
Albert Reuther
Computing and Analytics Group

Suite of Embedded Applications and
Kernels (SEAK) Workshop at DAC 2014

1 June 2014

PAKCK: Power Analysis of Key
Computational Kernels

DARPA MTO
PM: Dr. Joseph Cross

This work is sponsored by the Defense Advanced Research Projects Agency under Air Force Contract FA8721-05-C-0002. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of DARPA or the U.S. Government.

PAKCK Benchmarking - 2
AIR 1-June-2014

•  Introduction

•  Key Computational Kernels and Computational Architectures

•  Results

•  Exploration of Possible using LLMORE Simulator

•  Other Key Benchmark Suites

•  Summary and Future Work

Outline

PAKCK Benchmarking - 3
AIR 1-June-2014

PAKCK Overview

•  Set of DoD applications surveyed
•  Set of key kernels identified/implemented

–  Dense kernels
–  Sparse kernels

•  Specific target architectures chosen
–  ASIC
–  FPGA
–  Multicore: CPU and GPU

•  Methodologies for power/performance characterization on
architectures identified

•  Initial power/performance characterization for some kernels/
applications

•  Simulation framework LLMORE extended
–  Support for dynamic power models and additional architectures
–  Methodology for power simulations defined
–  Initial experiments of “possible”

PAKCK Benchmarking - 4
AIR 1-June-2014

Kernel Selection: Three Key DoD Domains

Signal & Image
Processing Encryption

Databases, Big Data,
Graph Analytics

Key kernel: AES Key kernels: GEMV, FFT,
matrix element-wise multiply

Key kernels: SpGEMM, SpGEMV,
BFS

GEMV = dense matrix-vector multiplication, SpGEMM = sparse matrix-matrix multiplication,
SpGEMV= sparse matrix-vector multiplication, BFS = breadth first search

•  Surveyed three application domains – key power
kernels identified

•  Implementations of key kernels gathered/written

Additional info

PAKCK Benchmarking - 5
AIR 1-June-2014

Cyber

•  Graphs represent
 communication patterns of
computers on a network

•  1,000,000s – 1,000,000,000s
network events

•  GOAL: Detect cyber attacks
or malicious software

Social

•  Graphs represent
 relationships between
 individuals or documents

•  10,000s – 10,000,000s
individual and interactions

•  GOAL: Identify hidden
social networks

•  Graphs represent entities
 and relationships detected
 through multi-INT sources

•  1,000s – 1,000,000s tracks
and locations

•  GOAL: Identify anomalous
patterns of life

ISR

Databases, Big Data, Graph Analysis

Cross-Mission Challenge:
Detection of subtle patterns in massive multi-source noisy datasets

Source: Ben Miller, MITLL

PAKCK Benchmarking - 6
AIR 1-June-2014

Key Kernels in Graph Analytics

Breadth first search (BFS) Sparse matrix-dense vector
multiplication (SpMV)

Sparse matrix-matrix
multiplication (SpGEMM)

•  Fundamental graph
search algorithm

•  Graph 500 benchmark
•  Simple algorithm that

stresses traditional
architectures

•  Workhorse of sparse
iterative methods
(eigensolvers, CG,
GMRES, etc.)

•  Signal processing for
graphs

•  Formation of
correlation matrices

•  DNA sequence
matching

•  Graph clustering

Computational challenges
–  Sparsity of data
–  Irregular data
–  Lack of data locality (spatial and temporal)

PAKCK Benchmarking - 7
AIR 1-June-2014

Performance Challenges in Graph Computations

10−5 10−4 10−3 10−2 10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

100

Fraction of Memory Used

Fr
ac

tio
n

of
 P

ea
k

Pe
rfo

rm
an

ce

dense
sparse
assoc
catkey
catval

Dense Linear Algebra
~100% Efficient.
What COTS is designed to do.

Sparse Linear Algebra
~0.1% Efficient.
What network analysis requires.

Sparse String Correlation
~0.001% Efficient.
What semantic analysis requires.

Fraction of Memory Used

Fr
ac

tio
n

of
 P

ea
k

P
er

fo
rm

an
ce

 1000x

100x

Source: Jeremy Kepner, MITLL

Performance for sparse linear algebra/graph operations significantly
worse than dense linear algebra operations on COTS processors

PAKCK Benchmarking - 8
AIR 1-June-2014

Computational Architecture Choices

•  Four specific architectures chosen
•  Methodologies for power performance characterization of four

architectures developed

ASIC FPGA Multicore 1 Multicore 2

65 nm CMOS
IBM 10 LPe

Low Power Xilinx
(Spartan 6,

Samsung 45 nm)

GPGPU:
NVIDIA Fermi Intel Sandy Bridge

Simulator Simulator •  PAPI/NVML
•  LLMORE

•  PAPI/RAPL
•  LLMORE

PAKCK Benchmarking - 9
AIR 1-June-2014

Computational Architectures Comparison

Programmability
of kernels

Cost of
repurposing

Expected power
consumption Parallelism

ASIC Complex design;
long fab time

Time consuming
and expensive to

refab
O(1 mW)

Can be designed
to be highly

parallel

FPGA Requires RTL
programming

Write new RTL
code O(100 mW) Limited by

number of gates

Nvidia
Fermi

Requires CUDA
programming

Write new CUDA
code ~200 W

Highly parallel
due to 100s of
CUDA cores

Intel
Sandy
Bridge

Many
programming

languages
supported

Write new code ~135 W Limited by
number of cores

Each architecture has different advantages and disadvantages

Low Medium High Very High

PAKCK Benchmarking - 10
AIR 1-June-2014

•  Introduction

•  Key Computational Kernels and Computational Architectures

•  Results

•  Exploration of Possible using LLMORE Simulator

•  Other Key Benchmark Suites

•  Summary and Future Work

Outline

PAKCK Benchmarking - 11
AIR 1-June-2014

•  Performance Application
Programming Interface (PAPI)
provides access to hardware
counters to monitor
performance
–  Timing data
–  Cache hits/misses
–  Energy counters

•  Running Average Power Limit
(RAPL) for SandyBridge CPU

•  NVIDIA Management Library
(NVML) for NVIDIA GPGPU

•  PAPI works across platforms
•  Accurate power estimates from

energy components

Characterizing CPU Power/Performance
with PAPI

! CPU and graphics performance,
! battery life and energy bills, and
! ergonomics (acoustic noise, heat, and

so on).

To meet user preferences, the power-
management algorithms optimize around
the following physical constraints:

! silicon capabilities, including voltage,
frequency and power characteristics;

! system thermomechanical capabilities;
! power-delivery capabilities;
! software and operating system explicit

control; and
! workload and usage characteristics.

The system designer can control the
power-management functionality’s behavior
and preferences via basic input/output sys-
tem (BIOS) settings, runtime software, or
an on-board embedded controller. At run-
time, the system reads and controls parame-
ters such as power, maximum current
consumption, and die temperature.

Intel Turbo Boost technology 2.0
The power and frequency of the CPU

and processor graphics are defined by a sce-
nario of concurrent CPU and processor
graphics running a heavy workload at the

same time at worst-case conditions.1 In
most cases, the CPU is running a less-
demanding application and the Intel Turbo
Boost technology uses this power headroom
to extract higher performance when possi-
ble.2,3 Sandy Bridge’s power performance
control is performed primarily through
dynamic voltage and frequency scaling
(DVFS). When the operating system identi-
fies a need for high performance, it issues a
high P-state request. Whenever power and
thermal headroom exist, the PCU increases
the voltage and frequency to the highest
point that is lower than or equal to the oper-
ating system request, that still meets all phys-
ical constraints. Sandy Bridge implements
architectural power meters. It collects a set
of architectural events from each Intel archi-
tecture core, the processor graphics, and I/O,
and combines them with energy weights to
predict the package’s active power consump-
tion. Leakage information is coded into the
die and is scaled with operating conditions
such as voltage and temperature to provide
the package’s total power consumption.
The system uses architectural power predic-
tor output, which is also exposed externally
to software, to decide the amount of turbo
upside available for the current workload
(turbo upside is available higher frequency
that the CPU can go up to and use for higher
performance).4,5 The architectural power
predictor provides a consistent turbo behavior
while minimizing the die-to-die variations
and dependency on ambient temperature.
Figure 3 describes the actual versus predicted
power of the CPU, processor graphics, and
total package.

In addition to the Intel Turbo Boost tech-
nology already implemented in previous gen-
erations of Intel processors, Sandy Bridge
offers two new functionalities: total package
power control and responsiveness via dy-
namic turbo. Sandy Bridge is an SoC mono-
lithic die. The power is specified in terms of
the entire package’s total power consump-
tion. The real workload uses the die’s differ-
ent computational and communication
resources. The PCU continuously monitors
the individual functional blocks’ power con-
sumption and performs dynamic budget al-
location to the various components. One
such example is power sharing between the

[3B2-9] mmi2012020020.3d 12/3/012 14:20 Page 22

45
40
35
30
25
20
15
10
5
0

0 50 100 150 200 250
Time (s)

CPU–predicted
PG–predicted
Package–predicted

CPU–actual
PG–actual
Package–actual

Po
w

er
 (W

)

Figure 3. Power meter: predicted and actual power of the CPU, processor

graphics, and total package. The figure shows a power snapshot of

combined CPU and graphics workload. The chart presents the actual

measured power and the architectural power meter reporting for the IA

core, processor graphics, and total package. The actual and reported

power correlate accurately.

..

22 IEEE MICRO

...
HOT CHIPS

Rotem et. al., IEEE Micro, 2012

RAPL Estimates v Measured Power Usage

PAKCK Benchmarking - 12
AIR 1-June-2014

•  CPU Plan
–  Used PAPI to access RAPL
–  Hardware counters provide

access to:
§  Package energy
§  DRAM energy
§  Energy of “Power Plane

0” (includes cores and caches)
–  Measurements:

§  In nanoJoules (nJ)
§  Sampled every microsecond

–  Averaged numerous trials to
obtain accurate power
estimates

PAPI Power Measurements

•  GPGPU Plan
–  Use NVML
–  Hardware Counters

provide access to
   Power (GPU, memory)
   Temperature

–  Measurements:
   Power in milliWatts (mW)
   Temperature in Celsius (C)

–  Power Accuracy (Fermi)
   Within +/- 5% current

draw*

*NVML API Reference Manual, v 4.304.55,
NVIDI, Oct. 2012

PAKCK Benchmarking - 13
AIR 1-June-2014

Preliminary Power Characterization
Results

•  75 GFLOPS/W can be
achieved with ASIC for
certain kernels

•  FPGAs are close to
goal

•  Sparse kernels
perform orders of
magnitude lower than
dense kernels

•  75 GFLOPS/W is very challenging target
for software programmable architectures

PAKCK Benchmarking - 14
AIR 1-June-2014

•  MIT Lincoln Laboratory’s Mapping and Optimization Runtime
Environment (LLMORE) used for power and performance
simulations of the possible

•  LLMORE: parallel framework/environment for
–  Optimizing data to processor mapping for parallel applications
–  Simulating and optimizing new (and existing) architectures
–  Generating performance data (runtime, power, etc.)
–  Code generation and execution for target architectures

•  LLMORE Simulations and PAKCK
–  Yield power and performance data for key computational kernels
–  Support for CPU and GPU architectures
–  Easy to add support for new architectures

   Gives performance characterization of experimental architectures
   Hybrid systems

Exploration of the Possible
 CPU and GPGPU Simulations using LLMORE

LLMORE provides simulation support for key kernels on existing and future systems

PAKCK Benchmarking - 15
AIR 1-June-2014

LLMORE Simulator Framework

LLMORE Simulator Framework

LLMORE interfaces to multiple simulators to support the
analysis needs of different architectures.

LLMORE Simulator

 •  High level simulation for

understanding big
picture

•  Fast
•  Low fidelity
•  Input: LLMORE MI code

Sniper Simulator

 •  Low level simulator for

high fidelity simulation
•  Focus: simulation of big

systems, networks
•  Support for x86

instructions
•  Input: C++ code

Custom MITLL Simulator

 •  Low level simulator for

high fidelity simulation
•  Focus: simulations of

processor with non x86
instructions

•  Support for custom
instructions, custom
synchronization

•  Input: program trace

MI=machine independent

External to LLMORE

LLMORE

PAKCK Benchmarking - 16
AIR 1-June-2014

LLMORE Overview

LLMORE
Architectures

Applications

Architecture
Model

User Code

Output:
One or more

Production quality software that is extendable
to new applications, architectures

30
40

50
60

70
80

90 2
3

4
5

6
7

8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Memory: Static Power(W)

GFLOPs/W Nehalem Model − Dense

Processor: Static Power(W)

Performance Data

Optimized Architectures

Parameters
Photonic
BW = 320 Gb/s
P = 16

Optimized Maps

A x y

Generated Code/Results

for i=1:N
 compute1()
 compute2()
 compute3()
end

PAKCK Benchmarking - 17
AIR 1-June-2014

Sample LLMORE Simulation – 2D FFT

Architecture
LLMORE

Architecture
Model

User
Code

Output

Performance Data

30
40

50
60

70
80

90 2
3

4
5

6
7

8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Memory: Static Power(W)

GFLOPs/W Nehalem Model − Dense

Processor: Static Power(W)

LLMORE simulates running 2D FFT on Sandy Bridge CPU
and produces performance data

Application

PAKCK Benchmarking - 18
AIR 1-June-2014

LLMORE Design: Detailed View

LLMORE

LLMORE
output

Analyzer and Optimizer

Map Converter
Map	

Manager	
Map	
Builder	

Parser
Parse	

Manager	
AST	

Builder	

LLMORE
input

Mapper

Exit condition

Mapped AST MI Code
Generator

MI code

Simulator

Performance data

LLMORE requires coordinated interaction of multiple components

AST=abstract syntax tree, MI=machine independent

PAKCK Benchmarking - 19
AIR 1-June-2014

LLMORE: Exploration of the Possible

Simulation indicates 50x-100x energy improvement needed
in Intel Sandy Bridge to obtain 75 GFLOPS/W

LLMORE used to explore energy
trade space for compute and

memory operations (scaling the
energy per op)

G
FL

O
PS

/W

PAKCK Benchmarking - 20
AIR 1-June-2014

•  Introduction

•  Key Computational Kernels and Computational Architectures

•  Results

•  Exploration of Possible using LLMORE Simulator

•  Other Key Benchmark Suites

•  Summary and Future Work

Outline

PAKCK Benchmarking - 21
AIR 1-June-2014

Other Key Benchmark Suites

•  High performance Linpack
•  STREAM
•  FFT
•  RandomAccess
•  Communication bandwidth and

latency (b_eff)
•  DGEMM & PTRANS

•  Front-end stream processing
kernels

•  Back-end data analytics kernels
•  Three scalable synthetic compact

applications (SSCAs)
–  Pattern matching, graph analysis,

synthetic aperture radar

•  Data generator
•  Breadth-first search

•  Data generator
•  Classify large sets
•  Extract subgraphs
•  Graph clustering
•  graphanalysis.org

HPC Graph Analysis (Georgia Tech)

Graph 500 benchmark

PAKCK Benchmarking - 22
AIR 1-June-2014

Parallel Computing Architecture Issues

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

Standard Parallel
Computer Architecture

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

Network Switch

Corresponding
Memory Hierarchy

Performance
Implications

In
cr

ea
si

ng
 B

an
dw

id
th
!

In
cr

ea
si

ng
 L

at
en

cy
!

In
cr

ea
si

ng
 C

ap
ac

ity
!

In
cr

ea
si

ng
 P

ro
gr

am
m

ab
ili

ty
!

•  Standard architecture produces a “steep” multi-layered memory hierarchy
•  Programmer must manage this hierarchy to get good performance

Registers

Cache

Local Memory

Remote Memory

Disk

Instr. Operands

Blocks

Pages

Messages

PAKCK Benchmarking - 23
AIR 1-June-2014

Registers

Cache

Local Memory

Remote Memory

Disk

Instr. Operands

Blocks

Pages

Messages

•  HPC Challenge with Iozone measures this hierarchy
•  Can determine whether each level of hierarchy is functioning properly

HPC Challenge Benchmarks

HPC Challenge
Benchmark

Corresponding
Memory Hierarchy

• Top500: solves a system
Ax = b

• STREAM: vector operations
A = B + s x C

• FFT: 1D Fast Fourier Transform
Z = FFT(X)

• RandomAccess: random updates
T(i) = XOR(T(i), r)

• Iozone: Read and write to disk

(Not part of HPC Challenge)

bandwidth!

latency!

PAKCK Benchmarking - 24
AIR 1-June-2014

HPEC Challenge:
Kernel Benchmark Selection

“Front-end Processing”
•  Data independent,

stream-oriented
•  Signal processing,

image processing,
high-speed network
communication

“Back-end Processing”
•  Data dependent, thread

oriented
•  Information processing,

knowledge processing

Broad Processing
Categories Specific Kernels

Signal/Image Processing
• Finite Impulse Response Filter (FIR)
• QR Factorization (QR)
• Singular Value Decomposition (SVD)
• Constant False Alarm Rate Detection

(CFAR)

Communication
• Corner Turn (CT)

Information/Knowledge Processing

• Graph Optimization via Genetic
Algorithm (GA)

• Pattern Match (PM)
• Real-time Database Operations (DB)

http://www.omgwiki.org/hpec/files/hpec-challenge/

PAKCK Benchmarking - 25
AIR 1-June-2014

HPEC Challenge:
Signal and Image Processing Kernels

QR FIR

SVD CFAR

Data Set 1:!
M Filters !
(~10 coefficients)!

Data Set 2:!
M Filters !
(>100 coefficients)!

•  Bank of filters applied to input data
•  FIR filters implemented in time and

frequency domain

Input Matrix!

M
 C

ha
nn

el
s!

Input!
Matrix!

Bidiagonal!
Matrix!

Diagonal  
Matrix Σ!

•  Produces decomposition of an input
matrix, X=UΣVH

•  Classic Golub-Kahan SVD
implementation

A

•  Computes the factorization of an input
matrix, A=QR

•  Implementation uses Fast Givens
algorithm

*!Q R
(MxN) (MxN) (MxM)

Beams

Dopplers

Range

C(i,j,k)

T(i,j,k)

C

•  Creates a target list given a data cube
•  Calculates normalized power for each

cell, thresholds for target detection

Normalize,
Threshold

Target List

(i,j,k)

http://www.omgwiki.org/hpec/files/hpec-challenge/

PAKCK Benchmarking - 26
AIR 1-June-2014

HPEC Challenge: Information and
Knowledge Processing Kernels

Range!

M
ag
!

…!

Pattern under test!

Pattern Match Genetic Algorithm

Database Operations

•  Compute best match for a pattern out of
set of candidate patterns

–  Uses weighted mean-square error 0.1!
0.2!
0.3!
0.4!
Selection!

Evaluation!

Crossover! Mutation!

•  Evaluate each chromosome
•  Select chromosomes for next generation
•  Crossover: randomly pair up chromosomes

and exchange portions
•  Mutation: randomly change each chromosome

Red-Black Tree
Data Structure

Linked List
Data Structures

•  Three generic database
operations:
–  search: find all items in

a given range
–  insert: add items to the

database
–  delete: remove item

from the database

Candidate Pattern 1

Candidate Pattern 2

Candidate Pattern N

Corner Turn

0 1 2 3
4 5 6 7
8 9 10 11

1 5 9
2 6 10
3 7 11

0 4 8

•  Memory rearrangement of matrix
contents

–  Switch from row to column major
layout

http://www.omgwiki.org/hpec/files/hpec-challenge/

PAKCK Benchmarking - 27
AIR 1-June-2014

SAR
Images

Front-End Sensor Processing

Template
Files

Back-End Knowledge Formation

Validation

Template
Files

Groups of
Template
Files

Raw
SAR

Files

SAR
Image

Scalable Data
and Template

Generator

Kernel #2
Image

Storage

Groups of
Template

Files

Sub-Image
Detection
Files

 Image
Files

Sub-Image
Detection
Files

Detections Kernel #4
Detection

SAR
Image Template

Insertion

Kernel #3
Image

Retrieval Templates

Raw
SAR
File

SAR
Image
Files

SAR
Image
Files

Kernel #1
Data Read
and Image
Formation

Templates

Template
Files

HPEC Challenge
SSCA#3: SAR System Architecture

Raw SAR
Data Files

Computation File IO

HPEC community
has traditionally

focused on
Computation …

… but File IO
performance is

increasingly
important

http://www.omgwiki.org/hpec/files/hpec-challenge/

PAKCK Benchmarking - 28
AIR 1-June-2014

Summary and Future Work

Summary
•  Major finding: DARPA is targeting ASIC-levels of computational

efficiency applied to programmable computational architectures
•  PAKCK results show this is a challenging goal to achieve
•  PAKCK has quantified the gap between current programmable

computational architectures and DARPA goal for DoD-relevant
application kernels

Future Work
•  Characterize performance bottlenecks on Sandy Bridge for

SpMV and SpGEMM
•  Extend LLMORE to simulating other device technologies

