methodologies for power performance characterization of four 

architectures developed 

ASIC FPGA Multicore 1 Multicore 2 

65 nm CMOS 
IBM 10 LPe 

Low Power Xilinx 
(Spartan 6, 

Samsung 45 nm) 

GPGPU: 
NVIDIA Fermi  Intel Sandy Bridge 

Simulator Simulator •  PAPI/NVML 
•  LLMORE 

•  PAPI/RAPL 
•  LLMORE 
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Computational Architectures Comparison 

Programmability 
of kernels 

Cost of 
repurposing 

Expected power 
consumption Parallelism 

ASIC Complex design; 
long fab time 

Time consuming 
and expensive to 

refab 
O(1 mW) 

Can be designed 
to be highly 

parallel 

FPGA Requires RTL 
programming 

Write new RTL 
code O(100 mW) Limited by 

number of gates 

Nvidia 
Fermi 

Requires CUDA 
programming 

Write new CUDA 
code ~200 W 

Highly parallel 
due to 100s of 
CUDA cores 

Intel 
Sandy 
Bridge 

Many 
programming 

languages 
supported 

Write new code ~135 W Limited by 
number of cores 

Each architecture has different advantages and disadvantages 

Low Medium High Very High 
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•  Performance Application 
Programming Interface (PAPI) 
provides access to hardware 
counters to monitor 
performance 
–  Timing data 
–  Cache hits/misses 
–  Energy counters  

•  Running Average Power Limit 
(RAPL) for SandyBridge CPU 

•  NVIDIA Management Library 
(NVML) for NVIDIA GPGPU 

•  PAPI works across platforms 
•  Accurate power estimates from 

energy components 

Characterizing CPU Power/Performance 
with PAPI 

! CPU and graphics performance,
! battery life and energy bills, and
! ergonomics (acoustic noise, heat, and

so on).

To meet user preferences, the power-
management algorithms optimize around
the following physical constraints:

! silicon capabilities, including voltage,
frequency and power characteristics;

! system thermomechanical capabilities;
! power-delivery capabilities;
! software and operating system explicit

control; and
! workload and usage characteristics.

The system designer can control the
power-management functionality’s behavior
and preferences via basic input/output sys-
tem (BIOS) settings, runtime software, or
an on-board embedded controller. At run-
time, the system reads and controls parame-
ters such as power, maximum current
consumption, and die temperature.

Intel Turbo Boost technology 2.0
The power and frequency of the CPU

and processor graphics are defined by a sce-
nario of concurrent CPU and processor
graphics running a heavy workload at the

same time at worst-case conditions.1 In
most cases, the CPU is running a less-
demanding application and the Intel Turbo
Boost technology uses this power headroom
to extract higher performance when possi-
ble.2,3 Sandy Bridge’s power performance
control is performed primarily through
dynamic voltage and frequency scaling
(DVFS). When the operating system identi-
fies a need for high performance, it issues a
high P-state request. Whenever power and
thermal headroom exist, the PCU increases
the voltage and frequency to the highest
point that is lower than or equal to the oper-
ating system request, that still meets all phys-
ical constraints. Sandy Bridge implements
architectural power meters. It collects a set
of architectural events from each Intel archi-
tecture core, the processor graphics, and I/O,
and combines them with energy weights to
predict the package’s active power consump-
tion. Leakage information is coded into the
die and is scaled with operating conditions
such as voltage and temperature to provide
the package’s total power consumption.
The system uses architectural power predic-
tor output, which is also exposed externally
to software, to decide the amount of turbo
upside available for the current workload
(turbo upside is available higher frequency
that the CPU can go up to and use for higher
performance).4,5 The architectural power
predictor provides a consistent turbo behavior
while minimizing the die-to-die variations
and dependency on ambient temperature.
Figure 3 describes the actual versus predicted
power of the CPU, processor graphics, and
total package.

In addition to the Intel Turbo Boost tech-
nology already implemented in previous gen-
erations of Intel processors, Sandy Bridge
offers two new functionalities: total package
power control and responsiveness via dy-
namic turbo. Sandy Bridge is an SoC mono-
lithic die. The power is specified in terms of
the entire package’s total power consump-
tion. The real workload uses the die’s differ-
ent computational and communication
resources. The PCU continuously monitors
the individual functional blocks’ power con-
sumption and performs dynamic budget al-
location to the various components. One
such example is power sharing between the
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Figure 3. Power meter: predicted and actual power of the CPU, processor

graphics, and total package. The figure shows a power snapshot of

combined CPU and graphics workload. The chart presents the actual

measured power and the architectural power meter reporting for the IA

core, processor graphics, and total package. The actual and reported

power correlate accurately.

....................................................................
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...............................................................................................................................................................................................
HOT CHIPS

Rotem et. al., IEEE Micro, 2012 

RAPL Estimates v Measured Power Usage 
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•  CPU Plan 
–  Used PAPI to access RAPL 
–  Hardware counters provide 

access to: 
§  Package energy 
§  DRAM energy 
§  Energy of “Power Plane 

0” (includes cores and caches) 
–  Measurements: 

§  In nanoJoules (nJ) 
§  Sampled every microsecond 

–  Averaged numerous trials to 
obtain accurate power 
estimates 

PAPI Power Measurements 

•  GPGPU Plan 
–  Use NVML 
–  Hardware Counters 

provide access to 
   Power (GPU, memory) 
   Temperature 

–  Measurements: 
   Power in  milliWatts (mW) 
   Temperature in Celsius (C) 

–  Power Accuracy (Fermi) 
   Within  +/- 5% current 

draw* 

*NVML API Reference Manual, v 4.304.55, 
NVIDI, Oct. 2012  
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Preliminary Power Characterization 
Results 

•  75 GFLOPS/W can be 
achieved with ASIC for 
certain kernels 

•  FPGAs are close to 
goal 

•  Sparse kernels 
perform orders of 
magnitude lower than 
dense kernels 

•  75 GFLOPS/W is very challenging target  
for software programmable architectures 
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•  MIT Lincoln Laboratory’s Mapping and Optimization Runtime 
Environment (LLMORE) used for power and performance 
simulations of the possible   

•  LLMORE: parallel framework/environment for 
–  Optimizing data to processor mapping for parallel applications 
–  Simulating and optimizing new (and existing) architectures 
–  Generating performance data (runtime, power, etc.) 
–  Code generation and execution for target architectures 

•  LLMORE Simulations and PAKCK 
–  Yield power and performance data for key computational kernels 
–  Support for CPU and GPU architectures 
–  Easy to add support for new architectures 

   Gives performance characterization of experimental architectures 
   Hybrid systems 

Exploration of the Possible 
 CPU and GPGPU Simulations using LLMORE 

LLMORE provides simulation support for key kernels on existing and future systems 
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LLMORE Simulator Framework 

LLMORE Simulator Framework 

LLMORE interfaces to multiple simulators to support the 
analysis needs of different architectures. 

LLMORE Simulator 
 
 •  High level simulation for 

understanding big 
picture 

•  Fast 
•  Low fidelity 
•  Input: LLMORE MI code 

 
 

Sniper Simulator 
 
 •  Low level simulator for 

high fidelity simulation 
•  Focus: simulation of big 

systems, networks 
•  Support for x86 

instructions 
•  Input: C++ code 

 
 

Custom MITLL Simulator 
 
 •  Low level simulator for 

high fidelity simulation 
•  Focus: simulations of 

processor with non x86 
instructions  

•  Support for custom 
instructions, custom 
synchronization 

•  Input: program trace 

 
 

MI=machine independent 

External to LLMORE 

LLMORE 
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LLMORE Overview 

LLMORE 
Architectures 

Applications 

Architecture 
Model 

User Code 

Output: 
One or more 

Production quality software that is extendable 
to new applications, architectures 
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Performance Data 

Optimized Architectures 

Parameters 
Photonic 
BW = 320 Gb/s 
P = 16 

Optimized Maps 

A x y 

Generated Code/Results 

for i=1:N 
   compute1() 
   compute2() 
   compute3() 
end 
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Sample LLMORE Simulation – 2D FFT 

Architecture 
LLMORE 

Architecture 
Model 

User 
Code 

Output 

Performance Data 
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LLMORE simulates running 2D FFT on Sandy Bridge CPU 
and produces performance data 

Application 
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LLMORE Design: Detailed View 

LLMORE 

LLMORE  
output 

Analyzer and Optimizer 

Map Converter 
Map	  

Manager	  
Map	  
Builder	  

Parser 
Parse	  

Manager	  
AST	  

Builder	  

LLMORE  
input 

Mapper 

Exit condition 

Mapped AST MI Code 
Generator 

MI code 

Simulator 

Performance data 

LLMORE requires coordinated interaction of multiple components 

AST=abstract syntax tree, MI=machine independent 
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LLMORE: Exploration of the Possible 

Simulation indicates 50x-100x energy improvement needed 
in Intel Sandy Bridge to obtain 75 GFLOPS/W 

LLMORE used to explore energy 
trade space for compute and 

memory operations (scaling the 
energy per op) 

G
FL

O
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Other Key Benchmark Suites 

•  High performance Linpack 
•  STREAM 
•  FFT 
•  RandomAccess 
•  Communication bandwidth and 

latency (b_eff) 
•  DGEMM & PTRANS 

•  Front-end stream processing 
kernels 

•  Back-end data analytics kernels 
•  Three scalable synthetic compact 

applications (SSCAs) 
–  Pattern matching, graph analysis, 

synthetic aperture radar 

•  Data generator 
•  Breadth-first search 

•  Data generator 
•  Classify large sets 
•  Extract subgraphs 
•  Graph clustering 
•  graphanalysis.org 

HPC Graph Analysis (Georgia Tech) 

Graph 500 benchmark 
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Parallel Computing Architecture Issues 

CPU 

RAM 

Disk 

CPU 

RAM 

Disk 

CPU 

RAM 

Disk 

CPU 

RAM 

Disk 

Standard Parallel 
Computer Architecture 

CPU 

RAM 

Disk 

CPU 

RAM 

Disk 

CPU 

RAM 

Disk 

CPU 

RAM 
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Network Switch 

Corresponding 
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Performance 
Implications 
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•  Standard architecture produces a “steep” multi-layered memory hierarchy 
•  Programmer must manage this hierarchy to get good performance 

Registers 

Cache 

Local Memory 

Remote Memory 

Disk 

Instr. Operands 

Blocks 

Pages 

Messages 
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Registers 

Cache 

Local Memory 

Remote Memory 

Disk 

Instr. Operands 

Blocks 

Pages 

Messages 

•  HPC Challenge with Iozone measures this hierarchy 
•  Can determine whether each level of hierarchy is functioning properly 

HPC Challenge Benchmarks 

HPC Challenge 
Benchmark 

Corresponding 
Memory Hierarchy 

• Top500: solves a system 
Ax = b 

• STREAM: vector operations 
A = B + s x C 

• FFT: 1D Fast Fourier Transform 
Z = FFT(X) 

• RandomAccess: random updates 
T(i) = XOR( T(i), r )  

 
• Iozone: Read and write to disk 

(Not part of HPC Challenge) 

bandwidth!

latency!
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HPEC Challenge: 
Kernel Benchmark Selection 

“Front-end Processing” 
•  Data independent, 

stream-oriented 
•  Signal processing, 

image processing, 
high-speed network 
communication 

“Back-end Processing” 
•  Data dependent, thread 

oriented 
•  Information processing, 

knowledge processing 

Broad Processing 
Categories Specific Kernels 

Signal/Image Processing 
• Finite Impulse Response Filter (FIR) 
• QR Factorization (QR) 
• Singular Value Decomposition (SVD) 
• Constant False Alarm Rate Detection 

(CFAR) 

Communication 
• Corner Turn (CT) 

Information/Knowledge Processing 

• Graph Optimization via Genetic 
Algorithm (GA) 

• Pattern Match (PM) 
• Real-time Database Operations (DB) 

http://www.omgwiki.org/hpec/files/hpec-challenge/ 
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HPEC Challenge: 
Signal and Image Processing Kernels 

QR FIR 

SVD CFAR 

Data Set 1:!
M Filters !
(~10 coefficients)!

Data Set 2:!
M Filters !
(>100 coefficients)!

•  Bank of filters applied to input data 
•  FIR filters implemented in time and 

frequency domain 

Input Matrix!

M
 C

ha
nn

el
s!

Input!
Matrix!

Bidiagonal!
Matrix!

Diagonal  
Matrix Σ!

•  Produces decomposition of an input 
matrix, X=UΣVH  

•  Classic Golub-Kahan SVD 
implementation 

A 

•  Computes the factorization of an input 
matrix, A=QR 

•  Implementation uses Fast Givens 
algorithm 

*!Q R 
(MxN) (MxN) (MxM) 

Beams 

Dopplers 

Range 

C(i,j,k) 

T(i,j,k) 

C 

•  Creates a target list given a data cube 
•  Calculates normalized power for each 

cell, thresholds for target detection 

Normalize, 
Threshold 

Target List 

(i,j,k) 

http://www.omgwiki.org/hpec/files/hpec-challenge/ 
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HPEC Challenge: Information and 
Knowledge Processing Kernels 

Range!

M
ag
!

…!

Pattern under test!

Pattern Match Genetic Algorithm 

Database Operations 

•  Compute best match for a pattern out of 
set of candidate patterns  

–  Uses weighted mean-square error 0.1!
0.2!
0.3!
0.4!
Selection!

Evaluation!

Crossover! Mutation!

•  Evaluate each chromosome 
•  Select chromosomes for next generation 
•  Crossover: randomly pair up chromosomes 

and exchange portions  
•  Mutation: randomly change each chromosome 

Red-Black Tree 
Data Structure 

Linked List 
Data Structures 

•  Three generic database 
operations: 
–  search: find all items in 

a given range 
–  insert: add items to the 

database 
–  delete: remove item 

from the database 

Candidate Pattern 1 

Candidate Pattern 2 

Candidate Pattern N 

Corner Turn 

0 1 2 3 
4 5 6 7 
8 9 10 11 

1 5 9 
2 6 10 
3 7 11 

0 4 8 

•  Memory rearrangement of matrix 
contents 

–  Switch from row to column major 
layout 

http://www.omgwiki.org/hpec/files/hpec-challenge/ 
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SAR 
Images 

Front-End Sensor Processing 

Template 
Files 

Back-End Knowledge Formation 

Validation 

Template 
Files 

Groups of 
Template 
Files 

Raw 
SAR 

 
Files 

SAR 
Image 

Scalable Data  
and Template  

Generator 

 
 

Kernel #2 
Image  

Storage 

Groups of  
Template 

Files 

Sub-Image 
Detection 
Files 

 Image  
Files 

Sub-Image 
Detection 
Files 

Detections Kernel #4  
Detection 

SAR 
Image Template 

Insertion 

Kernel #3 
Image  

Retrieval Templates 

Raw 
SAR 
File 

SAR 
Image 
Files 

SAR 
Image 
Files 

Kernel #1  
Data Read 
and Image  
Formation 

Templates 

Template 
Files 

HPEC Challenge 
SSCA#3: SAR System Architecture 

Raw SAR  
Data Files 

Computation File IO 

HPEC community 
has traditionally 

focused on 
Computation … 

… but File IO 
performance is 

increasingly 
important 

http://www.omgwiki.org/hpec/files/hpec-challenge/ 
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Summary and Future Work 

Summary 
•  Major finding: DARPA is targeting ASIC-levels of computational 

efficiency applied to programmable computational architectures 
•  PAKCK results show this is a challenging goal to achieve 
•  PAKCK has quantified the gap between current programmable 

computational architectures and DARPA goal for DoD-relevant 
application kernels 

Future Work 
•  Characterize performance bottlenecks on Sandy Bridge for 

SpMV and SpGEMM 
•  Extend LLMORE to simulating other device technologies 


